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The aim of this paper is to extend results on derivation of lattices by introducing
permuting Z,-f and Z,- (f,g)-derivations. The ideas of modular identity,
isotone derivations and trace of permuting Z,-f and Z,- (f, g)-derivations are
investigated. Conditions that establish the distributive property and other related
properties are studied, and new results are presented.

INTRODUCTION

Lattice theory made tremendous developments in the last
decades. The notion of derivation appeared first on ring
structures. For instance, Posner (1988) introduced the
notion of derivation on a prime ring R as a function d from
R into itself satisfying the following conditions d (x, y) =
d(x,y) +xd(y)and d(x +y) =d(x)+ d(y) for all
x,y € R. The notion of derivation on rings has many
applications. Szadsz (1975) extended the concept of
derivation to lattice structures based on the meet and the
join operations (A, V)-derivation. Raji (1988) presented
equivalent conditions for a derivation to be isotone in
specific types of lattices with greatest elements, the
author however characterized modular lattices and
distributive lattices using the properties of derivations.
Farrari (2001) studied lattices that are either unbounded
or non distributive which are the only cases in which the
derivations can be nontrivial. The author also considered
the lattice [N; max, min] whose associated partially
ordered set (poset) is the chain [N; < ] with the usual total
order. Xin et al (2008) studied the notion of derivation on
a lattice by considering the first condition of Posner’s
theorem (Posner, 1988). It has been shown that the second
condition holds for isotone derivations on a distributive
lattice. In the same paper, the authors characterized the
distributive and modular lattices in terms of isotone
derivations. Ceven & Ozturk (2008) gave generalization
of derivation of a lattice which was defined in Xin et al
(2008). Ceven (2009) introduced the symmetric classical-
derivation and f-derivations of lattices. Alshehli (2010)
used the idea of isotone generalized derivation and gave
characterizations of modular lattices and distributive
lattices. Ozbal & Firat (2010) introduced the notion of f
bi-derivation on a lattice they also characterized
distributive lattices using symmetric f bi-derivation.

Mustafa et al (2011) gave some equivalent conditions
under which a derivation is isotone for lattices with a
greatest element, modular lattices and distributive
lattices. The authors investigated some related properties
of symmetric bi-(o, T)-derivations in near rings,
characterized the distributive and modular lattices by the
trace. Yazarli & Ozturk (2011) introduced the notion of
permuting tri-f and tri-(f, g)-derivations in lattices and
studied some of its properties. Mustafa & Sahin (2013)
characterized distributive lattices and isotone derivation
using generalized (f, g)-derivations and gave illustrative
examples. The authors also generalized the derivation
defined in Ceven et al. Balogun (2014) introduced a
derivation on a lattice L; f(x ny) = x N fy. The author
used this notion to establish equivalence relation on L.
Some results on isotone derivations on distributive
lattices were also extended. Ceven (2019) introduced the
notion of higher derivation on a lattice. Leerawat et al
(2022) introduced the concept of trace permuting n -
(f,g9) — derivation of lattice and presented some related
properties. By proposing new parameters under well-
defined constraints, new results on derivations on lattices
can be obtained for further characterizations. In this
paper, results on lattice derivation will be extended by
introducing new parameters for permuting tri —f, tri-
(f,9), Z,- f and Z, — (f, g) — derivations on lattices.
Preliminaries

In this section, definitions that will be used in this study
are presented.

Definition 2.1: Let L be a non- empty set together with
two binary operations n and U, if the algebraic structure
(L,n,V) satisfies the following conditions
MxnNnx=x,xUx=x

(i) xny=ynx,xUy=yUx
(iixny)nz=xnynz), xUy)uz=xU((yuU
z)
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(ivy(xUuy)ux=x, (xUy)nx=x forevery
x,y,Z€L

Then L is called a lattice.

Definition 2.2: A lattice (L,n,V) is called a distributive
lattice if it satisfies any of the following

VM xnyuz)=(xnNny)u(xnz)
(vixu(ynz)=xUy)n(xUz)

In any lattice, conditions v and vi are equivalent

Definition 2.3: A lattice (L,n,U) is called a modular
lattice if it satisfies the following conditions for
allx,y,z€ L

(villIf x<zthenxUu(ynz)=(xUy)nz
Condition vii is called the modular identity

Definition 2.4: Let (L,n,V) be a lattice. A binary relation
<isdefinedby x <y ifandonlyifxny =xand x U

y=y

Definition 2.5: Let L be a lattice. Define the binary
relation < as in definition 2.4, (L, <) is a partial ordered
(poset) and if forany x,y € L, x N y is the greatest lower
bound (g.1.b) of {x, y} and x U y is the least upper bound

(Lu.b) of {x,y}

Definition 2.6: Let (L,n,U) be a lattice. A non- empty
subset | is called a left (right) ideal of L provided the
following holds
(i) x<y,yel-xel (i)x,yel-xUyel

I, , I, are ideals of L, implies that I; n I, is an ideal
of L

Definition 2.7: Let L and S be two lattices. The function
6: L— S is called a joint and meet homomorphism
provided the following holds for all x,y € L.

i 6(xny)=0(x)n6O(y) and (i) 6(xUy) =
6(x) U O(y),
hence a homomorphism from L to S is isomorphism if 6
is bijective.

Definition 2.8: A function D: L — L is called derivation
of L ifforallx,y €L
D(xUy) =
D(x) U D(y)
Dxny)=D(x)N
yUxnD(y)

Definition 2.9: Let L be a lattice and D a derivation on L,
amapping D: L — L defined by d(x) = D(x) is called
the trace of D.

Definition 2.10: Let L be a lattice and D a derivation on
L, if x <y implies that Dx < Dy then D is called an
isotone derivation, for all x,y € L.
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Definition 2.11: A function D:L — L is called an f-
derivationon L, if D(xny)=(D(x) N
fFON V&) NDY)).

Definition 2.12: Let L be a lattice and X be a non - empty
set, we say L acts on X if there exists homomorphism
D:L — S, (the symmetric group X)

Definition 2.13: Let L be a lattice. A mapping
D:L XL xL— L is called permuting if it satisfies the
following conditions.

D(x,y,z) =D(x,z,y) =D(y,x,z) = D(y,z,x) =
D(z.x.y) =D(z,y,x),forall x,y,z €

L. If D is a permuting tri-derivation then D satisfies the
relations

M DC,ynw,z)=D(,y,z)nw)U (yn
D(x,w,z))

(i) D@,y,znw)={D(x,y,z)Nw)U (zN
D(x,y,w) Forallw,x,y,z€L

Definition 2.14: Let L be a lattice. A permuting mapping
D:L XL XL — L is called permuting tri-f-derivation if
there exists a function f: L — L such that

D(xnw,y,z) =Dy z)nfx)U ()N
D(w,y,z)) Forallw,x,y,z€L

Definition 2.16: Let L be a latticeand D: L X L X L — L
be a permuting mapping, then D is called permuting tri -
(f, g)-derivation of L if there exists functions f,g: L — L
such that

D(xnw,y,z) = (D(x,y,2) nf(w)) U (g(x)n
Dw,y,z) Vw,xy,zE€L.

MATERIALS AND METHODS

Derivation

In this section, results that will be extended using
principal derivation, permuting tri - f and tri - (f,g) —
derivations of lattices are presented. Firstly, results from
Balogun (2014) will be extended to derivation actions of
lattices, while results from Yazarli & Ozturk (2011) and
Kacilioglu et al (2011) will be extended to permuting Z,-
f and Z,- (f, g) — derivations of lattices respectively.
Proposition 3.1.1

Let L be a lattice and a € L Define a function f, by fx
=xUa Va€L then f is a derivation (Principal
derivation) on L.

Proposition 3.1.2
Let L be a distributive lattice and f;, f, and f; be isotone
derivations on L Define

(L0 f) 0 s)x = (00 N £00) ()
(ivfufa)x=(fi(x)u
£,(0) U f(x), then
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(finfa) VU f)

also isotone derivation on L

and (fLUf)Nf;) are

3.2 Permuting tri - f and tri (f,g) — Derivations of
lattices

Definition 1: Let L be a lattice. A permuting mapping
D:L XL XxL— Liscalled permuting

tri-f-derivation if there exists a function f:L — L such
that

Dxnw,y,z) = (D(x,y,Z) ﬂf(W)) U (f(x) n
D(w,y, z)) and called permuting tri - (f, g) — derivation
if there exists functions f, g: L — L such that
D(xnw,y,z) = (D(x,y,2) n fW)) U (g(x) n
D(w,y,z)) forall x,y,w,z € L

The following results in Yazarli & Ozturk (2011) will be
extended to permuting Z, — f — derivation of lattices.
Proposition 3.2.1

For any x €L, D(x,x,x) =d(x) < f(x)
d(x) =D(xnNx,x,x)

where

Proposition 3.2.2
Let L be a lattice and D be a permuting tri-f-derivation
on L, then the following holds for every x,y,z,w € L

(i) D(x,y,2))< f(x).D(x,y,2) <
f(y)and D(x,y,z) < f(2)

(i) D(x,y,z) nD(w,y,z) <D(x N
w,y,z) < D(x,y,z) UDWw,y,2)

(iii) Dxnw,y,z) < f(x) U f(w)

Proposition 3.2,4

Let L be a lattice and D be a permuting tri-f-derivation
on L. If L is an increasing function then w <

x and D(x,y,z) = f(x) implies that D(w,y,z) <
f(w)

Proposition 3.2,5

Let L be a distributive lattice and D a permuting tri-f
derivation on L where f(x Uw) =

f(x) U f(w), then the following holds.

(i) If D is isotone derivation, then D(x N w,y,2) =
D(x,y,z) nD(w,y,z)

(ii) D is isotone derivation if and only if D(x U

w,y,z) =D(x,y,z)UD(w,y,Zz)

The following results in Kacilioglu et al (2011) will be
extended to permuting Z, - (f,g) — derivations of
lattices.

Proposition 3.2.6
Let L be a lattice and D be the trace of permuting tri-
(f, g)-derivation on L, then

D(x) < (f(x) u g(x)) forallx €L
Proposition 3.2.7
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Let L be a lattice and D be a permuting tri-(f, g)-
derivation on L, then
M D(x,y,2) < f(x)Uuglx) (i) D(x,y,2) <f(y)U
9) (i) D(x,y,2) < f(z) U g(2)
f(0) =0and g(0) =0 thenD(0,y,z) =
0 forally,zE L

Proposition 3.2.9
Let L be a lattice with a greatest element 1 and D be a
permuting tri-(f, g)-derivation on L, then following are
valid

(i) ff(x)<D(,y,2) and g(x) <
D(1,y,z) then D(x,y,2z) = (f(x) U g(x))

@iyIf f(x)=D(,y,2z) and g(x) =
D(1,y,z) then D(x,y,z) = D(1,y,2)

Proposition 3.2.9
Let L be a distributive lattice and D be a permuting tri-
(f, g)-derivation on L with the trace d, then

DxNny) =D NfOU(gx)nDH))U

{g)nf»)N[D(x,xy) UDCxy, M}
foreveryx,y €L

RESULTS AND DISCUSSION

In this section, our main finding will be presented. The
results of Balogun(2014) on principal derivations,
Yazarli & Ozturk(2011) on permuting tri — f-derivations
and Kacilioglu(2011) on permuting tri - (f,g) -
derivations of lattices will be extended to derivation
actions, permuting Z, — f and Z, — (f, g) — derivations
of lattices.

4.1 Derivation actions

Definition 2: Let L be a lattijce and X = L. Define a
function Dg:L —» L by Dy(x) = gxn g, then Dy is a
derivation such derivations are cjjalled derivation actions.
Forallx e Xandg € L.

Proposition 4.1.1
Every derivation action of a lattice L is an
isotone derivation.

Proof

Let D, be a derivation action of a lattice L. Since
foreveryx,y € X and g € L, we have

Dy(x) =gxng<gyng=Dy(y)
Hence
Dy, is isotone derivation.

Proposition 4.1.2
Let L be a lattice and Dy: L — L be a derivation action,
then the following conditions are equivalent
(i) Dy isan isotone derivation
(i) Dy(x N y) =y N Dy(x)
Proof
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Suppose D is an isotone derivation actions, we have ((D, N D,) U Dy) isan isotone since
x <y impliesthat D,(x) < D,(y) forall x,y € X ((D, nDy) UD;s)(xUy) = ((D;(x Uy) N Dy(x U
andgel = N ¥)) U Ds(x U y)
Therefore D is an isotone derivation actions. = ((D1x U D1y N D;x U Dyy) U (D3x U D3y)
() = (i) =((Dyx N Dyx) U (Dyy N
Dy(xNy) = (Dyg(x) Ny) U (x N Dy(3)) =y N Dy(x)  D2y)) U (Dsx U Dsy)
@ = {@inD;)UDyxu ((DyND;)UDy)y
Alsoxny<xand xNy <y Similarly o
This implies that o _ (D1 U Dy) N Ds) is an isotone
D,(xNy) <Dy(x) and Dy(x Ny) < derivation action on L o
D,(») 4.2 Permuting Zy-f—and Z, - (f,g) - derivations of
N%w lattices _ _
Dy(x Ny) < D,(x) N Dy(y) < y N Dy(x) @) Example Let L = {1,2,3,4}, We define the partial

ordering < on L, by the set
{(1.1),(1,2),(1,3),(1,4),(2,2),(2,3),(2:4),(3.3),(3.4).,(4.4)}.

From equation (1) and (2), we get The operation tables for u and n on L are

Dg(x Ny) =y N Dy(x)

(it) — (i) U
Suppose  Dg(xNy) =ynDy(x) forallx,y € X 1 2 3 4
andg € L 1 /1 2 3 4
Now
212 2 4 4
Dy(xny)= (Dg(x) n y) U (x n Dg(y)) >y N Dy(x)
If x <y,since Dy(xNy) =ynDy(x) and 3 3 4 3 4
Dy(x Ny) < Dy(y), itimplies that 4 |4 4 4 4
Dy(y) =y N Dy(x),
Therefore, we have no1 9 3 4
Dy(y) U Dy(x) = (¥ N Dy(x)) U Dy (x) = Dy ()
1 /1 1 1 1
Hence
Proposition 4.1.3 3 |1 1 3 3
Let L be a distributive lattice and D, ,D, and D be
isotone derivation actions on L defined by 4 11 2 3 4
((D1 N Dy) U Dy) x= (D;x N D;x) U D3x Since every pair of elements in L has both a join and a
(D1 U D) N D3)x = (Dyx U Dpx) N D3x meet, then (L,u,n) is a lattice (under divides).
Then (D, NnD,)U D3) and (D; UD,) n Dy) are also Notethat TU(2Nn3)=1Ul=1and(1U2)N
isotone derivations on L (1u3)=2n3=1
Proof Therefore (1U (2Nn3) = (1U2) N (1U3) forsome
(D0 Dp) U Ds)(x ny) < (P1(xny) N D;(x N 1,2,3 € L, Thus this lattice is distributive.
y)UD;(xNy)
< ((x N Dyy N x N Dyy) Ux N Dsy) Definition 3: Amapping D: L X L X L x L — L is called
=xN(Dyy N Dyy) Ux N Dsy) permuting Z, if it satisfies the following conditions.
L <xN(Dy N D)V Ds)y @) Dw,x,y,z) =Dw,x,z,y) =D(w,y,x,2)
Similarly =DWw,y,2x) =DW,2,y,x)

(D1 N D) UDs)ynx) <yn(DyND;)UDs)x (2)
Combining equation (1) and (2) we have =D(x,w _ — —
- 1] ,)’;Z)—D(x;W;Z,)’)—D(x;y.W;Z)—
((Dy N D) U Ds)(xNy)=((Dy N Dy) U D3)(xNy) U D(x,y,z,w) = D(x,z,y,w) = D(x,z,w,y)
((Dyn D) U D3) (y Nx) =D(y,w,x,z) =D(y,w,z,x) = D(y,x,z,w) =

=D(w,zx,y)

Therefore o o D(y,x,w,z) = D(y,z,w,x) = D(y,z,x,w)

_ ((Dy N Dy) U Dy) s an isotone derivation =D(z,w,x,y) = D(z,x,y,w) = D(z,x,w,y) =
,aajtlon onL D(z,w,y,x) = D(z,y,x,w) = D(z,y,w, z)

S0
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D is a permuting Z,-derivation if the following relations
holds

i) Dwnw,x,y,2z)=DWwWx,y,z)Nv)U(Wn
D(v,x,y,2))

(i) Dw,w,x,ynz)=Dww,x,z2)Ny)U(zN
D(wv,w,x,y) Forallv,w,x,y,z€L

Z, is the group of permutation of the set {1234} and by
cayley’s theorem Z, is isomorphic to a subgroup of S,
since the following groups (1,2), (2,3), (3,4) and (4,1)
are normalizer of S,.

Definition 4: Let L be a lattice ordered group. A
permuting mapping D :LXLXLXL — L is called
permuting Z,-f-derivation if there exists a function
f:L — L such that

D (xnv,w,y,z)=D(x,w,y,2) N f(v)U f(x)N
D(v,w,y,z) and it is called permuting Z, - (f,g) —
derivation if there exists functions f, g: L — L such that
Dxnv,w,y,2z) =D w,y,z)N f(v)U(g(x)Nn
D(v,w,y,z),forall x,y,v,w,z€L

Proposition 4.2.1
Forany x € L, D(x,x,x,x) = d(x) < f(x)
where d(x) = D(x N x,x,x,x)
Proof
D(x,x,%,x) =D(xNx,x,xx) =
(D@, x,x,x) N f(x)) VU (f(x) N D(x,x,x,x))
=D(x,x,x,x) N f(x)
= D(x,x,x,x) < f(x) which
implies that
d(x) < f(x)
Proposition 4.2.2

Let L be a lattice ordered group and D be a permuting Z,-
f-derivation on L, then for every x,y,w,z €L, the
following holds.
() DG,w,y,2) < f(x), D(x,w,y,2) < f(w),
Dx,w,y,2) < f(y),D(x,w,y,2) < f(2)
(i) D(x,y,z)ND(w,y,z) <D(xNw,y,z) <
D(x,y,z2)UD(w,y,z
@iiiy D(xnNnw,y,z) < f(x)U f(w)
Proof
Since x N x = x, then

D(x,w,y,z) =D(x Nnx,w,y,z) =D(x,w,y,z) N

fUfx) nD(x,w,y,z)

D(x,w,y,2) n f(x)

D(x,w,y,z) < f(x)

D(x,w,y,z) = Dwnw,x,y,z) = D(x,w,y,2) N
fw)u f(w)nD(x,w,y,z)
D(x,w,y,z) N f(w)

D(x,w,y,2) < f(w)
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D(w,w,y,z) =D(wnuv,w,y,z) =Dww,y,2)N
f@ufw)ynDw,w,y,z)

D(v,w,y,z) n f(v)

D(v,w,y,z) < f(v)
Similarly, we see that D(x,w,y,z) <
f)and D(x,w,y,2) < f(z)
(ii) Since D(x,w,y,z) < f(x) and D(v,w,y,z) <
f () then from (i), we have
D(x,w,y,z) N D(v,w,y,z) =D(x Nv,w,y,z) <
D(x,w,y,z)UD(v,w,y,2z)
Itimpliesthat (@) D(x,w,y,z)NnDw,w,y,z) =
f&x)NnDw,w,y,2)
(b) Dwwy2)n
D(x,w,y,z) = f(v) N D(x,w,y,2)
From (a) and (b) we get
D(x,w,y,2) nD(v,w,y,2) < (f(x) N
D(w,w,y,2)) U (f(v) N D(x,w,y,2))
=D(xnNv,w,y,z)
(iii) Furthermore, since
D(w,w,y,z2) N f(x) <
D(w,w,y,2)and f(v) N D(x,w,y,2z) < D(x,w,y,Zz)
then we get
fx)NnD,w,y,2)) U (f(v)ND(x,w,y,z)) <
D(v,w,y,2) UD(x,w,y,2)i.e
Dxnv,w,y,z) < D(w,w,y,z) UD(x,w,y,z)
Since
Dw,w,y,2) nf(v) < f(v) and D(x,w,y,z) N
f(x) < f(x) then
Dxnv,w,y,z)< f(x)U f(v)

Proposition 4.2.3

Let L be a lattice ordered group and D be a permuting
Z,-f-derivation on L. If L is an increasing function, then
v<x and D(x,w,y,z) =

f(x) implies that D(v,w,y,z) < f(v) for every
v,W,X,y,Z €L
Proof
Suppose v <x then xnv=v, thus

Dw,w,y,z) =D(xNv,w,y,z) =
D(x,w,y,z) N f(v) U f(x) nD(v,w,y, z)

=f)nfHUFE) NDw,w,y,z) =f(v) U
FE)nDw,w,y,z) =f(v)UD(,w,y,2)

Proposition 4.2.4
Let D be a permuting Z, - f — derivation on a distributive
lattice L, then
D(x,w,y,z)nD(v,w,y,z) < D(xNv,w,y,z) forall
v,W,X,y,Z€ L
Proof

From proposition 4.2.1 D(x,x,x,x) < f(x)
Since
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Dxnv,w,yz)=Dwwyz)Nfx)U = D(xVUv,w,Yy,2)

(f(wv) N D(x,w,y,z)) then Conversely

Dw,w,y,2) N f(x) < D(xnNnv,w,y,z) and LetD(xUv,w,y,2) =D(x,w,y,z) UD(v,w,y,z)

D(x,w,y,2)Nf(v) < D(xNv,w,7Yy,2) @ and x < v.

Also since
Dxnv,w,y,z2) =D(vNnx,w,Yy,2z)
=D0,w,y,2)nf) VU (fx)
NnD(v,w,y,2))
=D(x,w,y,z2)Nf(v) <D(xNwvw,y,z)and

(vw,y,2)Nf(x) <D(xNv,w,y,z) 2
Combining (1) and (2) we get

DC,w,y,z)nf(w) U ()N
D(v,w,y,2)) < D(xNv,w,y,z) (3)

From equation (3), since L is a distributive lattice then
we get
D(x,w,y,z)ND(v,w,y,z)
<fwUfx)nDww,y,z)
= (f(v) n D(U,W,y,Z)) u (f(X) n D(v,w,y,z)
<D(xnNnv,w,Yy,z)
Proposition 4.2.5

Let L be a distributive lattice ordered group and D a
permuting Z,-f - derivation on L where

fxuv) = f(x)U f(v), then the following holds.

(i) If D is isotone derivation, then D(x N v, w,y,z) =
D(x,w,y,z) N D(v,w,y,2)

(ii) D is isotone derivation if and only if D(xu
v,w,y,z) =D(x,w,y,z)UD(v,w,y,2z)

Proof
(i) Since D is isotone derivation then D(x N v,w,y,2) <
D(x,w,y,z) N D(v,w,y,z) from

Proposition 4.24 we have D(x,w,y,z) N
D(w,w,y,z) = (D(x,w,y,2) N f(v)) N (f(x) N
D(w,w,y,2)) = (D(x,w,y,z2) N f()) N (f(x) N
D(w,w,y,z) < ((D(x,w,y,2) N f(w)) U (f(x) N
D(v,w,y,z) =D(xNnv,w,y,z)

That
D(xNnv,w,y,z) =D(x,w,y,2z)NnD(v,w,y,2)

(ii) Let D be isotone derivation, then
D(w,w,y,2) =D(v,w,y,z) U (f(v) N D(x U
v,W,y,Z2)
=Dww,y,z2)Uf@)nDww,yz)U

D(xVv,w,yz)=fw)yNnDxUv,w,y,2)

Similarly D(x,w,y,z) = f(x) nD(x U
v,w,y,z) therefore have

D(x,w,y,2)UD(w,w,y,z) = (f(v) N

DxUv,w,y,z2))U(f(x)ND(xUv,w,Yy,2))

F@Uf@)NDExEUv,w,y,z)

f(xuv)NnD(xUwvw,y,z)

Since
D(w,w,y,z) =D(xUv,w,y,z) =D(x,w,,y,z) U
D(v,w,y,z2),we get
D(x,w,y,z) <D(v,w,y,2)
4.3 Permuting Z, - (f, g) - derivation of lattices

Definition 4: Let L be a lattice ordered group and
D:L x L XL XL — L beapermuting mapping, then D is
called permuting Z, - (f, g)-derivation of L if there exists
functions f, g: L — L such that

Dxnvw,y,z) =Dxw,y,z)nfw)U(glx)n
D(v,w,y,z) forall v,w,x,y,z€L

Proposition 4.3.1
Let L be a lattice ordered group and D be the trace of
permuting Z,-(f, g)- derivation on L, then
D(x) < (f(x) U g(x)) Forallx € L
Proof
SincexNx =x forall x €L and from the
definition of trace, we have
d(x) =D(x,x,x,x) =D(xNx,x,x,X%)
= DO, x,x,x)N f(x)Uglx)nD(xx,x,x)
Since D(x,x,x,x) N f(x) < f(x) and
D(x,x,x,x) N g(x) < g(x) we get
d(x) < f(x) U g(x)

Proposition 4.3.2
Let L be a lattice ordered group and D a permuting Z,-
(f, g)-derivation on L, then

() DCx,w,y,2) < f(x) U g(x) (ii)
D(x,w,y,2) < f(w) U g(w)

(ii) D(x,w,y,2) < f(¥) U g(¥) (V)
D(x,w,y,2) < f(2) U g(2)

Proof
SincexNx=x forallxe
L,then we have
D(x,w,y,z) =D(xnx,w,y,2) N f(x))U(gx)Nn
D(x,w,y,z))
Therefore D(x,w,y,z) N f(x) <
f(x) and D(x,w,y,z) N g(x) < g(x)
then
D(x,w,y,z) < f(x) U g(x)
Sincewnw=w forallwe
L ,then we have
D(x,w,y,z) =D(wnNw,x,y,z) =
D w,y,z) nf(w)) U (gw)D(x,w,y,z)

Since
D(,w,y,z) n f(w) < f(w)and D(x,w,y,z) N
gw) < g(w) then we get

118




On Permuting Z,-f and Z,-(f, 9)- ...

D(x,w,y,z) < f(w)U g(w) Same
holds for y, z

Proposition 4.3.3
Let D be a permuting Z,-(f, g)-derivationon L, If L
has a least element 1, such that
f()=1and g(1) =1
then D(1,w,y,z) = 1forallw,y,z € L

Proof
D(L,w,y,z) =D(1Nn1lw,y,z)=D(1,w,yz)N
fug@)nDbAnw,y,z)
1lul=1
Hence D(1,w,y,z) =1

Proposition 4.3.4
Let L be a lattice with a greatest element 4 and D a
permuting Z,-(f, g)-derivation on L

such that f(4) = g(4) = 4, then the following are
valid

Mif f(x) <D, w,y,z) and g(x) <
D(4,w,y,z) then D(x,w,y,z) = (f(x) U g(x))

(i) If f(x) =D4,w,y,z) and g(x) =

D(4,w,y,z) then D(x,w,y,z) = D(4,w,y,2)

Proof
(I) D(4,W'y,Z) = D(4 n 4,W,y,Z) = (D(4.W,y,Z) n
fF@)u (g4 ND(4w,y,z2) =

D(4w,y,z) N (f(4) U g(4)
D(4,w,y,z) < (f(H) U g(D)
When replacing 4 with x, then we get
D(x,w,y,z) < (f(x) U g(x))
Similarly to
D(x,w,y,z) = D(4,w,y,z) forallw,x,y,z€ L

Proposition 4.3.5
Let D be a permuting Z, - (f, g) — derivation on a
distributive lattice L, then
D(x,w,y,z) N D(v,w,y,z) < D(x Nv,w,y,z) forall
v,W,X,y,Z€ L
Proof
From proposition 4.3.1, D (x,x,x,x) < f(x) U
9(x)
Since
Dxnv,w,y,z)=Dww,y2z)Nf(x))U
(g(v)NnD(x,w,y,z)) then
Dw,w,y,z2)nf(x) < D(xNv,w,y,z) and
D(x,w,y,z)ng(v) < D(xNv,w,y,2)
Also since
Dxnv,w,y,z) =DwnNnx,w,Yy,2z)
=D& w,y,2)nf) U (g(x)
NnDw,w,y,2))

M
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=D(x,w,y,z)Nf(v) <D(xNwv,w,y,z)and
(wmw,y,2)Ng(x) <D(xNv,w,Y,2z) 2
Combining (1) and (2) we get
DC,w,y,2)Nnf)HU@x)ND,w,y,z) <D(xnN
v, W,Y,Z2) ®)
From equation (3), since L is a distributive lattice then
we get

D(x,w,y,z) nD(v,w,y, 2)

<fwyugx)nD(v,w,y,z)
=(fw)nDw,w,y,z)) U (g(x) ND(v,w,y,2)
<D(xnv,w,y,z)

CONCLUSION

In this paper, we used the notions and properties
of derivations, permuting tri-f-derivations and permuting
tri-(f, g)- derivations on lattices and established
derivation actions, permuting Z, —f and Z,-(f,g)-
derivations of lattices. The study explored the behavior of
these derivations, including their trace, modular, isotone
and how they interact with lattice. For further research,
permuting Z, can be extended to automorphism
derivation on lattices, for instance, if L is a lattice ordered
group and g € L, we can define D;: L = L by D, (x) =
g tx g, for all x € L , then we can show that D; is an
automorphism derivation of L.
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