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ABSTRACT 

Statistical process monitoring of many quality variables independently can lead 

to confounding results. A production process with two or more correlated quality 

features, require the use of Multivariate Statistical Process Control and 

Multivariate Capability Analysis. This study employed Multivariate Statistical 

Quality Control techniques to analyze the soybean meal production at Hule and 

Sons Nigeria Limited. Quality characteristic of interest were percentage of crude 

residual oil in the meal after extraction using solvent extraction method; 

percentage moisture content; free fatty acid (FFA); amount of phosphorus and 

the flash point. The study investigates the stability and capability of the 

multivariate process using advanced statistical process control techniques. 

Hoteling’s T2 square control chart, applied on the transformed data, indicated 

statistical control with no out-of-control signals detected as all the points fall 

below the upper control limit of 13.19. In contrast, Robust principal component 

analysis (ROBPCA) identified one observation exceeding the 95% control limit 

which suggests the presence of an assignable variation which the conventional 

method may overlook. Furthermore, the orthogonal distance (OD) chart revealed 

two samples outside the 95% control threshold, although all the OD values were 

almost all zeros, indicating potential collinearity or numerical issues in 

orthogonal projections. The process capability indices were 𝑀𝐶𝑝 = 0.3864; 

𝑀𝐶𝑝𝑘 = 0.3451;   𝑀𝐶𝑝𝑚=0.0086 and 𝑀𝐶𝑝𝑚𝑘 = 0.0076, signifying a 

substantial deviation from the desired performance standard. These results 

highlight the limitations of relying solely on traditional control charts and 

emphasize the importance of incorporating robust multivariate techniques for 

more sensitive and reliable process monitoring in high-dimensional data. 

 
 

INTRODUCTION 

 

In the industrial setting, turning eagle eye on the quality 

of products and services is a key intelligence for 

organizations, manufacturing industries, distributors, 

transportation companies, banks and fintech and many 

evolving tech industries.  Building quality into the 

production process is one of the ways to ensure a quality 

product (Akinnola, 2009).  Montgomery (2009) noted 

that “quality has become one of the most important 

consumer decision parameters in consumer choice for 

competing products and services”. 

 

 

 

 

 

 

 

 

He pointed seven dimensions of quality to include 

Performance, Reliability, Durability, Serviceability, 

Aesthetics, Features, Perceived quality, and 

Conformance to Standards (Montgomery, 2000). 

Focusing search light of statistical quality control to food 

processing/manufacturing industry is sacrosanct as it is an 

industry that produces edible consumer products. 

(Grigg,1997). 

Statistical analysis is key to all forms of quantitative 

measures. To achieve reliable quality in any production 

environment, the use of statistical quality control of the 

process is a way to go. Statistical process control provides 

a systematic methodology with many techniques for 

maintaining quality in a production process.  
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Statistical quality Control as the use of valid analytical 

statistical methods to identify the presence of special 

causes of variation in a process (Raza & Payam, 2009). 

Statistical process control (SPC) involves using statistical 

methods (descriptive statistics and inferential statistics)in 

capturing and analyzing variability in a setup, be it 

production or service provision. 

The foundation for Statistical Process Control technique 

as quality control tool was laid by Walter Shewart in 

1920s (Marilyn & Robert, 2007 

Control charts are handy tools for monitoring quality in 

production environments. They are used torun analysis of 

the process parameters to determine if a controlled 

process is within or out of control, helping in 

distinguishing between assignable cause of variation and 

common cause of variation (Smith, 2004). Samples 

collected from the process are prospectively used to 

monitor departures from the in-control process, hence 

deeming the system is in control or not (Jensen, Jones-

Farmer, Champ & Woodall, 2006).  

Obadara and Alaka (2013) examined how accreditation 

influences quality assurance in Nigerian universities by 

applying the Statistical Quality Assurance (SQA) 

method. Their study found a significant link between 

accreditation and factors such as resource input, process 

quality, and output quality, but no notable connection 

with the quality of academic content. They further 

emphasized that educational quality can be evaluated 

through input, process, content, and output dimensions. 

Consequently, these indicators were employed in their 

study to assess quality assurance.Awariefe and 

Ogbereyivwe (2024) applied both linear and nonlinear 

statistical models such as ARIMA and neural networks to 

forecast foreign direct investment in Nigeria. 

Chang S.I &Ghafarias P (2025) in a comprehensive 

review explored the application of artificial intelligence 

(AI) and machine learning (ML) algorithms in statistical 

process monitoring, covering univariate, multivariate, 

profile, and image data. The study categorized AI 

methods into classification, pattern recognition, time 

series application, and generative AI.  It is also shown that 

deep learning for multivariate statistical in-process 

control can be applied in discrete manufacturing, like the 

metal forming process. Biegel, T. et al (2022) 

investigated the use of deep autoencoder-based 

monitoring approaches, experimenting with 

reconstruction error and latent representation to enhance 

fault detection in multivariate processes.  

There are many situations in which the simultaneous 

monitoring or control of two or more related quality 

characteristics is necessary. Monitoring these quality 

characteristics in a univariate sense can lead to 

confounding issues. The more the number of quality 

variable, the more the univariate processmonitoring 

procedure becomes inefficient. In this work, we apply the 

robust multivariate statistical approach to monitor 

multiple quality variable in soybean meal production. 

 

MATERIALS AND METHODS 

 

This study employed production data sourced from the 

Department of Quality Assurance at Hule and Sons Oil 

Company, Wanune, Benue State, Nigeria. The dataset 

comprises 40 samples drawn from different batches of 

soybean meal production. Five key quality characteristics 

were measured: residual crude oil percentage, moisture 

content, free fatty acid (FFA) level, phosphorus content, 

and flash point. These variables are considered critical to 

ensuring product quality and safety in edible oil 

production. 

Prior to analysis, the dataset underwent preprocessing to 

ensure reliability and consistency. Missing values were 

addressed using appropriate imputation techniques, while 

extreme outliers were examined and treated based on 

domain knowledge and statistical thresholds. Each 

variable was standardized to zero mean and unit variance 

to enable valid multivariate analysis, particularly for 

principal component analysis and control chart 

development. 

All statistical analyses were conducted using R version 

4.3.0. The following packages were employed: 

mvnormtest for assessing multivariate normality, 

Hotelling for constructing T² control charts, rrcov for 

implementing robust principal component analysis 

(ROBPCA), and qcc for process capability assessment. 

The assumption of multivariate normality was verified 

using Mardia’s test of multivariate skewness and kurtosis. 

Box’s M test was applied to check homogeneity of 

covariance matrices across subgroups. Linearity among 

variables was assessed through scatterplot matrices, while 

multicollinearity was evaluated using correlation 

coefficients and variance inflation factors (VIF). 

 

The Hotelling’s T2 Control Chart was deployed in 

analyzing the data for the soybean oil meal 

production.The Hoteling’s T2is takes it root from 

multivariate normal distribution (MVN),  a 

keymultivariate statistical analysis where sampling 

distributions of multivariate distributions tend to be 

approximately normal owing to the central limit theorem. 

We have that if a univariate random variable is normally 

distributed with mean 𝜇 and variance 𝜎2 it has a density 

function: 
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𝑓(𝑥) =
1

√2𝜋𝜎2
𝑒−

[(𝑥−𝜇)/𝜎]2

2            (1) 

where −∞ < 𝑥 < ∞. 

 The numerator of exponent in (1)can be written as 

[(𝑥 − 𝜇)]2/𝜎2 = (𝑥 − 𝜇)(𝜎2)−1(𝑥 − 𝜇)          (2) 

In the case of multivariate normal distribution with the 

number of random variables is p≥ 2 , (2) can be 

generalized as  

 

(𝑥 − 𝜇)′∑ −1(𝑥 − 𝜇)                      (3) 

Equation (3) is the Mahalanobis distance, where 𝜇 is a p 

×1 vector of the expected values. That is 

𝜇′ = [𝜇1𝜇2  , , , 𝜇𝑝] 

 

and ∑ is a 𝑝 × 𝑝 variance-covariance matrix, given as 

[

𝜎11  𝜎12  ⋯  𝜎1𝑝  
𝜎21  𝜎22  ⋯  𝜎2𝑝  
⋮       ⋮      ⋱     ⋮
𝜎𝑝1  𝜎𝑝2  ⋯  𝜎𝑝𝑝  

]                          (4) 

Now, substituting in (1) by (3) and the constant 
1

√2𝜋𝜎2
  by  

1

(2𝜋)𝑝/2|∑|1/2
, we have 

𝑓(𝑥) =
1

(2𝜋)𝑝/2|∑|1/2
𝑒−

(𝑥−𝜇)′∑ −1(𝑥−𝜇)

2             (5) 

where −∞ < 𝑥𝑖 < ∞ and |∑|is the determinant of the 

covariance matrix. 

Fromm the t test statistics, we have  

𝑡 =
𝑋̅−µ

𝑆/√𝑛
                (6) 

Taking the square of both sides, we have 

𝑡2 =
(𝑋̅−µ)2

𝑆2/𝑛
= 𝑛(𝑋̅ − µ)(𝑆2)−1(𝑋̅ − µ)            (7) 

 

Now,if p random variables, X1 , X2 , … Xp are monitored 

jointly according to the p-multivariate normal 

distribution, the set of quality characteristic means is 

represented by p × 1 vector as: 

𝑋̅ =

[
 
 
 
𝑋̅1
𝑋̅2
⋮
𝑋̅𝑝]
 
 
 

 

If there are m-subgroups, then the sample means and 

variances fare calculated from each subgroup as  

𝑋̅𝑗𝑘 =
1

𝑛
∑ 𝑋𝑖𝑗𝑘
𝑛
𝑖=1                                                                         (8) 

and 

Sjk
2 =

1

𝑛−1
∑ (𝑋𝑖𝑗𝑘
𝑛
𝑖=1 − 𝑋̅𝑗𝑘)

2                                                      (9) 

j= 1, 2, ..., p; k=1, 2, 

..., m. 

where 𝑋𝑖𝑗𝑘 is the i-th observation on the j-th quality 

characteristic in the k-th subgroup. The covariance 

between quality characteristic j and quality characteristic 

h in the k-th subgroup is 

𝑆𝑖𝑗𝑘 =
1

𝑛−1
∑ (𝑋𝑖𝑗𝑘
𝑛
𝑖=1 − 𝑋̅𝑗𝑘)(𝑋𝑖𝑗𝑘 − 𝑋̅ℎ𝑘)                        (10) 

k=1, 2, ..., m, 𝑗 ≠ ℎ. 
Taking the averages of the statistics𝑋̅𝑗𝑘, Sjk

2  and 𝑆𝑖𝑗𝑘  over 

all m –subgroups we obtain 

𝑋̿𝑗 =
1

𝑚
∑𝑋̅𝑗𝑘      𝑗 = 1,2, … , 𝑝

𝑚

𝑖=ℎ

 

𝑆𝑗̅
2
=
1

𝑚
∑Sjk

2      𝑗 = 1,2, … , 𝑝

𝑚

𝑖=𝑘

 

𝑆ℎ̅𝑗 =
1

𝑚
∑𝑠𝑗ℎ𝑘      𝑗 = 1,2, … , 𝑝

𝑚

𝑖=𝑘

 

Where j≠ ℎ and 𝑋̿𝑗 is the  i-th element of the p× 1sample 

mean vector  𝑋̿and p × p average of sample covariance 

matrices S is formed as: 

𝑆 = [

𝑆1̅
2

⋯ 𝑆1̅𝑝
⋮ ⋱ ⋮

𝑆𝑝̅𝑚
2

⋯ 𝑆𝑝̅
2
]                                                ( 11) 

Replacing 𝜇 with 𝑋̿ and ∑ with S in (7), the statistics 

becomes 

𝑇2 = 𝑛(𝑋̅ − 𝑋̿)′𝑆−1(𝑋̅ − 𝑋̿)                                                   (12) 

Equation (12) above is called the Hoteling T2 Control 

chart. The control limits for the T2 

control chart for phase I and phase II are respectively 

given by: 

 𝑈𝑝𝑝𝑒𝑟 𝐶𝑜𝑛𝑡𝑟𝑜 𝐿𝑖𝑚𝑖𝑡(𝑈𝐶𝐿) =
𝑝(𝑚−1)(𝑛−1)

𝑚𝑛−𝑚−𝑝+1)
𝐹𝛼,   𝑝,   𝑚−𝑝+𝑚𝑛−1              (13) 

Lower Control Limit (LCL) = 0 

and                  𝑈𝐶𝐿 =
𝑝(𝑚+1)(𝑛−1)

𝑚𝑛−𝑚−𝑝+1)
𝐹𝛼,   𝑝,   𝑚−𝑝+𝑚𝑛−1 

                       LCL = 0                           (14) 

where F is the Fisher Distribution with p and m-p+mn-1 

degrees of freedom at 𝛼 level of significance. 

The control limits here are different from specification 

limits. The control limits describe what the process is 

capable of producing while specification limits describe 

how the product should be produced to meet customer’s 

expectations.   

Let 𝑁𝑃(𝜇, ∑ ) denote a p-variate normal distribution with 

location 𝜇 and known covariance ∑. Let 𝑋1 , 𝑋2 , . . . 

𝑋𝑛~𝑁𝑃(𝜇, ∑) be n independent identically distributed 

random variables. If 𝑋̅ is the sample mean with variance 

𝑆𝑋̅ =
∑
𝑛⁄ . It is shown that 

𝑇2 = 𝑛(𝑋̅ − µ)′(𝑆𝑋̅)
−1(𝑋̅ − µ)~χp

2   (15) 

2.1 Hoteling’s 𝐓𝟐 control chart for Individual 

observations 

If we have m sample with only 1 sample size n with p 

number of quality features , then the Hoteling’s 𝑇2 

Statistic becomes: 

𝑇2 = (𝑋 − 𝑋̅)′𝑆−1(𝑋 − 𝑋̅)                                                      (16) 

117 



 
Enhancing Multivariate Process… 

ProcessMonitoring in .… 

Kor and Nwora JOBASR2025 3(4): 115-124 

 

   

Tracy, Young and Mason (1992) proposed a Phase I 

control limit as: 

𝑈𝐶𝐿 =
(𝑚−1)2

𝑚
𝛽𝛼,𝑝/2,(𝑚−𝑝−1)/2 

     

where m is the sample size, 𝛽  is the Beta distribution with 

(p/2, m-p-1)/2 degrees of freedom. 

Ryan (1989) defined the phase II control limits for the 

statistics as 

𝑈𝐶𝐿 =
𝑝(𝑚 + 1)(𝑚 − 1)

𝑚(𝑚 − 𝑝)
𝐹𝛼 , 𝑝,𝑚 − 𝑝 

𝐿𝐶𝐿 = 0      

     

 

The computation of the sample covariance matrix S, is 

according to Sullivan and woodall (1996) which is given 

as 

𝑆 = ∑
(𝑥𝑖−𝑥̅)(𝑥𝑖−𝑥̅)

𝑇

𝑚−1

𝑚
𝑖=1                                                                (17) 

2.2 Principal components procedure for 𝑻𝟐 Chart 

Jackson (1991) recommended the use the principal 

components procedure to aid in the interpretation of an 

out-of-control signal. He gives an alternative form of the 

𝑇2 statistic as: 

𝑇2 = (𝑋 − 𝑋̅)`𝑆−1(𝑋 − 𝑋̅) = ∑
𝑧𝑖
2

𝜆𝑖

𝑝
𝑖=1                                 (18) 

where 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑝 are the eigenvalues of the 

estimated covariance matrix S and the 𝑧𝑖 i=1,2,...,p are the 

corresponding principal components.  

That is  

𝑧𝑖 = 𝑈𝑖
`(𝑋 − 𝑋̅) 

The estimated covariance matrix S is a positive definite 

symmetric matrix. Thus, its singular value decomposition 

is given as 𝑆 = 𝑈𝐴𝑈` where U is a p × p orthogonal 

matrix whose columns are the normalized eigenvectors 

𝑈𝑖of S, and A is a diagonal matrix whose elements are the 

corresponding eigenvalues i.e. 

 

𝑈 = 𝑈1, 𝑈2,…, 𝑈𝑝 

and 

𝐴 = [

⋋1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ⋋𝑝

] 

Now if we substitute for𝑆−1 = 𝑈𝐴−1𝑈` into 3.8, we have  

𝑇2 = (𝑋 − 𝑋̅)`𝑆−1(𝑋 − 𝑋̅) = (𝑋 −

𝑋̅)`𝑈𝐴−1𝑈`(𝑋 − 𝑋̅)                                      (19) 

A Hotelling’s 𝑇2 statistic for a single observation also can 

be written as  

𝑇2 = (𝑋 − 𝑋̅)`𝑆−1(𝑋 − 𝑋̅) = 𝑌`𝑅−1𝑌                               (20) 

where R is the estimated correlation matrix and Y is the 

standardized observation vector of x, i.e. 

𝑅 = [

1 ⋯ 𝑟1𝑝
⋮ ⋱ ⋮
𝑟𝑛1 ⋯ 1

] 

[𝑦1, 𝑦2, … , 𝑦𝑝] = [
𝑋1 − 𝑋̅

𝑆1
,
𝑋2 − 𝑋̅

𝑆1
, … ,

𝑋𝑝 − 𝑋̅

𝑆𝑝
] 

Using a transformation similar to (10), the above 𝑇2 can 

be written as 

   𝑇2 = ∑
𝑤𝑖
2

𝜏𝑖

𝑝
𝑖=1                                                               (21) 

where 𝜏1 > 𝜏2 > ⋯ > 𝜏𝑝 are the eigenvalues of the 

correlation matrix R, and 𝑤1, 𝑤2, …, 𝑤𝑝 are the 

corresponding principal components of the matrix. 

2.3 Robust PCA for Hoteling’s   𝑻𝟐 Control Chart 

Traditional multivariate process control techniques such 

as Hoteling’s 𝑇2 control charts operates under the 

assumption of multivariate normality of the data. 

However, in practical terms, most of time, we have data 

with outliers, missing values and non-Gaussian noise. 

These factors affect the authenticity of the results 

obtained from standard PCA-based    𝑇2 charts. To take 

care of this, we adopt robust principal components 

analysis (ROBP in this work to compare with the 

traditional Hoteling’s control chart and ensure accurate 

results. 

If 𝐷 ∈ 𝑅𝑛×𝑝 is the matrix of the observed data, 

representing n observations of p variables, Robust PCA is 

decomposed into: 

𝐷 = 𝐿 + 𝑆      (22) 

Where L is the low-rank matrix for the underlying clean 

signal and S is the sparse matrix for anomaly detection. 

The solution is obtained by solving: 

min
𝐿,𝑆

||𝑆||∗ +𝜆||𝑆||1   (23) 

The standard PCA is performed on L by computing P and 

T.  For each observation i,  𝑇2 is computed as 

𝑇𝑖
2 = 𝑡𝑖

𝑇Λ−1𝑡𝑖    (24) 

Here: 
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i. 𝑇𝑖
2 is the statistic for the i-th observation, which 

measures how far each observation lies from 

the center of the data in the principal component 

space. 

ii. 𝑡𝑖 is the score vector for the i-th observation. 

The vector  𝑡𝑖𝜖 𝑅
𝑎  contains the coordinates of 

the i-th observation in a reduced a-dimensional 

space. 

iii. Λis a diagonal matrix of the eigenvalues 

(variances) corresponding to the retained 

principal components. 

iv. Λ−1 is the inverse of the diagonal matrix Λ. 

The control limit for  𝑇2 , having p principal components 

and n observation at significant level 𝛼 is given by: 

𝐶𝐿 𝑇2 =
𝑝(𝑛2 − 1)

𝑛(𝑛 − 𝑝)
𝐹𝑝,𝑛−𝑝,1−𝛼 

𝐹𝑝,𝑛−𝑝,1−𝛼 is the upper 100(1- 𝛼)% percentile of the F-

distribution p and n-p degrees of freedom. 

 

2.4 Multivariate Process Capability Indices by Use of 

Principal Component Analysis   

Over the years, several indices grounded in principal 

component analysis (PCA) have been introduced. Among 

the most widely recognized are those put forward by 

Wang and Chen (1998), Wang (2005), and Xekalaki and 

Perakis (2002). This method typically starts with PCA, 

which generates uncorrelated variables and facilitates the 

reduction of data dimensionality. These indices are based 

on the spectral decomposition of the covariance matrix

  

𝑆 = 𝑈𝐷𝑈′             (25)  

where U is the eigenvectors matrix and D the diagonal 

matrix of the eigenvalues 

D=diag(𝜆1, , 𝜆2,... , 𝜆𝑝)             (26) 

The engineering specifications (Upper, Lower 

Specification and Target) aretransformed as 

𝐿𝑆𝐿𝑃𝐶  =𝑢𝑖
′𝐿𝑆𝐿; 

𝑈𝑆𝐿𝑃𝐶 = 𝑢𝑖
′𝑈𝑆𝐿 ; 

𝑇𝑃𝐶  =𝑢𝑖
′T 

where LSL is the lower specification limit ; USL is the 

upper specification limit and T is the target value; i = 1, 

2,. . . ,p. The ith principal component results in 𝑃𝐶𝑖 =𝑢𝑖
′x 

Normally the first components are responsible for most of 

the variability, therefore the dimensionality can be 

reduced without significant loss of information. The 

problem consists of how many components should be 

retained. 

The proposal by Wang and Chen (1998) is the 

multivariate extension of the univariate  𝐶𝑃,   𝐶𝑝𝑘, 𝐶𝑝𝑚,  

and 𝐶𝑝𝑚𝑘indices. 

𝑀𝐶𝑝 = (∏ 𝐶𝑃; 𝑃𝐶𝑖
𝑣
𝑖=1 )1/𝑣              (27) 

 

where  

𝐶𝑃; 𝑃𝐶𝑖 =
𝑈𝑆𝐿𝑃𝑐𝑖−𝐿𝑆𝐿𝑃𝑐𝑖

6𝜎𝑝𝐶𝑖
              (28) 

v is the number of principal component and and  

𝜎𝑝𝐶𝑖 = √𝜆𝑖 

Similarly,  𝑀𝐶𝑝𝑘, 𝑀𝐶𝑝𝑚,  and 𝑀𝐶𝑝𝑚𝑘 are obtained by 

replacing 𝐶𝑃; 𝑝𝐶𝑖 by 𝐶𝑃𝑘;𝑝𝐶𝑖𝐶𝑃𝑚; 𝑝𝐶𝑖 and 𝐶𝑃𝑚𝑘;𝑝𝐶𝑖 
respectively, where  

𝐶𝑃𝑘;𝑝𝐶𝑖 = 𝑚𝑖𝑛 {
𝑈𝑆𝐿𝑃𝑐𝑖

−𝜇 

3𝜎𝑝𝐶𝑖
,
𝜇−𝐿𝑆𝐿𝑃𝑐𝑖

3𝜎𝑝𝐶𝑖
}              (29) 

𝐶𝑃𝑚; 𝑝𝐶𝑖 =
𝑈𝑆𝐿𝑃𝑐𝑖−𝐿𝑆𝐿𝑃𝑐𝑖

6√𝜎2𝑃𝑐𝑖+(𝜇−𝑇)
2
               (30) 

 

𝐶𝑃𝑚𝑘;𝑝𝐶𝑖 =
𝑈𝑆𝐿𝑃𝑐𝑖

−𝐿𝑆𝐿𝑃𝑐𝑖
/2−|𝜇−[(𝑈𝑆𝐿𝑃𝑐𝑖

−𝐿𝑆𝐿𝑃𝑐𝑖
)/2]|

3√𝜎2𝑃𝑐𝑖+(𝜇−𝑇)
2

     (31) 

 

 

RESULTS AND DISCUSSION 

Henze and Zickler (1990) normality test was carried on 

the data which returned a p-value less than 0.05 indicating 

that the data is not from a normal population.  

The data was transformed using Johnson Transformation. 

The transformed data (Table 4.2) returns a p value of 0.63 

which shows that there is no evidence to reject the 

assumption of multivariate normality. 

The sample mean for  𝑋1 (% oil content) is 

𝑋̅1 =
∑ 𝑥𝑖1
40
𝑖=1

40
 

   = (-0.4825+ 1.52 + (1.0063) + 

… + 0.06)/50 = -0.19 

Similarly, the sample mean for 𝑋2 (% moisture) 

𝑋̅2 =
∑ 𝑥𝑖2
40
𝑖=1

40
 

= (-1.871 + 0.5801 + 1.3813 + …+ (-0.6174)/40 = -0.05. 

 

In a same vain, 𝑋̅3 =
∑ 𝑥𝑖3
40
𝑖=1

40
= −0.02 

 

𝑋̅4 =
∑ 𝑥𝑖4
40
𝑖=1

40
= −0.00 

𝑋̅5 =
∑ 𝑥𝑖5
40
𝑖=1

40
= 0.03 

The sample mean vector is thus  

𝑋̅ =

[
 
 
 
 
−0.19
−0.05
−0.12
0.00
0.03 ]

 
 
 
 

 

The covariance matrix S, is computed as 
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𝑆 = ∑
(𝑥𝑖−𝑥̅)(𝑥𝑖−𝑥̅)

𝑇

40−1

40
𝑖=1  =

1

40

{
 
 

 
 

[
 
 
 
 
−0.4825
−1.8771
0.7877
−0.2046
−0.7700]

 
 
 
 

−

[
 
 
 
 
−0.1900
−0.0500
−0.1200
   0.0000
   0.0300]

 
 
 
 

}
 
 

 
 

×

{
 
 

 
 

[
 
 
 
 
−0.4825
−1.8771
   0.7877
−0.2046
−0.7700]

 
 
 
 
𝑇

−

[
 
 
 
 
−0.1900
−0.0500
−0.1200
   0.0000
−0.0300]

 
 
 
 
𝑇

}
 
 

 
 

+⋯ 

                                          +

{
 
 

 
 

[
 
 
 
 
   0.2115
−0.6173
−0.2622
−0.2046
−04769]

 
 
 
 

−

[
 
 
 
 
−0.1900
−0.0500
−0.1200
   0.0000
   0.0300]

 
 
 
 

}
 
 

 
 

×

{
 
 

 
 

[
 
 
 
 
−0.4825
−1.8771
  0.7877
−0.2046
−0.7700]

 
 
 
 
𝑇

−

[
 
 
 
 
−0.1900
−0.0500
−0.1200
0.0000
−0.0300]

 
 
 
 
𝑇

}
 
 

 
 

 

 𝑆 =

[
 
 
 
 
+1.1000   + 0.0650  + 0.0500  − 0.0940  + 0.2600
+0.0650   + 0.7000  − 0.2600  − 0.1300 − 0.0690
+0.0500  − 0.2600   + 1.3000  − 0.0930   + 0.4600
−0.0940   − 0.1300  − 0.0930  + 0.8400  − 0.0300
+0.2600  − 0.0690  + 0.4600  − 0.3800  + 1.1000 ]

 
 
 
 

 

The sample correlation matrix is obtained as 

 

𝑟 =

[
 
 
 
 
1.00    0.65    0.50   0.15   0.26
0.65    1.00     0.26    0.13    0.69
0.50    0.26    1.00    0.93    0.46
0.15    0.13    0.93    1.00   0.38
0.26    0.69    0.46   0.38    1.00 ]

 
 
 
 

 

The𝑇𝑖
2 (𝑖 = 1,2, … ,40) were computed according to 

equation (3.7): 

𝑇2 = (𝑋 − 𝑋̅)′𝑆−1(𝑋 − 𝑋̅) 
𝑇1
2

=

{
 
 

 
 

[
 
 
 
 
−0.4825
−1.8771
0.7877
−0.2046
−0.7700]

 
 
 
 

−

[
 
 
 
 
−0.1900
−0.0500
−0.1200
   0.0000
   0.0300]

 
 
 
 

}
 
 

 
 

×

[
 
 
 
 
+1.1000   + 0.0650  + 0.0500  − 0.0940  + 0.2600
+0.0650   + 0.7000  − 0.2600  − 0.1300 − 0.0690
+0.0500  − 0.2600   + 1.3000  − 0.0930   + 0.4600
−0.0940   − 0.1300  − 0.0930  + 0.8400  − 0.0300
+0.2600  − 0.0690  + 0.4600  − 0.3800  + 1.1000 ]

 
 
 
 
−1

 

×

{
 
 

 
 

[
 
 
 
 
−0.4825
−1.8771
   0.7877
−0.2046
−0.7700]

 
 
 
 
𝑇

−

[
 
 
 
 
−0.1900
−0.0500
−0.1200
   0.0000
−0.0300]

 
 
 
 
𝑇

}
 
 

 
 

 

𝑇1
2 = 6.34. 

𝑇2
2 up to 𝑇40

2  are computed similarly and the results are 

contained in table 4. 

The phase I control limits of the Hotelling’s control chart 

is established according to equation (8): 

𝑈𝐶𝐿 =
(𝑚 − 1)2

𝑚
𝛽𝛼,𝑝/2,(𝑚−𝑝−1)/2 

=
(40 − 1)2

40
𝛽0.05,5/2,(40−5−1)/2 

=
(39)2

40
𝛽0.05,5/2,(34)/2 

UCL=13.19 

 

Figure 1 gives a graphical display of the Hotelling’s chart. 

There is no point falling  beyond  the  control limit  which  

shows  that  the  production  process  is  under  statistical 

control. Now this control parameters can be extended for 

performing a control in the future production (Phase II) 

using the in-control mean and covariance obtained 

The orthogonal transformation of the correlated dataset 

was carried out to obtain a linear combination of variables 

called principal component. This reduced the 

dimensionality of the dataset. The resulting Eigen values 

are:  

1.8729233   1.2215127   0.8607345   0.5919661   0.468 

The corresponding Eigen vectors are: 

 

[
 
 
 
 
−0.3237755  0.7004251 − 0.33949011  0.3369650  0.41925542
0.1576874   0.3970698  0.40674297 − 0.7196757  0.36619297

−0.6826633 − 0.5105007  0.08815733 − 0.1273150  0.49937859
   0.1636387 − 0.1559277 − 0.84261959 − 0.4803055  0.09059646
−0.6144081 0.2584874 − 0.03907856 − 0.3487390 − 0.65767842]
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Figure 1. Classical Hoteling T2 Control chart 

 

The Roust PCA gives the linear combination of the 

original variables which represents pattern in most of the 

data (inliers), indicating an acceptable trend. Observation 

4 (fig 2 & Table 1) are flagged as outliers as they are 

significantly distant from the PCA center. All the 

orthogonal distance values are 0.00. This means that the 

data lies completely within PCA subspace. This indicates 

that there is low noise or perfect projection. The inference 

is that T2 is performing all the heavy lifting by identifying 

points far from the multivariate center. We infer further 

that OD contributes almost nothing due to perfect PCA 

projection. Hence focus should be on T2 for interpretation 

unless OD assumes non-zero values in a more complex 

dataset.   

 

Table 1 T2 Values for the PCA 

61.95362587  54.2946792  145.68585269  73.29713566 191.3770554 

43.67885046  87.71779681  43.45568025  58.35724141  49.37359666 

63.70591007  96.90630613  89.71681798  67.28853908  55.3656548 

71.27914223  58.64037584  81.99974636  41.66991526  54.55759202 

38.09542325  52.58403791  91.80106364  55.14493309  50.87094673 

59.18618879  41.75638343  40.40345916  76.20778094  60.62638916 

59.29599745  79.85149729  76.46696943  52.63666993  47.16055385 

41.47253579  38.01591923  54.69944963  69.01903703  33.4628298 

 

 

 

Explained Variance: The explained variance tells how 

much of the variance of the original data is captured by 

each principal component. The first principal component 

alone explains 98.56% of the total variance while second 

principal component accounts for about 1% (Table 

2).This effectively reduced the dimension of the data to 2 

principal components without loss of important 

information.Using the number of components as 2 with 

alpha level of 0.05, we obtained the control limit of the 

Robust PCA of the Hoteling’s chart as 6.0 (Fig 2).  

 

 

 

 

 

 

Table 2Explained Variance   

PC 
% Variance 

Explained 
Cumulative Recommendation 

PC1 98.58% 98.58% 
Extremely 

dominant 

PC2 1.00% 99.58% Worth keeping 

PC3 0.42% 99.99% No much effect 

PC4 to 5 0% 100% Likely noise 

    

 

 

121 



 
Enhancing Multivariate Process… 

ProcessMonitoring in .… 

Kor and Nwora JOBASR2025 3(4): 115-124 

 

   

 

Loadings: The loadings in the PCA show how much each 

original variable contributes to each principal component. 

They are the direction vectors which show the weight of 

the principal components as a linear combination of the 

original variables. Tab gives the loadings of the PCA of 

our data. In PC1, there is strong positive loading from 

variable5 (0.5266) variable3 (0.5161) while there is a 

strong negative loading from variable2 (-0.5051. this 

suggest that PC1 contrast Variable2 with variable3 and 

variable5. PC3 recorded remarkably high loading from 

variable1 (0.9281) indicating that variable1 dominates 

PC3. Similarly, PC4 shows strong positive from variable3 

(.6768) and strong negative influence from variable5  

(-0.5296) 

 

 

Table 3 Loadings of the PCA 

 0.20500782 -0.19442909  0.92808741 -0.11721133 -

0.21233081 

-0.50514593 -0.46612201  0.19652117  0.36182527  0

.59834753 

0.51611548 -0.42757371 -0.17509979  0.67681603 -0

.24912982 

0.3989554   0.61974086  0.20936514  0.34175788  0.

54417244 

0.52655369 -0.42193552 -0.15981077 -0.52959002  0

.48857605 

 

 

 

Table 4 OD Scores 

7.77156117e 16 1.91337404e 15 1.30654508e 15 1.43735632e 15 

4.80002970e 15 4.48405047e 16 2.01987376e 15 9.09180473e 16 

4.75554754e 16 1.62719651e 15 1.97669590e 15 2.82538263e 15 

2.12208802e 15 1.95888305e 15 9.52481673e 16 7.13053648e 16 

1.02507921e 15 1.83942212e 15 6.77599955e 16 8.23363432e 16 

7.77651595e 16 8.46232179e 16 2.43237678e 15 1.34155937e 15 

1.23629204e 15 1.19316697e 15 7.31189546e 16 8.69586270e 16 

1.55926071e 15 7.23277762e 16 7.67179373e 16 1.24763165e 15 

1.80902966e 15 1.12675331e 15 7.17898916e 16 2.89776717e 16 

5.38200579e 16 1.02507921e 15 1.55133557e 15 2.07819583e 16 
 

 

 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 3Hoteling’s Control Chart of Robust PCA 
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Figure 4 Outlier Plot 

CONCLUSION 

The Hotelling’s T² chart indicated that the process was 

statistically in control—with all values falling below the 

control limit of 13.19—ROBPCA revealed an outlier 

exceeding the 95% threshold. This divergence highlights 

the limitation of conventional methods in detecting subtle 

process variations. Similar insights were noted by Tracy, 

Young, and Mason (1992) and Jackson (1991), who 

emphasized the enhanced sensitivity of robust 

multivariate approaches in detecting non-normality or 

masked signals in high-dimensional datasets. 

Moreover, the process capability indices (Cp = 0.3864 

and Cpk = 0.0086) reflect poor process performance, 

suggesting that despite appearing stable, the production 

process consistently fails to meet customer-defined 

specification limits. This aligns with Montgomery 

(2009), who stated that stability without capability 

renders a quality control process ineffective in practice. 

These results imply that relying solely on traditional 

univariate or non-robust methods can result in overlooked 

anomalies, leading to suboptimal product quality. The 

study emphasizes the need for industries, particularly 

food processors, to integrate advanced MSQC techniques 

in routine monitoring to improve both detection accuracy 

and decision-making. 

Further work should be focus on identifying the root 

causes of these anomalies and improving process design 

to enhance overall capability. 
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