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ABSTRACT 
This study investigates the extent to which feldspar mining has altered land 

use/land cover (LULC) changes in Zango Daji, a topic underexplored in 

existing literature. These changes are linked to reduced agricultural 

productivity and increased conflicts over land rights. The Landsat imageries 

were used to assess the LULC changes as a result of artisanal mining of 

feldspar in the study area from 2002 to 2022. Online imageries obtained from 

archive of Global Land Cover Facility (GLCF) under the United States 
Geological Survey (USGS) were analyzed using Enhanced Thematic Mapper 

Plus (ETM+) of 2002, 2007 and 2012, and the Operational Land Imager (OLI) 

of 2017 and 2022. ArcMap 10.8 was used for the pre-processing and clipping 

of the area of interest, using both the administrative and local government 

maps. It was later used for visualization, calculation, processing and analysis of 

all the digital imageries. Four geospatial index maps of normalized difference 

vegetation index (NDVI), modified normalized difference water index 

(MNDWI), normalized difference built-up index (NDBI), and dry bare soil 

index (DBSI) were generated between 2002 and 2022 at an interval of five 

years. The accuracy was enhanced using Google Earth imagery for validation. 

The results revealed that vegetation improved marginally after mining began, 

compared to the pre-mining era. Meanwhile, a year (2012) after artisanal 
mining began in 2011, water witnessed its peak stress. Dry bare soil and built-

up have increased considerably since feldspar mining began in the area. The 

findings inform sustainable land management and conflict mitigation strategies 

in mining regions. 
 

INTRODUCTION 

The practice of man to extract mineral wealth from the 

earth in order to meet its sustenance of life, technological 

development, and modernization has led to continuous 

degradation of the mining environment (Ogbamikhumi & 
Eguagie, 2023; Molua, 2024). This practice usually 

involves excavation of land on which host populations 

depend for their livelihood (Alaba et al., 2023). Land 

serves as a critical interface where both human and 

environmental systems engage with one another, leading 

to land use/cover (LULC) changes, which encompass 

various efforts that modify the land to meet human and 

developmental requirements (Khawaldah et al., 2020). 

Land cover change (LCC) refers to alterations in the 

persistent properties of land, encompassing various 

vegetation categories and soil characteristics, among 

others (Patel et al., 2019). In contrast, land use change 
(LUC) represents a complex process through which  

 

 

 

 

 

 

human actions modify the natural environment (Ado et 

al., 2022). LULC is a frequent, worldwide occurrence 

that involves both natural and human-induced systems 

that affect soil, water, and air. Studies show that 

mining-induced LULC changes might result in soil 
erosion, habitat loss, and modified hydrological 

patterns (Afolabi et al., 2021; Pande et al., 2021; 

Ogunro & Owolabi, 2022). There are currently 

conflicting interests between the host communities and 

the mine operators across the globe as a result of the 

LULC changes that were caused by the mining 

operations. Suh et al. (2017) attribute this to a number 

of problems stemming from lack of sustainability 

management due to either failure to plan or 

inappropriate execution of the mineral exploitation 

designs. Scholars from other nations and regions have 

investigated the dynamics of LULC using different 
techniques. In Ghana, Kumi et al. (2024) employed  
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remote sensing along with bird population sampling 

techniques to analyze the impact of LULC changes due to 

mining on bird communities within the mining area. 

Blanche et al. (2024) investigated the deterioration of land 

cover resulting from mining operations in Cameroon’s 
Adamawa area by using remote sensing and digital 

photogrammetry. Lameck et al. (2025) combined remote 

sensing with social survey methodologies to explore 

LULC transformations caused by gold mining in the 

Singida area of central Tanzania. Nigeria, including the 

study area, has benefited greatly from the mining of 

feldspar mineral resources in terms of socioeconomic 

growth and foreign exchange earnings (Ogbamikhumi & 

Eguagie, 2023; Isah & Aliyu, 2024; Omoijuanfo et al., 

2024a). However, the exploitation of this mineral comes 

with the risks of LULC changes, as many land areas that 

previously supported farming, woodland pasture use, 
gardens, natural medicinal plants, and various other 

functions have been depleted (Ogunro & Owolabi, 2022; 

Yakubu et al., 2024). The circumstances are quite dire 

because mining is prevalent without any consideration for 

mining legislation and regulations (Omoijuanfo et al., 

2024b). Several articles have been published regarding 

the impact of mining on LULC changes in various states 

of Nigeria using remote sensing and GIS (Owolabi, 2020; 

Ado et al., 2022; Alaba et al., 2023). However, the 

consequences of feldspar mining on LULC changes have 

been predominantly overlooked in Zango-Danji.Since 
previous studies have failed to investigate the LULC 

changes in Dango Daji, this study aims to investigates the 

extent and nature of LULC changes associated with 

feldspar mining from 2002–2022 using geospatial indices 

such as NDVI (Normalized Difference Vegetation Index), 

MNDWI (Modified Normalized Difference Water Index), 

NDBI (Normalized Difference Built-up Index), and DBSI 

(Difference Built-up and Soil Index). The application of 

NDVI, MNDWI, NDBI, and DBSI is important for the 

examination of LULC changes in mining contexts. This is 

because NDVI will be used to obtain data on the 

vegetative quality and volume that revealing ecological 
changes in the area as a result of mining activities. The 

MNDWI will be used to evaluate water bodies and their 

modifications, especially in areas impacted by mining 

activities. The NDBI will be used to determine the urban 

growth and infrastructure expansion associated with 

feldspar mining, while DBSI will be used to 

distinguish between developed areas and soil in order 

to provide status of changes in land use. The adoption 

of these indices would provide a comprehensive 
structure for monitoring and assessing the ecological 

effects of mining, leading to improved management as 

well as mitigation techniques. 

 

MATERIALS AND METHODS 

Description of the Study Area 
The study area is a significant site for feldspar deposits, 

situated in Zango-Dagi village within the Adavi Local 

Government Area. It is located in the central senatorial 

district of Kogi State, Nigeria, and is bordered by 

latitudes 6° 36' 2.99"N to 6° 36' 3.11"N and longitudes 

7° 44' 3.15" to 7° 45' 4.31" as shown in Figure 1. It 

shares its southern border with Edo State and its 

northern edge with the state capital, Lokoja. Zango 

village is around a twenty-minute drive from Lokoja 

and covers an estimated land area of 718 km² with a 

population of 202,194 (Isah & Aliyu, 2024). The 
majority of the population of Adavi Local Government, 

which has its headquarters in Ogaminana, is Ebiran, 

and their primary religion is Islam. However, as natives 

and settlers, members of other tribes and religions also 

live in the region and work in a variety of occupations 

(Isah & Aliyu, 2024). According to geology, the area is 

a part of the Precambrian basement rocks and is 

situated in the north-central section of Nigeria 

(Christopher et al., 2022). These rocks are intruded by 

the Mesozoic ring formations of the Jos plateau, and 

the Cretaceous to Quaternary sediments of the five 

sedimentary basins mostly cover the area in an 
unconformable manner. In Zango-Daji, it is hot all year 

round, with a heavy and generally cloudy wet season 

and a partially cloudy dry season. The study area 

experiences 1,100 to 1,300 mm of yearly rainfall 

during the wet season, from April to October, while the 

dry period spans between November and March. 

Rarely does the average yearly temperature fall below 

12.2°C or rise above 41.7°C; it often ranges between 

15°C and 39.4°C (Zango-Daji, 2024). 
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Figure 1: Map of Nigeria and Kogi State Showing the Study Area 

 

Data Collection  
Table 1 presents data from the Landsat-7 Enhanced 

Thematic Mapper (TM/ETM+) and Landsat-8 

Operational Land Imager/Thermal Infra-Red Sensor 

(OLI/TIRS) captured with a 30 m resolution over five 

years, specifically in 2002, 2007, 2012, 2017, and 2022. 

These datasets were utilized to assess the changes in 

LULC within the research region. The images were 

sourced from the United States Geological Survey 

(USGS) website and featured no cloud interference.The 

images were mapped to the Universal Transverse 

Mercator (UTM) of WGS84, whilethe acquired satellite 
data was analyzed utilizing ArcGIS 10.8. However, 

radiometric validation and atmospheric adjustment were 

used to eliminate haze, background shadows, and correct 

for topographical variations to produce images with real 

reflectance.The unprocessed quantized calibration of pixel 

data for both the multispectral and thermal bands was 

transformed into Top of Atmosphere (TOA) 
reflectance using a conventional approach (USGS, 

2017). Four geospatial indices (NDVI, MNDWI, 

NDBI, DBSI) were computed from the integration of 

red, green, near infrared (NIR), and short wave infrared 

(SWIR) bands, as shown in Table 2. The training data 

for each land use and land cover category was defined 

through visual analysis, followed by the use of ground 

truth data for validation. The training data, along with a 

signature file, served as the basis for performing 

Maximum Likelihood Classification (MLC) on each of 

the satellite images. The method of utilizing geospatial 
indices was selected because the process of 

categorizing images and assigning values to each 

category typically does not adequately represent the 

differences in coverage levels within the pixels of one 

land cover class. 

 

Table 1. Details of the acquired five landsat imagesused for the study 

Satellite Sensor Resolution Path/Row Acquisition Date Spectral 

Band 

Landsat 7 TM/ETM+ 30 m 189/55 30 December, 2002 1-7 

Landsat 7 TM/ETM+ 30 m 189/55 28 December, 2007 1-7 

Landsat 7 TM/ETM+ 30 m 189/55 25 December, 2012` 1-7 

Landsat 8 OLI/TIRS 30 m 189/55 31 December, 2017 1-7 

Landsat 8 OLI/TIRS 30 m 189/55 29 December, 2022 1-7 
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Table 2. Geospatial Indices used for the Study 

S/N Description Formula References 

1 Normalized Differential Vegetation 

Index (NDVI) 
NDVI =  

ρNIR − ρRED

ρNIR + ρRED
 

Rouse et al., 

1973 

2 Modified Normalized Difference Water 

Index (MNDWI) 
MNDWI =

ρGREEN −  ρSWIR

ρGREEN +  ρSWIR
 Xu, 2006 

3 Normalized Difference Built-up Index 

(NDBI) 
NDBI =  

ρSWIR −  ρNIR

ρSWIR +  ρNIR
 

Zha et al., 

2003 

4 
Dry Bare Soil Index (DBSI) DBSI =

ρSWIR −  ρGREEN 

ρSWIR + ρGREEN
− NDVI 

Rasul et al., 

2018 
1In Landsat 7 ETM+, band 4's surface reflectance is (near infrared), while band 3's surface reflectance is ; in Landsat 8 OLI, band 
5's surface reflectance is along with band 4's surface reflectance. The values range from -1 to +1; non-vegetated surface 
characteristics are indicated by negative values, while vegetated areas are indicated by positive values.  
2The surface reflectance of band 2 and (short wave infrared) is the surface reflectance of band 5 in Landsat 7 ETM+. In Landsat 8 
OLI, is the surface reflectance of band 3 while is the surface reflectance of band 6.  
3The surface reflectance of band 5 while (near infrared) is the surface reflectance of band 4 in Landsat 5 TM and Landsat 7 
ETM+. In Landsat 8 OLI, is the surface reflectance of band 6 and is the surface reflectance of band 5.  
4The surface reflectance of band 2 and is the surface reflectance of band 5 in Landsat 5 TM and Landsat 7 ETM+. In Landsat 8 

OLI, is the surface reflectance of band 3 while is the surface reflectance of band 6.Tables may have a footer. 

 

RESULTS AND DISCUSSION 

Impact of Feldspar Mining on Spatial Distribution of 

Normalized Differential Vegetation Index (NDVI) 

The analysis of NDVI vegetation's spectral reflectance 

shows the presence of vegetation and its general health. 

The values of NDVI vary between -1 and +1, with 

negative values, or values below 0.1, indicate a lack of 

vegetation and it can be bare land, build up area and 

others. Meanwhile, a value of zero signifies bodies of 

water, while positive values denote various kinds of 

vegetation growth rates. The positive NDVI values in the 

range of 0.2 to 0.5 denote dormant crops or sparse  

 
vegetation, including grasslands and bushes whereas 

dense vegetation, like that seen in temperate and 

tropical forests, is indicated by high NDVI values (0.6 

to 0.9) (Bid, 2016; Kurtis, 2021). Figure 2 displays the 

spatial patterns of the vegetation distribution of NDVI 

from 2002 to 2022, indicating the existence of both 

green vegetated and non-vegetated areas within the 

study area. According to the NDVI results, there was a 

slight decline in vegetation from 2002 to 2007. Also, 

an increasing in vegetation was recorded from 2007 to 

2012, whilea significant decline occurred from 2012 to 

2017, with a slight decline from 2017 to 2022. 
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Figure 2. Spatial Vegetation Distribution Patterns of NDVI 

 

The calculated mean values of the NDVI are presented in 

Table 3, which show an increase in vegetation from 

0.373±0.052 in 2002 to 0.457±0.060 in 2012, a year after 

the commencement of feldspar mining operations. 

Meanwhile, anoticeable decline was observed between 

2012 (0.457±0.060) to 2022 (0.420±0.068) after the 

commencement of mining operation. This implies that 

vegetation had improved before the artisanal mining of 

feldspar and other human-induced operations commenced 

in Dango-Daji. This finding aligns with the insights of 
Gbedzi et al. (2022) in the Asutifi region of northern 

Ghana, where it was reported that the land use during the 

baseline year was primarily characterized by vegetation. 

Based on this, the NDVI results from 2002 to 2022 

showed that, both before and after mining commenced, 

the study area was characterized by sparse vegetation,  

 

such as bushes and grasslands, or dormant crops, as the 

values fell between 0.2 and 0.5 (Kurtis, 2021). This 

suggests that the feldspar mining in the study areas has 

not significantly affected the vegetation over the last 20 

years (2002–2022). However, the results show that 

during the 11 years (2011–2022) of operations, 

feldspar mining involved clearing of vegetation with a 

negligible contribution to vegetation loss. Therefore, 

the loss of forest and canopy trees in the study area 

may be attributed to intense agriculture, firewood 
collection and charcoal production other than mining 

activities (Bhatt, 2023). Consequently, drought, 

seasonal variation, uneven rainfall patterns, and strong 

evaporation may also be responsible for the uneven 

spatial distribution of vegetation in the area (Zhang et 

al., 2024). 
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Table 3. Descriptive Statistics of NDVI (2002-2022) for Zango Daji 

Year Minimum Maximum Mean 

2002 0.142 0.636 0.373±0.052 

2007 0.129 0.565 0.340±0.049 

2012 0.163 0.720 0.457±0.060 

2017 0.111 0.670 0.399±0.052 

2022 0.068 0.785 0.420±0.068 

 

Impact of Feldspar Mining on Spatial Distribution of 

Modified Normalized Difference Water Index 

(MNDWI)  

Figure 3 presents MNDWI spatial and temporal water 

variations in Zango Daji with blue colors indicating high 

water bodies while the light green color indicates low 
water bodies. The MNDWI values varied from -0.734 to -

0.214 in 2002, -0.611 to -0.193 in 2007, -0.656 to -0.295 

in 2012, -0.638 to -0.260 in 2017, and -0.611 to -0.193 in 

2022 respectively. The negative values indicate the 

absence of water bodies across the study area (McFeeters, 

1996) as the satellite was unable to detect any water 

bodies in the study area. This consistent with the NDVI 

values reported by Bid (2016), where negative values 

associated with water bodies were not detected during the 

five-year research conducted at the Panchet Hill Dam in 

India. However, the inability to detect water bodies does  

 
not depict an absolute absence of water bodies in the 

study area. It simply shows that it could be present in 

amounts below the detection of the Landsat satellite 

sensors.The mean values of MNDWI revealed that 

within the span of 9 years (2002-2011) before the 

mining of Feldspar began in the study area (Table 4 ), 

water body availability had its highest peak of -

0.422±0.040 in 2007 and lowest peak of -0.550±0.032 

in 2012, which is one year after mining began. The 

resultpresents surface water as most pressured natural 

resource in the study area. This is inline with Samal & 

Gedam's (2021) findings, which revealed that the 
overall impact of LULC changes on the hydrological 

properties of India's water bodies has led to the 

depletion of the water bodies. According to this study, 

water scarcity would persist in the study area unless 

water collection technologies are developed. 

 

Table 4. Descriptive Statistics of MNDWI (2002-2022) for Zango Daji 

Year Minimum Maximum Mean 

2002 -0.744 -0.145 -0.497±0.043 

2007 -0.611 -0.193 -0.422±0.040 

2012 -0.656 -0.295 -0.550±0.032 

2017 -0.638 -0.260 -0.496±0.031 

2022 -0.734 -0.214 -0.540±0.029 
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Figure 3. Spatial Water Distribution Patterns of MNDWI 

 

Impact of Feldspar Mining on Spatial Distribution 

ofNormalized Difference Built-up Index (NDBI) 

Figure 4 shows NDBI spatial and temporal built-up 
variations in Zango Daji, with the blue color indicating 

low-built-up areas while the brown color indicates high-

built-up areas. The NDBI values varied from -0.299 to 

0.481, -0.233 to 0.345 in 2007, -0.329 to 0.292 in 2012, -

0.311 to 0.303 in 2017, and -0.343 to 0.469 in 2022, 

respectively. According to the NDBI maps from 2002 to 

2022, it showed that low built-up areas are indicated by 

areas with blue color and negative values, which varied 

from -0.299 to -0.34253. Conversely, the brown-colored 

regions with positive values, whose values varied from 

0.292 to 0.481, indicate growing amounts in built-up 

areas (Sresto et al., 2022).The computed mean values 

of the NDBI are presented in Table5, which show a 

decrease in built-up areas from 0.089±0.063 in 2002 to 

0.047±0.067 in 2012 before mining operations. On the 

other hand, the built-up areas showed an increase from 

0.047±0.067 in 2012 to 0.061±0.059 in 2022 after the 

commencement of mining operations. This study 

supports that of Jothimani et al. (2021) from Ethiopia's 

Rift Valley, which found that the NDBI value 

increased significantly between 2013 and 2020. The 
finding suggests that feldspar mining is responsible for 

the study area's rapid urbanization and population 

expansion, as evidenced by the progressive increase in 

built-up areas in 2012, one year after feldspar mining 

commenced. 
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Figure 4. Spatial Built-up Distribution Patterns of NDBI 

 

Table 5. Descriptive Statistics of NDBI (2002-2022) for Zango Daji 

Year Minimum Maximum Mean 

2002 -0.299 0.481 0.089±0.063 

2007 -0.233 0.345 0.053±0.052 

2012 -0.329 0.292 0.047±0.067 
2017 -0.312 0.304 0.052±0.058 

2022 -0.343 0.469 0.061±0.059 

 

Impact of Feldspar Mining on Spatial Distribution of 

Dry Bare Soil Index (DBSI) 

Figure 5 illustrates the range of NDSI values, which were 

-0.292 to 0.414 in 2002, -0.236 to 0.363 in 2007, -0.288 to 
0.383 in 2012, 0.064 to 0.383 in 2017, and 0.061 to 0.455 

in 2022. The results revealed that between 2002 and 2022, 

the blue color indicated low or no presence of dry bare 

soil in the study area, as their values were negative and 

close to zero. Meanwhile, the brown color indicates high 

dry bare soil areas, with the highest value of 0.455 

recorded in 2022 and the lowest value of 0.364 recorded 

in 2007, respectively. The NDSI mean value, as shown in 

Table 6, decreased from 0.124 in 2002 to 0.082 in 2007 

but increased from 0.082 in 2007 to 0.226 in 2022. The 

results showed that, over a twenty-year period, the 

average values of 0.124 in 2002 and 0.082 in 2007 

(before mining operations) illustrated that there were 

relatively few bare land areas, as opposed to 0.235 in 

2017 and 0.226 in 2022. This indicates that the region's 

consistently rising land surface temperature is a result 

of the expansion of bare lands spurred by feldspar 

mining and other human activities. This was consistent 

with a study by Sayão et al. (2020), which found that 

the LST of bare soil areas in São Paulo, southeast of 
Brazil, rose by an average of 0.13°C per year, 

indicating a warming trend. This has led to the buildup 

of various gases in the atmosphere of the study area 
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due to the radiation of sunlight, resulting in a rise in the 

Earth's temperature or making it exceedingly hot. Even 

worse, excessive erosion was observed as people altered 

the landscape without regard to the degradation of the 

exposed soil surface due to rain runoff. This result is in 
line with that of Fabolude and Aighewi, (2022), who 

noted the detrimental effects of barren land in Benin City 

as a result of the sharp decline in surface water area 

from 1987 to 2019. Moreover, Lenhardt et al. (2014) in 

Burkina Faso investigated the relationship between the 

variation in rainfall and barren land area, noting that as 

rainfall increases, the barren land area reduces and vice 
versa. This established that rainfall is a crucial factor 

determining changes in the extent of bare land area. 

 

 
Figure 5. Spatial Built-up Distribution Patterns of DBSI 

 

Table 6: Descriptive Statistics of DBSI (2002-2022) for Zango Daji 

Year Minimum Maximum Mean 

2002 -0.292 0.414 0.124±0.073 

2007 -0.236 0.364 0.082±0.063 

2012 -0.288 0.383 0.094±0.076 

2017 0.064 0.383 0.235±0.020 

2022 0.061 0.455 0.226±0.027 

 

Changes in Spatial Distribution of LULC 
The percentage change (PC) and annual percentage 

change (APC) values for LULC spatial distribution from 
the year 2012 (a year after the feldspar mining operation) 

to 2022 are presented in Figure 6. The findings 

indicated that from 2012 to 2022, NDVI recorded a 

decline with a PC of -8.09% and an APC of -0.37%, 

whereas MNDWI recorded a PC of -1.82% and an 
APC of -0.10%. Conversely, NDBI experienced an 
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increase with a PC of 0.30% and an APC of 0.14%, while 

DBSI attained a PC of 140.0% and an APC of 1.32%. The 

significant rise in DBSI has been linked to the excavation 

of feldspar mineral deposits, the construction of vehicle 

access roads, and other operations. Meanwhile, the 
prevalence of NDBI in comparison to NDVI found in this 

study is consistent with the findings documented in 

previous studies regarding LULC in Nigeria's mining 

regions (Owolabi, 2020; Ado et al., 2022; Alaba et al., 

2023). Other countries that have reported similar 

scenarios in their mining environments are Ghana 

(Gbedzi et al., 2022), the USA (Gyawali et al., 2022), and 

India (Samal and Gedam, 2021). These reports found that 

LULC changes in the mining environment primarily 

occur in the form of NDBI expansion at the expense of 

other land use types. The results indicate a high degree 

of conversion of NDVI to other land use types, with 

NBSI and NDBI accounting for the largest vegetation 

loss. This is because of a significant increase in the 

population of the study area due to infrastructure 
development, migration of people from neighboring 

towns, and employment opportunities arising from 

feldspar mines. These observed reasons agreed with the 

previous studies conducted on LULC in the other 

regions (Afolabi et al, 2021; Ado et al., 2022). 

Therefore, feldspar mining in the study area is a key 

indicator of land use change, leading to large-scale 

negative effects on biodiversity and the human 

environment. 

 

 
Figure 6. Changes in Spatial Distribution of LULC 

 

CONCLUSION 

The study employed geospatial indices' analysis to study 
land use/land cover change from feldspar exploitation in 

Zango Daji, Nigeria. The average values of NDVI 

revealed a decline in vegetation from 0.373 in 2002 to 

0.340 in 2007, whereas vegetation increased from 0.340 

in 2007 to 0.457 in 2012. This demonstrated that 

vegetation had improved marginally prior to the advent of 

feldspar mining and other human-induced activities. Also, 

the NDVI results from 2002 to 2022 showed that, both 

before and after mining commenced, the study area was 

characterized by sparse vegetation, such as bushes and 

grasslands, or dormant crops, as the values fell between 
0.2 and 0.5. The negative average values of MNDWI 

indicate the absence of water bodies in the study area, 

with values of -0.497 in 2002, -0.422 in 2007, -0.550 in 

2012, -0.496 in 2017, and -0.540 in 2022. This results in 

surface water being the most pressured natural resource in 

the study area. The average NDBI values elevated from  

 

0.052 in 2017 to 0.061 in 2022 but declined from 0.089 

in 2002 to 0.047 in 2012. The steady increase in built-
up areas from 2017 to 2022 after mining operations 

implies that feldspar mining contributed to the study 

area's population growth and urbanization. Based on 

the above, the study suggested stricter mining 

regulation, community reforestation programs, and 

water management initiatives for sustainable mining 

activities in the study area.  
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