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ABSTRACT

The use of existing RRTs Models in STIs research offers several advantages,
such as increased response accuracy, reduced social desirability bias, and
enhanced confidentiality protection. However, the existing RRT models utilize
no auxiliary information which can enhance the accuracy and precision of
estimate for prevalence of STIs. In addition, the estimators of the existing RRT
models are prone to outliers or extreme values being them sample means of the
interest variables which in turn can reduce the efficiency and accuracy levels of
models. In this research, we proposed new classes of randomized response
technique called calibrated three optional randomized response techniques.
These models were created by adjusting current RRT models using calibration
techniques. The aim was to enhance C-RRT models to be more efficient, stable,
and robust compared to existing alternatives. The research established
theoretical properties, including estimators, variances, privacy levels, and a
composite metric for efficiency and privacy, to evaluate the robustness and

Keywords: applicability of the proposed models. Empirical studies were conducted using
Respondent, simulated data to support the theoretical findings, and demonstrating that the R-
Sensitive variable, CTHORRT models exhibited lower variances, higher relative efficiency,
Privacy, enhanced privacy levels, and a better combined metric of variance and privacy.
Calibration, This indicates the superiority of the C-THORRT models over existing RRT

Auxiliary information. models.

INTRODUCTION
One of the important areas of sampling survey is

This method guarantees the privacy of the respondents
and also conceals their responses. The technique

estimation of population parameter, especially estimation developed in 1965 was specifically designed for
of sensitive characteristics like cases of prevalence of qualitative variable. In 1971, Warner introduced
STIs, sexual harassment, cases of rape, illegal drug use randomized response technique (RRT) model for

etc., whose information cannot be obtained from
respondents with higher probability of truth when direct
method of data collection is employed. The respondents
fear that if they provide the real value of the sensitive
variable, they will be stigmatized or punished by the law.
For example, many rape victims won’t speak out, out fear
of being stigmatized or humiliated or disgraced and many
will not go to the hospital to explain what happened to
them, hence, the society is not so safe in this situation.
Obtaining information from these respondents through
direct method is not ideal, hence, we apply the
randomized response technique (RRT). To obtain more
reliable information from the respondents, Warner (1965)
came up with an ingenious approach for data collection
known as the randomized response technique (RRT).

quantitative variable. In 1976, Pollock and Bek,
reintroduced this technique as additive model.
Randomized response techniques (RRT) are valuable
techniques used in surveys or questionnaires to collect
sensitive data while maintaining the privacy of
participants. This is especially beneficial when
researchers are addressing controversial or sensitive
subjects. By ensuring confidentiality, RRT can boost
participation rates in surveys or studies related to delicate
topics. Respondents are more inclined to take part if they
believe their privacy is protected. Various authors have
suggested different RRT models and estimators for
estimating population parameters of sensitive qualitative
and quantitative variables. These authors include
Eichhorn and Hayre (1983), Gupta et al. (2002),
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Bar-Lev at al. (2004), Singh and Mathur (2005), Gupta et
al. (2006), Gupta and Shabbir (2007), Saha (2007),
Gjestvang and Singh (2009), Huang (2010), Gupta et al.
(2010), Diana and Perri (2010), Diana and Perri (2011),
Hussain (2012), Mehta et al. (2012), Singh and Tarray
(2016), Tarray and Singh (2017), Gupta et al. (2018),
Saleem et al. (2019), Azeem and Salam (2023), Azeem et
al. (2023), Yunusa et al. (2025a,b).

The estimates produced by the estimation techniques in
sampling survey are often being enhanced with the use of
auxiliary information. Auxiliary information means
additional data that is related to the variable of interest
and can be used to improve estimators' performance in
sample surveys. Auxiliary information can help reduce
the variance of estimators, leading to more precise
estimates (Cochran, 1940). This is particularly useful
when dealing with small sample sizes or when estimating
small subpopulations. Auxiliary information can be used
to adjust for potential biases in the sample, such as non-
response bias or under-coverage bias, resulting in more
accurate estimates. By incorporating auxiliary
information, estimators can become more efficient,
requiring smaller sample sizes to achieve the same level
of precision (Cochran, 1942). This can help lower the
costs linked to data collection. Auxiliary information can
be used to address missing data in surveys, either through
imputation or by guiding the selection of weights in
estimation methods. This information can be sourced
from various places, such as administrative records,
census data, or prior surveys (Singh, 2003). By utilizing
existing data, researchers can enhance estimators and
enrich their analyses. Incorporating auxiliary information
to align estimates with known population benchmarks or
external data sources can lead to improved comparisons
across different surveys or time periods. One method for
integrating auxiliary information into models or
estimators is through the use of calibration techniques
(Audu et al., 2024a,b,c, Audu et al. 2025b).

Calibration of estimators in sample surveys is a technique
used to correct differences between the survey sample and
the target population, especially when the sample isn't
fully representative. This process adjusts estimators to
match known population totals or benchmarks, thereby
reducing bias and enhancing estimate accuracy.
Calibration mitigates the effects of sampling variability
that can occur when a sample does not fully reflect the
target population. It can also utilize auxiliary information
from other sources, such as administrative records or
census data, to further refine and improve the estimates.
Jabeen et al. (2024) developed calibrated estimators for
sensitive variables under stratified random sampling.
Also, recently, Audu et al. (2025a) developed calibrated
models and estimators with two groups of respondents for
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sensitive variables under simple random sampling. In the
present, we aimed at proposing randomized response
calibrated models and estimators for estimation of mean
of sensitive study variable for three groups of respondents
under simple random sampling schemes.

Randomized Response Techniques (RRTs) have been
developed as a valuable tool for collecting sensitive
information in various research areas, including the study
of sexually transmitted infections (STIS). These
techniques aim to protect respondent confidentiality and
reduce social desirability bias, which can lead to
underreporting of sensitive behaviors or conditions.
RRTs have been applied in STI research to estimate the
prevalence of STIs, such as HIV/AIDS, syphilis, and
others, as well as related risk behaviors (see Baltagi &
Wannous, 2020; Park, Park & Kim, 2020). These
techniques have been particularly useful for collecting
data from hard-to-reach populations or those who may be
less likely to disclose sensitive information due to social
stigma or discrimination. Examples of RRT applications
in STI research include surveys of sex workers,
intravenous drug users, and men who have sex with men.
The continued development and refinement of RRTs for
use in STIs research are essential to improve data
collection, inform public health interventions, and reduce
the burden of STIs. However, future directions include
the development of robust RRT models, integration with
other data collection methods, and adaptation to digital
platforms. Additionally, more research is needed to
evaluate the effectiveness and scalability of RRTs in
diverse settings and populations. In conclusion,
randomized response techniques have significantly
contributed to the study of STIs by providing a valuable
tool to collect sensitive data while protecting respondent
confidentiality. Continued advancements in this field will
further enhance the accuracy and reliability of data
collected on STls, leading to more effective public health
interventions.

Leveraging on the approach of calibration, this study
aimed at modifying RRT model of Azeem et al. (2024) to
propose robust and efficient calibrated randomized
response technique (C-RRT) models to obtain estimates
with less biases and higher precisions for estimating the
rate of prevalence of STIs.pro

Let Y be a sensitive study variable which correlated with
an auxiliary variable X from a population consists of N
elements from which a sample of size n elements is
drawn. Let S and T be scrambling variables which are
uncorrelated with Y whose mean and variances are
assumed to be known. Let Z be the scrambling response
of Y. Then, the following notations are defined.

E (Yi ) = M, . population mean of Y, Var (Y, ) = 65 :

population variance of Y, E(S) = 1, =0 : population
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mean of S, Var(S) =07 : population variance of S,

E (T) = /4 :population mean of T, Var (T) =0l

population variance of T, X =N i’ilXi:

2
. 2 -1ON v

Population mean of X, o, =N Zi:l(xi —X)

population variance of , X = n‘lzin:l X; : sample mean

of X (Audu et al., 2025a).
Azeem et al. (2024) proposed RRT model with one
scramble variable as in (2.1).

Y with probability 1-W
=4Y+S-J with probability WA

TY+SJ  with probability W (1-A)
where W denote the sensitivity level and A denotes a
constant such that 0 < A< 1.

7 2.1

(AZ)i

The estimator of population means £/, and its variance
using Gupta et al. (2022) model under the assumption that
E(S)z,us, E(T) =1, E(J ) = I, are given as in
(2.2) and (2.3) respectively and the combined metric of
privacy level and efficiency denoted by 5@ is given asin
(2.4).

g, == Zz + WAL, 29
i=1
Var(ﬁAz1)=
oy +WA(0? +07} + pif —2p,40, ) +
1 2.3
w7 *4)
+0i (o] +415)
0-5+WA(0-52+O-J'2+IUJ'2_2,UJ'/Jy)+
2 2 2
W (1-A o (o)
+o! (o] + 1)
Az, = .24

WA(0? +07 + 47 )+W (1- A)

2( 2 2 2( 2 2
{o-T (07 +1} )+ 02 (07 + 1 )}
MATERIALS AND METHODS
Proposed Calibration Estimators

Consider Gl, GZ and G3 as the sets of respondents
belonging to the first second and third categories of Z
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respectively in all the RRT models stated in (2.1) having

elements Ny, Ny, and Ny Then, the models and their

estimators can be generally be written as in (3.1) and (3.2)
respectively.

6(y), with probability p, ieG
z{" =10(y), with probability ~ p,, ieG,
6(y), with probability 1-p; - p,, i€G,
(3.1)
-
D +ZI o, @20 3.2
ZIE(33
1
where @, =@, =@, = —, Q(y)li =Y,
6’(y)2i =Y, +S-1J ,t9(y)3i =TY,+SJ,
p, =1-W,p; =WA, 1-p; — p; =W (1- A).

Motivated by Audu et al. (2024a,b,c), this study proposed
two (2) classes of calibration Schemes and Estimators to
obtain two new classes of RRT models for estimating
sensitive variables.

First Proposed calibration estimator

The first proposed estimator and calibration scheme are
defined as in (3.3) and (3.4) respectively

ﬂ(lj) _

ieG, wllig(y)li + 3.3

ZieG3 zUl3i9( y)3i

where Wﬂi and W12i are the new calibration weights to

o, @00 )y +

be obtained by minimizing the chi-square distance Z
defined as

min y, =
Z (nw11i —1)2 +Z (nw12i —1)2 N Z (an13i —1)2 3.4
ieG; 2n¢11i icG, 2n¢12i ieGy 2n¢13i
St. Z‘Uni X + Z @i Xy t+ Z Wi Xgi = Hy
ieG ieG, ieGy

To compute @y, @Wyiand Wiz in (3.9), Lagrange

function L3 is defined as in (3.5).
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L= Wy =
2 2 2
(nwlli _1) (nwlzi _1) (nwlai _1) 35 1

. N 1 - 3.13

;Z 2n4,, .EZG‘; 2n4,, .EZG; 2ng, . PaiXs | =N IezGl X + IEZGZ X + Ieng i
=)
_q)(zwllixii + Z @i Xy waixﬂ _ﬂx]
i<G, i<G, i<G, Z BuXs + Z Poi¥a + z BaiXe
ieG, ieG, ieG,

Partially differentiating (3.5) with respectto @Wyyj, Wyy;

, W13 and ¢, equate the results to zero, we obtained
(3.6)-(3.9)

@y =07 (1+ P X ) 3.6
@y =N (1+ Prai %) 3.7
Ty =N (1+ Prai¥si ) 3.8
D @Ky Y TpiX + D B Xy = 3.9

ieG, ieG, ieG,

By substituting (3.6) (3.7) and (3.8) into (3.9) and solve
for A, (3.10) is obtained.

gp =

N, —[Z X+ Y Xy +Zx3i}

i€G, ieG, €G3

3.10

i€G, ieG, ieG,
Substituting the value of ¢ into (3.6) (3.7) and (3.8), the

Sk + S d+ 3 ]

expressions for @y, @y, and Wiy are obtained as

in (3.11) (3.12) and (3.13) respectively.
Wy =

%+¢wx1i [ﬂx —n_l(z X D %+ D X D

ieGy ieG, ieGs

3.11

(Z ¢11iX12i + Z ¢12ix22i + Z ¢13i X??ij

ieG, ieG, ieGy

Wi =

S, (#x - n‘l[Z RO RPN ]J

ieG, ieG, ieG;

3.12

LZ%&+Z%%+Z%&]

ieG, ieG, ieGy

Substituting (3.11) (3.12) and (3.13) in (3.3) to obtain the
proposed calibration estimator as in (3.14)

A" = fiy+ By (14, —X) 3.14
where
X =
H{ZM+ZM+Z&}
ieG, ieG, ieGy

z¢11ix1i9( y)li + z ¢12i X2i‘9(y)2i + Z ¢l3ix3ie(y)3i

IB* _ieG ieG, i€Gy
ij

z¢11ixﬁ + Z ¢12iX§i + z ¢l3iX§i

ieG, ieG, ieG3

Case 1: Setting ¢11i = ¢12i = ¢13i =1in (3.14), member

of ,[lgj) denoted by ﬂgl) is obtained as in (3.15)

A(11 A N —

MY = i+ By (%) 3.5
where

Z Xiig(y)li + Z X2i0(y)2i + Z X3i0(y)3i

nx __ 1€G ieG, ieGy
P =

PREDREDIRE

ieG, ieG, ieG3

. -1 ) 4
Case 2: Setting ¢11i =X ¢12i =X ,¢13i =X in
(3.14), member of ,[1( ) (12)

1j . .
0 g IS obtained as
in (3.16)

denoted by ,[l

A1)

Iug;; ::[lg;-i_ﬁ’\lz (ﬂx_i)
where

2.0(y);+2.0(y),+2.0(y),

n* _ i€G; ieG, ieG, _
P = =

DX+ D Ky D Xy

ieG, ieG, ieG;
(L)

!

3.16

| | N

The resultant estimator ,[l obtained in (3.14) can be

expressed as in (3.17)
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lu(ll) _
ZG:wl{ )1| +'811 ('ux Xll)}
- N 3.17
Z w, {H(y)Zi +161j (/Ux — Xy )}
ieG,
+ Z @y {‘9( Y)3i + ﬂAl*j (£ =% )}
ieGy

Compared (3.17) with (3.2), the first proposed modified
RRT model is obtained as in (3.18).

0(y), + B (1 —X,) with prob. p;
Zgj) = H(y)z +:6A'1*j (ﬂx -X
e(y)s +lé1*j (:ux -
Second Proposed calibration estimator

The second proposed estimator and calibration scheme
are defined as in (3.19) and (3.20) respectively.

ﬁ(ZJ') _
icG, y)li +Zier wZZie

+ZiEG3 w23i6 y

where @,;;, @,, and @, are the new calibration

,) with prob. p; 3.18

X;) with prob.1-p; - p;

@0 3.19

weights to be obtained by minimizing the chi-square
distance ¥/, defined as

min y, =
Z (nw21i —1)2 +Z (nw22i —1)2 . z (nzu23i —1)2 320
iG, 2n¢21i ieG, 2n¢22i ieG, 2n¢23i
Z Wy Xy + Z @i Xoi + Z @5 X5 = Hy
Gy ieG, ieG;
Zwﬂi + szzi +szai :Zwl+ sz +Zw3
ieG ieG, ieG; ieG ieG, ieG,

To compute @Wyj, Wyy; and Wy, Lagrange multiplier

function L2 is defined as in (3.21)

L=
z (nwzli _1)2 +z (nwm —1)2 . z (nwz3i _1)2 B
S 2Ny i,  2Ngy e, 2Ngyy
szlixn + Z D 5i %o 321
iG, ieG,
|+ Z @31 %i ~ Hy
ieG;
DT+ D T+ D T —

ieG, ieG, ieG;

’ Z@-sz—Z%

ieG, ieG, ieGy
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Partially differentiating (3.21) with respect to @y,

Wyi Wy, P, and @,, equate the results to zero,,

(3.22), (3.23), (3.24), (3.25) and (3.26) are obtained
respectively

1

@y =N (1+ i X, +(/’2¢z1i) 3.22
=]

Ty =N (1"' Oy + ¢z¢22i) 3.23
=)

Ty =N (1+ P Xy + ¢2¢23i) 3.24

Z Wi % + Z @i Xy + Z @ 55 Xoi = Hy 3.25

ieG, ieG, G,

Zwﬂi + Z Wi + Z Wz =

ieG, ieG, ieG, 3.96

Z w, + Z @, + Z W,

ieG; ieG, ieG,

By substituting (3.22), (3.23) and (3.24) into (3.25) and
(3.26), equation (3.27) is obtained

@ )

3.27

where 7 = Z¢21| X + Z ¢22|X2| + Z ¢22. 3 |

i€G, i€G, i€G,

Z¢21| Xll + Z ¢22|X2| + Z ¢22|X3| )

ieG, ieG, ieG,

Z¢21| + Z ¢22| +Z ¢23| )

i€G, i€G, ieG,

/ux__ inl +ZX2| +ZX3|

i€G, i€G, i€G,

By solving (3.24) for ¢, and ¢, (3.28) is obtained.
7,7 —7,7
@ =—2314 24 3.28

2 - 2
0T —1, T3~ 71,

Substituting the values of ¢, and @, into (3.22) (3.23)

and (3.24), the expressions for Wy;; Wy and Wi are
obtained as in (3.29), (3.30) and (3.31) respectively.

_nl 7374 727, 3.29
@y =N | 1+ 7 Poii Xy — 2 21
T, 1T, 7,7, —
1 Tty 3.30
@y =N 1+ 2 h2i Kai — 2 — 5 Py
TlTS 03—
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. _ 1 | _ vl .

W3 = n* (1-'- — 2 Y2313 T 2 72 ¢23'j 331 Case2: Setting ¢21i - Xli ! ¢22i - X2i '¢23i - X3i In
03— 1, 153710 ~(2])

Substituting (3.29), (3.30) and (3.31) in (3.32), the
proposed calibration estimator is obtained as in (3.32).

A(2] N - -
I = i+ B (1, —X) 3.32
e TaTe =TT,
where 3, ; = 35—226
7,0, — T,

T

z ¢21| X1|

H(22)

(3.32), member of i, denoted by [, ° is obtained as

@ @
in (3.34).
I = g+ By (14, —X) 3.34

p(Ziezimt)

ieGy X1| ieG, X 2§ IeGa
z Xy Z X + Z Xsi J
where 32*2 (leG1 ieGy H(Y)3, ,

(y)1| i<G, e(y)zi

ieG, , [
Fliylestla
Z¢22ixzi‘9 y 2i "’_Z ¢23ix3i0(y)3 i, i icG, Xoi Gy X
<62 1<6s The resultant estimator ,ug(,g )obtalned in (3.32) can be
(Z ¢21| |+ Z¢22ig(y)2i + z ¢23i9(y)3i] . expressed as in (3.35).
ieG, i€G, ieG3
H(20) 3
Case 1: Setting @yy; =Py =1 in (3.32), member of 4 = iZG}wl {e(y)li + By (1 =%y )}+
- (21) (21) .
Mg denoted by [, is obtained as in (3.33) > @, {g(y)Zi + B35 (1 — %o )} 3.35
ieG,
21
lu( ) +1821(1ux ) 3.33 +Zw3{ +ﬁ2](:ux |)}
D x0(Y), + 20 %i0(Y), + X Xi0(Y) 1<Ga
ieG, ieG, ieGy
Compare (3.35) with (3.2), the second proposed modified
x| D0(y),+2.0(y),+>.0(y), RRT model (C-RRT-2) is obtained as in (3.36)
Where'B"* _ ieG, i€G, ieGy g(y) +B*(lu -X ) W|th prOb p*
“ Y YN+ D K X ) LR . 3.36
e e i Z,"=10(y),+ 5, (1, —X,) with prob. p,
0(y),+ 55, (1~ X,)  with prob-l—pf—p;‘
Table 1: Members of the Proposed Calibrated Optional Quantitative RRT Model Z k j =12
Existing RRT Models Corresponding Members of Z k ]=12
Azeem et al. (2024) Y %
B (X =% ), =1-
ki) _ N (7 *
Zigy =1Y+8-3, p=WA | Lz =) i+S—I+5; (X=xy), p3=
TY+SJ, p=W(l1-A TY, +83+ B4 (X =%g ).1- p; - p; =W (1- A)
where E(S) =0,E(T) =1 E(J) =44
Ero_perties of the Proposed Calibration RRT rp.orom 1. Given that ,3;, k, J=1,2 is unbiased of
stimators j

This subsection presents the theoretical properties
(Expectation, variance, privacy level) of the proposed
calibrated estimators.

B i i=12, wen, E(A)=p,. that s e
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A (kj .
estimators ,ug(gj), K, J=12 of population mean 4 are

unbiased.
Proof:

As n—>N, ||rn(,8|;):,3,jc, K,]=12, where

21X

ﬂll pyxo_yzo-x +l:’lyll’l)( ,
> _1Xf oy + K,
N
g =2t b =20,
._ XI /’lx O-X
zuylul/x /ux/y
Fa= oty —N™

Since for all /i € ([JNS s s ) E (,[tgg) = [, . Then,

3.37

3.38

o(y), i +6(y), p;
+
+0(y);(1-p; - p;)
e ﬂk]( Xl) pl*+ﬂk*j (,ux_xz)pz
+ﬁkj (/ux - xs)(l_ P - p;)

E(A)-
|
4,

, 3.40
tho=14,) Py + (1= 11,) P

(
el [+(ﬂx -)(1-p-p3)
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Hence, the proof.
Theorem 2: Given that ,B:J, k, j=1,2 is unbiased of

ﬂl::jl k1 J :112, then,

var (45)) = (var(Zgg)+/3k’}2crx2 —2/3; cov(Z,X)) 34
Proof: The variance of ,[lgj)
~k) )
var| u,,
(1 ) - 3.42
var[H§Z(kl‘)J=FZ_1:(E(Z(k.J)) #j)
var( /},(,k”)z
R 2
E(0(y), 45 (= X)) i+ 3.43
1 o 2
- E(¢9(y)2+ﬂk](uX Xz)) P,
+E(0(y)3+/)’k"j(yX Xg)(l N pz)) s
var(ﬁf,k”)—
3.44

-X 2 _X 2 4
EE +ﬂ|:12 (‘Hx 1) F2)1+(,le 2) pZ
o= Xs) (1-pi - p3)
00, (=) P +0(y), (X~ ) 05|
—2p3 - u,
+0(y),(Xs—a,)(1-p - p;)
Simplify (3.44), (3.41) is obtained, Hence the proof.

(4
Z@D

_ : 2
Ag’) = E(Zg(gkj) —Y) is given as in (3.45).

Theorem 3: The privacy level of denoted by
AW) =

%2 2 2 *
var(Z,_)+ i Oy t0,+2[p,0,0, 3.45

=2(3; cov(Z.X)+cov(Z.Y))

Proof:
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A =

( (y) +:Bk] (/ux
(Q(y) +ﬂk] (:ux

6 y +ﬂk] :ux

X,)- Y)2 P+
)-Y) B
X;)-Y) (L-pi - p3)

{o(y),) pz+{o(y } 21 lo(y),) (- p2 - p2)

/”x X) ) p2 Y2
(= Xs) (1= py - pz)

{9 Xy =ty p1+9(y)( 2 ﬂX)P}

X /‘x l - pz)

)Y (1-p; - )}

3.46

V. 3.47

-2{0(y),Yp; +6(y

P (Xl ,ux)Ypl ( 2 /ux)sz
By -
+(X3 _:ux)Y (l_ P - pz)

sz +0

Take expectation of (3.47), (3.48) is obtained.

AW =var(Z,)+ i+ lot +al +

w2 =23 cov(Z,X)-2(cov(Z.Y )+ 1 )
+ Zﬁkjpyxaya

3.48

Simplify (3.48), (3.45) is obtained, hence, the proof.

Using results of equations (3.41) and (3.45) in (3.48), the

A (ki
combined metric of privacy level and efficiency of ,u( i)

o)
o var ( A5 )
denoted by 59(91) =T is obtained as in (3.49).
Aog
var(Z.)+pBioi -

2f3,c0v(Z.X) 3.49

var(Z.)+fiol + 0, +2f,p,0,0, —
n
2( B cov(Z.X)+cov(Z.Y))

sM) =

"
Properties of Proposed Model ZE\ZJ)

i) The sample mean of the model Z(kj) , denoted by ﬁ(kj)
NS AZ

is obtained as in (3.50).

. 1&g .
(k;) = HZZ,(AJzku) =Hpz
i1

+ B (1, %) 3.50
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(i) Let 24 =Zin (3.41), then cov(zgkzj)x)and

cov(Z( )Y)are obtained as in (3.51) and (3.52)

respectively.

cov(fog)X):

o Y (X)W (Y £ -3) (X~ JWA)
{+(TY+SJ)(X2—,uX)W(l—A) } PrOy0

3.51

cov(ZyY )=

Y2(L-W)+(Y?+SY -JY)WA| 3.52
E , —Hy =
+(TY? +SIY )W (1- A)

0-5 - :uyluJWAl

A (kj
(iii) Using the result of (3.51), the variance of y&z’)

~ (K
denoted by Var(ﬂgz))is obtained as in (3.53).

var(,u(kz”)
o, +WA(O'S2 +ol+ul —2,uJ,uy)

= +W(1—A){O'T2(O'2+,u§)+of(of+,uf)} ,
+,6’kJ

3.53

zﬂkjpyxo_ O_

(iv) Using the results of (3.51) (3.52) and (3.53), the
(k)

privacy level of :[‘Az
(3.54).

denoted by A(,g) is obtained as in

A -
WA(o—s2 +ol 4+l —ZuJuy)Jr

vv<1—A>{a$(az+uf)+02<af+u3>}
+2,BkJ .

3.54

Zﬂk] pyxo-yo-x + ZHJ /'lyWA

(iv) Using the results of (3.53) and (3.54), the combined
metric of privacy level and efficiency of ,[lﬁ\kzj)
A(ki))
5(kj) _ Var(/'lAZ
AZ AK)

AZ

denoted by

is obtained as in (3.55).
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O'y2 +WA(0'S2 +ol+ 1} —2,uJ,uy)+
W (1- A){ch2 (02 +,uJ2)+ch2 (oF +u )}

) -2 0,0
522) - k] X ﬂk]pyx

WA(GS +0°+ 1] —2,uJ,uy)+
n W(l—A){O'TZ(Gj+y§)+0'52(0'§+,uy2)}

+ Zﬂ;GE - Zﬂkj pyxayo—x + ZIUJ /unA

Members of the Proposed Calibrated
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3.58
;( Y+Zx X)(Y,+S-J)+ Z( i)(TY,JrSJ)F '
K ZX +Zx +Zx —nx? \X—x,,), P
3.55 >(x- xY+Z X —X) V+S J)+ Z(x;?)(TVﬁSJ)
Z“g)‘: Y, +S5-J+58 Zx +Zx +2x2 niz ()?—XZI), p;
;(x‘ Y+Z (% -%) Y+S J) Z(x 7)(TYI+SJ)F
T+ Ze:xﬂéxﬂgezxf—nx? (X=x). pi
(3.59)
7| ol NSRS R o I
Optional ’[z@[n Yj ZG:.[X Y+HJ Zs[x Y+SJD
X 1

kj
Quantitative RRT Model Zgz) are presented in (3.56),

(3.57), (3.58) and (3.59).

>xY, Z (Y, +8)+ Z (TY, +5) 3.56
Y+ (X=x). .
ZX +Zx +Zx
Zx Z Y+S J)+ z (TY, +8J)
28 =1V 45 -0+ 'GZX +ZX +ZX (X-%). p
XY+ x (Y +8)+ Z (TY+S)
TY, +8] +& ix +ZX +ZX (X=x), 1-pi-p;
ZY+Z (Y, +5-3)+ Z(TY,+SJ) 3.57

/* *
Y ZX +Zx +Zx (X=x).
ZY+Z Y+S J)+ Z(TY+SJ)
12 _ (% _ .
Z(AZ) (Y+S ‘]) ZX+ZX+Z)(\ \X ) P,
i€G,

ZY +2 Y+S J)+ Z(TY +8J)

2 1Y, +5-04 - -%), P
(a2 =" 1 1 1 (), P2
[Z*Z*Z*
1 x, 1 x 1 x
(gl s el i)
es 2% Y, ‘:C‘lXM Y,1+S Jl P (Rox). 5
X| ) —+)—+) —|-1

RESULTS AND DISCUSSION

Applications to Some STIs data

This section presents the applications of the proposed
RRT models to SITs data. The study considered the data
on syphilis, Gonorrhea and Human papillomavirus (HPV)
with gender, age and marital status of patients as auxiliary
variables respectively. The data was collected within
Sokoto metropolis, Nigeria. Sample of size 150 were
collected using questionnaire. The results of the estimates

(TY,+83)+ Z“ZHZX (X-x). 1-p-p; by the considered RRT models as well as their biases,
g e & variances, PREs, privacy levels and combined metric of
variance and privacy levels are presented in Tables 2, 3
and 4 respectively
Table 2: Estimated Rates of Syphilis for Different RRT Models
Model Estimate Bias(Z) Var(Z) PRE(Z) Privacy level Combined 6z =
(2) (%) Az Var(Z)/Az
Y 0.0327 0 0.00190667 100 0.00 NA
Z, 0.0209 0.968 0.00174331 109.3707 0.20 0.0087166
Proposed C-RRT Models
z 0.0235 0.294 0.00156083 122.1574 0.35 0.0015608
Z ngZ) 0.0250 0.420 0.00166667 114.3999 0.50 0.0033333
7 le) 0.0265 0.546 0.00156083 122.1574 0.65 0.00240127
7 /(522) 0.0280 0.672 0.00124331 153.3543 0.80 0.00155413
Table 3: Estimated Rates of Gonorrhea for Different RRT Models
Model Estimate Bias(Z) Var(2) PRE(Z) Privacy level Combined 6z =
(2) (%) Az Var(Z)/Az
Y 0.0689 0 0.00193040 100 0.00 NA
Z s 0.0520 0.517333 0.00146016 132.2047 0.2101 0.0073008
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z 0.0358 0.205333 0.00131504 146.7940 0.3544 0.0046144
d /(322> 0.0450 0.293333 0.00136667 141.2484 0.4850 0.00333333
b /(\221) 0.0415 0.381333 0.00141504 136.4202 0.6152 0.00248468
b4 1(322) 0.0380 0.469333 0.00146016 132.2047 0.8111 0.0018252
Table 4: Estimated Rates of HPV for Different RRT Models
Model Estimate Bias(Z) Var(2Z) PRE(Z) Privacy level Az Combined 6z =
(2) (%) Var(Z)/Az
Y 0.3616 0 0.00191748 100 0.00 NA
Z s 0.2066 0.1773333 | 0.00157696 121.5934 0.1980 0.007964
Proposed C-RRT Models
Z glzl> 0.2521 0.135333 | 0.00144424 132.7674 0.3499 0.004128
z /(jzz) 0.2509 0.193333 | 0.00146667 130.7370 0.5011 0.002927
z /(él) 0.2561 0.251333 | 0.00144244 132.9331 0.6504 0.002218
2&222) 0.2480 0.309333 | 0.00146963 130.4737 0.7991 0.001839

Table 2 shows that all proposed C-RRT models yield
lower variance and higher efficiency than the baseline
estimator Y. The PRE values increase steadily from 109%
at Az = 0.20 to over 153% at Az = 0.80, indicating
substantially improved precision of the estimates.
Although bias increases with higher privacy levels, the
corresponding reductions in variance more than
compensate, making the proposed estimators more
efficient overall. The combined 6z values also decline
across increasing Az, showing that the cost of maintaining
privacy becomes smaller in relation to variance. Overall,
the proposed models provide more precise Syphilis rate
estimates while ensuring stronger privacy protection.

In Table 3, the proposed C-RRT models again outperform
the baseline Y in terms of efficiency. Variance decreases
across all models, yielding PRE values ranging from
132% to nearly 147%, demonstrating substantial
precision gains. Small increases in bias are observed as
privacy levels rise, yet the improved variance results in
consistently higher efficiency than the baseline. The
combined 6z values also fall with increasing Az, showing
that variance is reduced more efficiently per unit of
privacy. These results confirm that the proposed C-RRT
approach provides a more accurate and privacy-
preserving method for estimating Gonorrhea prevalence.
Table 4 indicates that the proposed C-RRT models
improve estimator performance for HPV compared with
the baseline method. Variance decreases across all
privacy levels, with PRE values ranging from
approximately 122% to 133%, signifying enhanced
estimator efficiency. Although bias increases slightly at

higher Az values, these increases are modest relative to
the reduction in variance. The combined 6z metric
consistently decreases across models, demonstrating that
greater privacy is achieved with reduced variance cost.
Thus, the proposed models yield more efficient and
privacy-enhancing estimates of HPV rates.

Across all three sensitive conditions examined, Syphilis,
Gonorrhea, and HPV, the proposed C-RRT models
consistently outperform the baseline estimator in terms of
statistical efficiency and privacy preservation. In every
case, the models achieve lower variance and higher PRE
values, demonstrating substantial gains in precision over
the traditional method. Although bias increases gradually
with higher privacy levels, the reduction in variance more
than offsets this effect, resulting in overall more efficient
estimators. The declining combined 8z values further
show that enhanced privacy can be achieved with
proportionally lower variance cost. Collectively, these
results confirm that the proposed C-RRT framework
provides a more reliable, accurate, and privacy-protective
approach for estimating sensitive population proportions.

Empirical Study with Simulated Data

In this subsection, simulation studies were carried out
using various probability distributions listed in Table 5 to
evaluate the performance of the proposed models in
comparison to existing ones. Data comprising 1,000 units
was generated, and a sample of 100 units was drawn using
simple random sampling without replacement. This
sample was used to calculate the biases, efficiency,
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percentage relative efficiency, privacy level, and a

combined metric for efficiency and privacy of the

estimators based on equations (3.61), (3.62), (3.63),

(3.64), and (3.65) respectively (Audu et al., 2025a). The
sampling and computation procedures were executed 100
times, and the averages of the results are presented in

Tables 6, 7, and 8.
Bias(Z)=E(Z-pu,)
Var(Z)=E(Z-u,)’

Table 5: Distributions of Non-linear Populations used for Empirical Study

3.61

3.62

PRE(Z)
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:VL(Y)Xloo

Var(Z2)

A, =E(Z-Y)
5, =Var(Z)/A,

Population Auxiliary variable X Study variable y
l X ~exp(0.1) Y, =X, +¢&, €~N(0,1),
J ~N(4,1.5),
] X ~ lognormal (10,11) ( )
- SNN(O,S), TNN(1,0.5)
il X ~ chisq(6,7)
Table 6: Bias, Var, PRE, Privacy Level and Combined Metric using Population |
Models |  Bias(2) Var(Zz) | PRE@Z) | Az | Var(Z)/Az
W =03 A=05
Y 7.299543e+12 | 4.529377e+27 100 0 NA
Z, 1.831185e-16 180.514 2.509156e+27 | 4.529377e+27 3.985404e-26
zglzl) -1.07544e-16 112.4349 4.028445e+27 | 4.529377e+27 2.482347e-26
Z,(fzz) -7.16094e-17 2116.27 2.140264e+26 | 4.529377e+27 4.67232e-25
z@ 5.680222¢-16 112.2407 4.035413e+27 | 4.529377e+27 2.478061e-26
ZE\ZZZ) 5.080051e-16 255.3566 1.773746e+27 | 4.529377e+27 5.637787e-26
W =05 A=03
Y 7.299543e+12 | 4.529377e+27 100 0 NA
Z,y -5.77611e-16 319.7524 1.416526e+27 | 4.529377e+27 7.059523e-26
zglzl) -2.75439e-16 232.8546 1.945152e+27 | 4.529377e+27 5.140986e-26
7 /(322) -1.50435e-16 38086.42 1.189237e+25 | 4.529377e+27 8.408754e-24
Z,(le) 38.9737e-16 232.8119 1.94551e+27 | 4.529377e+27 5.140041e-26
ZE\ZZZ) 7.547261e-16 309.8074 1.461998e+27 | 4.529377e+27 6.839956e-26
W =05 A=0.7
Y 7.299543e+12 | 4.529377e+27 100 0 Not Applicable
Z,, -3.68178e-16 219.6642 2.061955e+27 | 4.529377e+27 4.849767e-26
z( 8.35495¢e-16 129.0946 3.508572e+27 | 4.529377e+27 2.850162e-26
7 /(322) 1.776357e-15 9961.54 4.546864e+25 | 4.529377e+27 2.199318e-24
z® 7.5405e-16 127.253 3.559347e+27 | 4.529377e+27 2.809504e-26
Zfzz) 3.152686e-16 255.0971 1.77555e+27 | 4.529377e+27 5.632057e-26
W =07 A=05

3.63

3.64
3.65
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Y 7.299543e+12 | 4.529377e+27 100 10 NA
Z,, 4.531943e-16 358.6833 1.262779e+27 | 4.529377e+27 7.919042e-26
zglzl) -4.00053e-16 277.88 1.629976e+27 | 4.529377e+27 6.135061e-26
Z&lzZ) -1.12334e-15 19599.4 2.310977e+25 | 4.529377e+27 4.327173e-24
Z,(le) 2.661673e-16 277.2384 1.633748e+27 | 4.529377e+27 6.120895e-26
fozz) -6.29991e-16 337.4567 1.34221e+27 | 4.529377e+27 7.450399e-26
Table 7: Bias, Var, PRE, Privacy Level and Combined Metric using Population 11
Models | Bias(2) | Var(2) | PRE(2) | Az | Var(Z)/Az
W =03, A=05
Y -0.00026328 4.476094e+27 100 0 NA
Z,, 0.0004030609 | 4.47673e+27 99.98578 0.058257e+27 | 0.4942154
z -0.00906253 | 3.565306e+23 | 1255458 6.366575e+28 | 5.600038e-06
7 /(322) -0.00999999 | 9.462385e+23 | 473040.7 6.504376e+28 | 1.454772e-05
7 /(321) -0.00812502 | 3.564887e+23 | 1255606 6.367721e+28 | 5.598371e-06
ZXZZZ) -0.01531239 6.611139%e+23 | 677053.4 6.270543e+28 1.054317e-05
W =05 A=03
Y -0.00026328 4.476094e+27 | 100 0 NA
Z,, -0.00014373 4.474655e+27 | 100.0321 9.056971e+27 | 0.4940565
z( 0.002499977 5.513141e+22 | 8118953 6.366737e+28 | 8.659289%e-07
7 /(322) 0.01750645 3.677421e+28 | 12.17183 9.261665e+29 | 0.03970583
Z,(le) -0.01468749 5.512559%+22 | 8119811 6.367163e+28 | 8.657794e-07
7 5\222) 0.006562519 9.772713e+22 | 4580196 6.330723e+28 | 1.543696e-06
W =05 A=07
Y -0.00026328 | 4.476094e+27 | 100 0 NA
Z,, 0.0001295567 | 4.474655e+27 | 100.0321 0.056682e+27 | 0.4940722
zfz” -0.00718751 5.513111e+22 | 8118997 6.366736e+28 | 8.659243e-07
Z&lzZ) 0.02750168 3.677303e+28 | 12.17222 9.26145e+29 0.03970548
fozl) -0.00718751 5.512529e+22 | 8119856 6.367163e+28 | 8.657747e-07
ZXZZZ) 0.01374997 0.772622e+22 | 4580238 6.330723e+28 | 1.543682e-06
W =07, A=05
Y -0.00026328 4.476094e+27 100 0 NA
Z,, -0.00034432 4.476732e+27 | 99.98574 9.058519e+27 | 0.4942013
z 0.01124999 3.565164e+23 | 1255508 6.36657e+28 5.59982e-06
7 /(322) 0.03251009 1.089108e+28 | 41.0987 4.032355e+29 | 0.02700923
Z,(le) 0.015625 3.564743e+23 | 1255657 6.367718e+28 | 5.598149e-06
ZE\ZZZ) -0.01531237 6.617826e+23 | 676369.2 6.270432e+28 | 1.055402e-05
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Table 8: Bias, Var, PRE, Privacy Level and Combined Metric using Population 111

Models | Bias(2) | Var(2) | PRE(Z) | Az | Var(Z)/Az
W =0.3 A=05
Y 7.299543e+12 | 4.529377e+27 | 100 0 NA
Z,, 4.355565e-16 | 119.2031 3.799715e+27 | 4.529377e+27 | 2.631776e-26
zw -1.86188e-16 | 71.8418 6.304654e+27 | 4.529377e+27 | 1.58613e-26
z) 1.55986e-16 | 5369.386 8.435558e+25 | 4.529377e+27 | 1.185458e-24
z -8.71495e-16 | 71.35882 6.347326e+27 | 4.529377e+27 | 1.575467e-26
7@ 1.044859%-15 | 3326.1 1.361768e+26 | 4.529377e+27 | 7.343394e-25
W =05 A=0.3
Y 7.299543e+12 | 4.529377e+27 | 100 0 NA
Zn -3.97807e-16 | 228.1726 1.985066e+27 | 4.529377e+27 | 5.037616e-26
zw -2.22045e-16 | 192.0604 2.358309e+27 | 4.529377e+27 | 4.240327e-26
7@ 6.83655e-16 3247.029 1.39493e+26 | 4.529377e+27 | 7.16882e-25
7@ 1.88738e-16 | 191.0332 2.370989e+27 | 4.529377e+27 | 4.217649¢-26
z® -1.86864e-16 | 569.8508 7.948356e+26 | 4.529377e+27 | 1.258122e-25
W =05 A=0.7
Y 7.299543e+12 | 4.529377e+27 | 100 0 NA
Z. -6.98955¢-16 | 150.1174 3.017223e+27 | 4.529377e+27 | 3.314306e-26
z 7.642498e-16 | 114.0262 3.972225e+27 | 4.529377e+27 | 2.51748e-26
7@ 1.126078e-15 | 5177.384 8.74839%+25 | 4.529377e+27 | 1.143068e-24
z@® -6.69603e-18 | 113.4922 3.990916e+27 | 4.529377e+27 | 2.505691e-26
z® 5.00523e-16 | 215.4256 2.102525e+27 | 4.529377e+27 | 4.756186e-26
W =07 A=05
Y 7.299543e+12 | 4.529377e+27 | 100 0 NA
Z. -2.57901e-16 | 250.9048 1.805217e+27 | 4.529377e+27 | 5.5395e-26
zw 4.079723e-16 | 221.2411 2.047258e+27 | 4.529377e+27 | 4.884582e-26
7@ 2.23762e-15 | 7547.57 6.001106e+25 | 4.529377e+27 | 1.666359e-24
z@® 4.611589%-16 | 221.194 2.047694e+27 | 4.529377e+27 | 4.883541e-26
z® -1.57155e-15 | 2079.078 2.178551e+26 | 4.529377e+27 | 4.590207e-25

Table 6, 7 and 8 show the results of the Bias, variances,

Z (11) 7 (21) 7 (12)

revealed that the proposed models £p; , &p7', &p7

percentage relative efficiency (PRE), privacy level and

(
combined metric of efficiency and privacy level of ZAZ
Azeem et al. (2024) and proposed C-RRT models for

with exception of few cases, have minimum
variance, higher PRE, higher privacy level, and minimum

populations Il and Il respectively for combined metric of efficiency and privacy level as
W =03 A=0.5, W =0.5A=0.3, 7 . 70 712
W=05A=07 ad W=07,A=05 ¢ Comparedto &uy .Thisimplies thatmodels £y, £y .

W =0.3,A=0.5 and W =0.5, A=0.3, the results

712 7 .
Az are better models as compared to ~p; with the
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evidence of minimum combined metric of efficiency and
privacy level 52 .
CONCLUSION

This study proposed Calibrated Randomized Response
Techniques for the Estimation of Quantitative Sensitive
Variable Information by modifying RRT models
proposed by Azeem et al. (2024). The existing RRT
Models were improved by incorporating non-sensitive
auxiliary variable that is correlated to the sensitive
variable through calibration approach. The models of the
proposed calibration schemes were derived. The
estimators for the population mean, along with their
theoretical properties such as variance, privacy level, and
a combined metric for efficiency and privacy, were
derived to evaluate their efficiency, precision, and
robustness in estimating sensitive information. The
proposed models were applied to SITs data, and their
performance was assessed. An empirical study using
simulated data, as detailed in section 4, was conducted
numerically. The results indicated that the proposed C-
RRT models outperformed the existing RRT models
under consideration, except in a few instances. This
suggests that incorporating auxiliary information through
the calibration approach improved the robustness and
performance of the proposed models. Consequently, it
can be concluded that the C-RRT models demonstrated a
better goodness of fit compared to their counterparts.
This study is limited to incorporation of auxiliary variable
into RRT models proposed by Azeem et al. (2024)
through calibration approach; however, other approaches
like two-step calibration, power calibration and calibrated
maximum likelihood design weight approaches can be
used for further studies.
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