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ABSTRACT 

The use of existing RRTs Models in STIs research offers several advantages, 

such as increased response accuracy, reduced social desirability bias, and 

enhanced confidentiality protection. However, the existing RRT models utilize 

no auxiliary information which can enhance the accuracy and precision of 

estimate for prevalence of STIs. In addition, the estimators of the existing RRT 

models are prone to outliers or extreme values being them sample means of the 

interest variables which in turn can reduce the efficiency and accuracy levels of 

models. In this research, we proposed new classes of randomized response 

technique called calibrated three optional randomized response techniques. 

These models were created by adjusting current RRT models using calibration 

techniques. The aim was to enhance C-RRT models to be more efficient, stable, 

and robust compared to existing alternatives. The research established 

theoretical properties, including estimators, variances, privacy levels, and a 

composite metric for efficiency and privacy, to evaluate the robustness and 

applicability of the proposed models. Empirical studies were conducted using 

simulated data to support the theoretical findings, and demonstrating that the R-

CTHORRT models exhibited lower variances, higher relative efficiency, 

enhanced privacy levels, and a better combined metric of variance and privacy. 

This indicates the superiority of the C-THORRT models over existing RRT 

models. 

 
 

INTRODUCTION 

One of the important areas of sampling survey is 

estimation of population parameter, especially estimation 

of sensitive characteristics like cases of prevalence of 

STIs, sexual harassment, cases of rape, illegal drug use 

etc., whose information cannot be obtained from 

respondents with higher probability of truth when direct 

method of data collection is employed. The respondents 

fear that if they provide the real value of the sensitive 

variable, they will be stigmatized or punished by the law. 

For example, many rape victims won’t speak out, out fear 

of being stigmatized or humiliated or disgraced and many 

will not go to the hospital to explain what happened to 

them, hence, the society is not so safe in this situation. 

Obtaining information from these respondents through 

direct method is not ideal, hence, we apply the 

randomized response technique (RRT). To obtain more 

reliable information from the respondents, Warner (1965) 

came up with an ingenious approach for data collection 

known as the randomized response technique (RRT).  

 

 

 

 

 

 

This method guarantees the privacy of the respondents 

and also conceals their responses. The technique 

developed in 1965 was specifically designed for 

qualitative variable. In 1971, Warner introduced 

randomized response technique (RRT) model for 

quantitative variable. In 1976, Pollock and Bek, 

reintroduced this technique as additive model. 

Randomized response techniques (RRT) are valuable 

techniques used in surveys or questionnaires to collect 

sensitive data while maintaining the privacy of 

participants. This is especially beneficial when 

researchers are addressing controversial or sensitive 

subjects. By ensuring confidentiality, RRT can boost 

participation rates in surveys or studies related to delicate 

topics. Respondents are more inclined to take part if they 

believe their privacy is protected. Various authors have 

suggested different RRT models and estimators for 

estimating population parameters of sensitive qualitative 

and quantitative variables. These authors include 

Eichhorn and Hayre (1983), Gupta et al. (2002),  
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Bar-Lev at al. (2004), Singh and Mathur (2005), Gupta et 

al. (2006), Gupta and Shabbir (2007), Saha (2007), 

Gjestvang and Singh (2009), Huang (2010), Gupta et al. 

(2010), Diana and Perri (2010), Diana and Perri (2011), 

Hussain (2012), Mehta et al. (2012), Singh and Tarray 

(2016), Tarray and Singh (2017), Gupta et al. (2018), 

Saleem et al. (2019), Azeem and Salam (2023), Azeem et 

al. (2023), Yunusa et al. (2025a,b).  

The estimates produced by the estimation techniques in 

sampling survey are often being enhanced with the use of 

auxiliary information. Auxiliary information means 

additional data that is related to the variable of interest 

and can be used to improve estimators' performance in 

sample surveys. Auxiliary information can help reduce 

the variance of estimators, leading to more precise 

estimates (Cochran, 1940). This is particularly useful 

when dealing with small sample sizes or when estimating 

small subpopulations. Auxiliary information can be used 

to adjust for potential biases in the sample, such as non-

response bias or under-coverage bias, resulting in more 

accurate estimates. By incorporating auxiliary 

information, estimators can become more efficient, 

requiring smaller sample sizes to achieve the same level 

of precision (Cochran, 1942). This can help lower the 

costs linked to data collection. Auxiliary information can 

be used to address missing data in surveys, either through 

imputation or by guiding the selection of weights in 

estimation methods. This information can be sourced 

from various places, such as administrative records, 

census data, or prior surveys (Singh, 2003). By utilizing 

existing data, researchers can enhance estimators and 

enrich their analyses. Incorporating auxiliary information 

to align estimates with known population benchmarks or 

external data sources can lead to improved comparisons 

across different surveys or time periods. One method for 

integrating auxiliary information into models or 

estimators is through the use of calibration techniques 

(Audu et al., 2024a,b,c, Audu et al. 2025b). 

Calibration of estimators in sample surveys is a technique 

used to correct differences between the survey sample and 

the target population, especially when the sample isn't 

fully representative. This process adjusts estimators to 

match known population totals or benchmarks, thereby 

reducing bias and enhancing estimate accuracy. 

Calibration mitigates the effects of sampling variability 

that can occur when a sample does not fully reflect the 

target population. It can also utilize auxiliary information 

from other sources, such as administrative records or 

census data, to further refine and improve the estimates. 

Jabeen et al. (2024) developed calibrated estimators for 

sensitive variables under stratified random sampling. 

Also, recently, Audu et al. (2025a) developed calibrated 

models and estimators with two groups of respondents for 

sensitive variables under simple random sampling. In the 

present, we aimed at proposing randomized response 

calibrated models and estimators for estimation of mean 

of sensitive study variable for three groups of respondents 

under simple random sampling schemes.     

Randomized Response Techniques (RRTs) have been 

developed as a valuable tool for collecting sensitive 

information in various research areas, including the study 

of sexually transmitted infections (STIs). These 

techniques aim to protect respondent confidentiality and 

reduce social desirability bias, which can lead to 

underreporting of sensitive behaviors or conditions. 

RRTs have been applied in STI research to estimate the 

prevalence of STIs, such as HIV/AIDS, syphilis, and 

others, as well as related risk behaviors (see Baltagi & 

Wannous, 2020; Park, Park & Kim, 2020). These 

techniques have been particularly useful for collecting 

data from hard-to-reach populations or those who may be 

less likely to disclose sensitive information due to social 

stigma or discrimination. Examples of RRT applications 

in STI research include surveys of sex workers, 

intravenous drug users, and men who have sex with men.  

The continued development and refinement of RRTs for 

use in STIs research are essential to improve data 

collection, inform public health interventions, and reduce 

the burden of STIs. However, future directions include 

the development of robust RRT models, integration with 

other data collection methods, and adaptation to digital 

platforms. Additionally, more research is needed to 

evaluate the effectiveness and scalability of RRTs in 

diverse settings and populations. In conclusion, 

randomized response techniques have significantly 

contributed to the study of STIs by providing a valuable 

tool to collect sensitive data while protecting respondent 

confidentiality. Continued advancements in this field will 

further enhance the accuracy and reliability of data 

collected on STIs, leading to more effective public health 

interventions. 

Leveraging on the approach of calibration, this study 

aimed at modifying RRT model of Azeem et al. (2024) to 

propose robust and efficient calibrated randomized 

response technique (C-RRT) models to obtain estimates 

with less biases and higher precisions for estimating the 

rate of prevalence of STIs.pro 

 

Let Y be a sensitive study variable which correlated with 

an auxiliary variable X from a population consists of N 

elements from which a sample of size n elements is 

drawn. Let S and T be scrambling variables which are 

uncorrelated with Y whose mean and variances are 

assumed to be known. Let Z be the scrambling response 

of Y. Then, the following notations are defined. 

( ) :i yE Y =
 
population mean of Y, ( ) 2

i yVar Y =  : 

population variance of Y, ( ) sE S  = = : population 
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mean of S, ( ) 2

sVar S = : population variance of S, 

( ) TE T = :population mean of T, ( ) 2

TVar T = : 

population variance of T, 
1

1

N

ii
X N X−

=
=  : 

Population mean of X, ( )
2

2 1

1

N

x ii
N x X −

=
= −  : 

population variance of , 
1

1

n

ii
x n x−

=
=  : sample mean 

of X (Audu et al., 2025a). 
 Azeem et al. (2024) proposed RRT model with one 

scramble variable as in (2.1). 

( )

( )

1

1

AZ i

Y with probability W

Z Y S J with probability WA

TY SJ with probability W A

 −


= + −
 + −

         2.1 

where W denote the sensitivity level and A denotes a 

constant such that 0 1A  .  

The estimator of population means y  and its variance 

using Gupta et al. (2022) model under the assumption that 

( ) ( ) ( ), 1,s JE S E T E J = = = are given as in 

(2.2) and (2.3) respectively and the combined metric of 

privacy level and efficiency denoted by 
G  is given as in 

(2.4). 

1

1

1
ˆ ,

n

AZ i j

i

Z WA
n

 
=

= +                                                     2.2 

( )

( )

( )
( )

( )

1

2 2 2 2

2 2 2

2 2 2

ˆ

2

1

1

AZ

y s j j j y

T y y

s j j

Var

WA

n W A



     

  

  

=

 + + + − +
 
  +  −  
 + +   

               2.3 

( )

( )
( )

( )

( ) ( )

( ) ( ) 

1

2 2 2 2

2 2 2

2 2 2

2 2 2

2 2 2 2 2 2

2

1

.
1

y s j j j y

T y y

s j j

AZ

s j j

T y y s j j

WA

W A

WA W A
n

     

  

  


  

     

 + + + − +
 
  +  −  
 + +   =

 + + + −
 
 + + +
 

 2.4 

MATERIALS AND METHODS 

Proposed Calibration Estimators 

Consider 1 ,G  2G  and 3G  as the sets of respondents 

belonging to the first second and third categories of Z 

respectively in all the RRT models stated in (2.1) having 

elements 1 ,n  2n  and 3n . Then, the models and their 

estimators can be generally be written as in (3.1) and (3.2) 

respectively. 

( )

( )

( )

( )

*

1 11

*

. 2 22

* *

1 2 33

,

,

1 ,

i

b

i i

i

y with probability p i G

Z y with probability p i G

y with probability p p i G







 


= 


− − 

                                                       

 (3.1) 
( )

( ) ( )

( )
1 2

3

1 21 2

3 3

ˆ b

y

i ii G i G

ii G

y y

y



   

 

 



=

+ + 


                

3.2 

where 1 2 3

1
,

n
  = = = ( )

1 ii
y Y = ,

( )
2 ii

y Y S J = + − , ( )
3 ii

y TY SJ = + ,

1 1p W = − , 2p WA = , ( )1 21 1p p W A − − = − . 

Motivated by Audu et al. (2024a,b,c), this study proposed 

two (2) classes of calibration Schemes and Estimators to 

obtain two new classes of RRT models for estimating 

sensitive variables. 

 

First Proposed calibration estimator 

The first proposed estimator and calibration scheme are 

defined as in (3.3) and (3.4) respectively 
( )

( ) ( )

( )
1 2

3

1

11 121 2

13 3

ˆ j

i ii ii G i G

i ii G

y y

y



   

 

••

 



=

+ + 


                   

3.3 

where 11iW  and 12iW  are the new calibration weights to 

be obtained by minimizing the chi-square distance Z 

defined as 

 ( ) ( ) ( )

1 2 3

1 2 3

1

2 2 2

11 12 13

11 12 13

11 1 12 2 13 3

min

1 1 1

2 2 2

. .

i i i

i G i G i Gi i i

i i i i i i x

i G i G i G

n n n

n n n

s t x x x



  

  

   

  

  


= 


− − − 

+ + 

+ + =



  

  

      3.4  

To compute 11i , 12i and 13i in (3.9), Lagrange 

function 3L  is defined as in (3.5). 
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( ) ( ) ( )

1 2 3

1 2 2

3

2 2 2

11 12 13

11 12 13

11 1 12 2 13 2

1 1 1

2 2 2

i i i

i G i G i Gi i i

i i i i i i x

i G i G i G

L

n n n

n n n

x x x

  

  

    

  

  

=

− − −
+ +

 
− + + − 

 

  

  

           3.5   

Partially differentiating (3.5) with respect to 11i , 12i

, 13i  and  , equate the results to zero, we obtained 

(3.6)-(3.9)  

( )1

11 11 11i i in x −= +                                                         3.6 

( )1

12 12 21i i in x −= +                                                       3.7 

( )1

13 13 31i i in x −= +                                                        3.8  

1 2 3

11 1 12 2 12 2i i i i i i x

i G i G i G

x x x   
  

+ + =                 3.9 

By substituting (3.6) (3.7) and (3.8) into (3.9) and solve 

for  , (3.10) is obtained. 

1 2 3

1 2 2

1 2 3

1

2 2 2

11 1 12 2 13 3

x i i i

i G i G i G

i i i i i i

i G i G i G

n x x x

x x x





  

  

−

  

=

  
− + +   
  

 
+ + 

 

  

  

              3.10   

Substituting the value of   into (3.6) (3.7) and (3.8), the 

expressions for 11i , 12i , and 13i  are obtained as 

in (3.11) (3.12) and (3.13) respectively. 

1 2 3

1 2 3

11

1

11 1 1 2 3

1

2 2 2

11 1 12 2 13 3

1

i

i i x i i i

i G i G i G

i i i i i i

i G i G i G

x n x x x
n

x x x



 

  

−

  

−

  

=

  
+ − + +   

  

 
+ + 

 

  

  

      3.11 

1 2 3

1 2 3

12

1

12 2 1 2 3

1

2 2 2

11 1 12 2 13 3

1

i

i i x i i i

i G i G i G

i i i i i i

i G i G i G

x n x x x
n

x x x



 

  

−

  

−

  

=

  
+ − + +   

  

 
+ + 

 

  

  

        3.12 

1 2 3

1 2 3

13

1

13 3 1 2 3

1

2 2 2

11 1 12 2 13 3

1

i

i i x i i i

i G i G i G

i i i i i i

i G i G i G

x n x x x
n

x x x



 

  

−

  

−

  

=

  
+ − + +   

  

 
+ + 

 

  

  

   3.13 

Substituting (3.11) (3.12) and (3.13) in (3.3) to obtain the 

proposed calibration estimator as in (3.14) 

 
( ) ( )1 ˆˆ ˆj

ij x x   = + −gg gg                                               3.14 

where  

( ) ( ) ( )

1 2 3

1 2 3

1 2

1

1 2 3

11 1 12 2 13 31 2 3

2 2 2

11 1 12 2 13 3

3

,

ˆ

i i i

i G i G i G

i i i i i ii i i
i G i G i G

ij

i i i i i i

i G i G i G

x

n x x x

x y x y x y

x x x

     


  

−

  

  

  

=

 
+ + 

 

+ +

=
+ +

  

  

  

 

. 

Case 1: Setting 11 12 13 1i i i  = = =  in (3.14), member 

of 
( )1ˆ j

gg  denoted by 
( )11

̂gg  is obtained as in (3.15) 

( ) ( )11

11
ˆˆ ˆ

x x   = + −gg gg                                       3.15 

where 

( ) ( ) ( )
1 2 3

1 2

1 2 31 2 3

11 2 2 2

1 2 3

3

ˆ
i i ii i i

i G i G i G

i i i

i G i G i G

x y x y x y

x x x

  


  

  

+ +

=
+ +

  

  
 

Case 2: Setting 
1 1 1

11 1 12 2 13 3, ,i i i i i ix x x  − − −= = =  in 

(3.14), member of 
( )1ˆ j

gg  denoted by 
( )12

̂gg  is obtained as 

in (3.16) 

( ) ( )12

12
ˆˆ ˆ

x x   = + −gg gg                                       3.16 

where 

( ) ( ) ( )
1 2 2

1 2 3

1 2 2 *

12

1 2 3

ˆ
i i i

i G i G i G

i i i

i G i G i G

y y y
z

x x x x

  


  

  

+ +

= =
+ +

  

  
. 

The resultant estimator 
( )1ˆ j

gg obtained in (3.14) can be 

expressed as in (3.17) 
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( )

( ) ( ) 

( ) ( ) 

( ) ( ) 

1

2

3

1

1 1 11

2 1 22

3 1 33

ˆ

ˆ

ˆ

ˆ

j

j x ii
i G

j x ii
i G

j x ii
i G

y x

y x

y x



   

   

   













=

+ − +

+ −

+ + −







                   3.17 

Compared (3.17) with (3.2), the first proposed modified 

RRT model is obtained as in (3.18). 

( )

( ) ( )

( ) ( )

( ) ( )

1 1 11

1

1 2 22

1 3 1 23

ˆ .

ˆ .

ˆ . 1

j x

j

j x

j x

y X with prob p

Z y X with prob p

y X with prob p p

  

  

  

 

 

  

 + −



= + −


+ − − −

gg

 3.18 

Second Proposed calibration estimator 

The second proposed estimator and calibration scheme 

are defined as in (3.19) and (3.20) respectively. 
( )

( ) ( )

( )
1 2

3

2

21 221 2

23 3

ˆ j

i ii ii G i G

i ii G

y y

y



   

 

••

 



=

+

+

 


                  

3.19 

where 21i , 22i  and 23i  are the new calibration 

weights to be obtained by minimizing the chi-square 

distance 2  defined as 

 
( ) ( ) ( )

1 2 2

1 2 3

1 2 3 1 2 3

2

2 2 2

21 22 23

21 22 23

21 1 22 2 23 3

21 22 23 1 2 3

min

1 1 1

2 2 2

. .

i i i

i G i G i Gi i i

i i i i i i x

i G i G i G

i i i

i G i G i G i G i G i G

n n n

n n n

s t x x x



  

  

   

     

  

  

     

= 


− − − 
+ + 




+ + = 

+ + = + +


  

  

     

          3.20 

To compute 21i , 22i  and 23i , Lagrange multiplier 

function 2L  is defined as in (3.21) 

 

( ) ( ) ( )

1 2 3

1 2

3

1 2 3

1 2 3

4

2 2 2

21 22 23

21 22 23

21 1 22 2

1

23 3

21 22 23

2

1 2 3

1 1 1

2 2 2

i i i

i G i G i Gi i i

i i i i

i G i G

i i x

i G

i i i

i G i G i G

i G i G i G

L

n n n

n n n

x x

x

  

  

 


 

  


  

  

 



  

  

=

− − −
+ + −

 +
 
 
+ − 

 

 + + −
 

−  
− − 

 

  

 



  

  

           3.21 

Partially differentiating (3.21) with respect to 21i , 

22i , 23i , 1  and 2 , equate the results to zero,, 

(3.22), (3.23), (3.24), (3.25) and (3.26) are obtained 

respectively  

( )1

21 1 21 1 2 211i i i in x   −= + +                            3.22 

( )1

22 1 22 1 2 221i i i in x   −= + +                                3.23 

( )1

23 1 23 1 2 231i i i in x   −= + +                                 3.24 

1 2 3

21 1 22 2 23 2i i i i i i x

i G i G i G

x x x   
  

+ + =             3.25 

1 2 3

1 2 3

21 22 23

1 2 3

i i i

i G i G i G

i G i G i G

  

  

  

  

+ + =

+ +

  

  
                                3.26 

By substituting (3.22), (3.23) and (3.24) into (3.25) and 

(3.26), equation (3.27) is obtained 

 
11 2 4

2 3 2 0

  

  

    
=    
   

                                                   3.27   

where 

1 2 3

2 2 2

1 21 1 22 2 22 3

1
i i i i i i

i G i G i G

x x x
n

   
  

 
= + + 

 
   , 

1 2 2

2 21 1 22 2 22 3

1
i i i i i i

i G i G i G

x x x
n

   
  

 
= + + 

 
   , 

1 2 3

3 21 22 23

1
i i i

i G i G i Gn
   

  

 
= + + 

 
   , 

1 2 3

4 1 2 3

1
x i i i

i G i G i G

x x x
n

 
  

 
= − + + 

 
   . 

By solving (3.24) for 1  and 2 , (3.28) is obtained. 

3 4
1 2

1 3 2

 


  
=

−
,

2 4
2 2

1 3 2

 


  

−
=

−
                                  3.28 

Substituting the values of 1  and 2  into (3.22) (3.23) 

and (3.24), the expressions for 21i  22i and 23i  are 

obtained as in (3.29), (3.30) and (3.31) respectively. 

1 3 4 2 4
21 21 1 212 2

1 3 2 1 3 2

1i i i in x
   

  
     

−  
= + − 

− − 

          3.29 

1 3 4 2 4
22 22 2 222 2

1 3 2 1 3 2

1i i i in x
   

  
     

−  
= + − 

− − 

             3.30 
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1 3 4 2 4
23 23 3 232 2

1 3 2 1 3 2

1i i i in x
   

  
     

−  
= + − 

− − 

         3.31 

Substituting (3.29), (3.30) and (3.31) in (3.32), the 

proposed calibration estimator is obtained as in (3.32). 

( ) ( )2

2
ˆˆ ˆj

j x x   = + −gg gg                                      3.32 

where
3 5 2 6

2 2

1 3 2

ˆ
j

   


  

 −
=

−
, 

( )

( ) ( )
1

2 3

5

21 1 1

22 2 23 32 3

1
i i i

i G

i i i ii i
i G i G

x y

n x y x y



 

   



 

=

 +
 
 

+ 
 



 
,  

( ) ( ) ( )
1 2

6 21 22 231 2 3
3

1
i i ii i i

i G i G i G

y y y
n

      
  

 
= + + 

 
   . 

Case 1: Setting 21 22 1i i = =  in (3.32), member of 

( )2ˆ j
gg  denoted by 

( )21
̂gg  is obtained as in (3.33) 

( ) ( )21

21
ˆˆ ˆ

x x   = + −gg gg                                              3.33 

where

( ) ( ) ( )

( ) ( ) ( )

1 2 3

1 2 3

1 2 3

1 2 31 2 3

1 2 3

21 2 2 2 2

1 2 3

ˆ

i i ii i i
i G i G i G

i i i
i G i G i G

i i i

i G i G i G

x y x y x y

x y y y

x x x nx

  

  



  

  

  

+ + −

 
+ + 

 =
+ + −

  

  

  
 

Case2: Setting 
1 1 1

21 1 22 2 23 3, ,i i i i i ix x x  − − −= = =  in 

(3.32), member of 
( )2ˆ j

gg  denoted by 
( )22

̂gg  is obtained as 

in (3.34). 

( ) ( )22

22
ˆˆ ˆ

x x   = + −g g                                                3.34 

where
( ) ( ) ( )

*

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

22

1 2 3

1 1 1
ˆ

ˆ

1 1 1
1

Z
i G i G i Gi i i

i i i

i G i G i Gi i i

i G i G i Gi i i

x x x

x x x

y y y

x
x x x



  


  

  

  

 
+ + − 

 

 
+ +  

 =
 

+ + − 
 

  

  

  

,  

The resultant estimator 
( )2ˆ j

gg obtained in (3.32) can be 

expressed as in (3.35). 

( ) ( ) ( ) 

( ) ( ) 

( ) ( ) 

1

2

3

2

1 2 11

2 2 22

3 2 23

ˆˆ

ˆ

ˆ

j

j x ii
i G

j x ii
i G

j x ii
i G

y x

y x

y x

    

   

   













= + − +

+ −

+ + −







        3.35 

Compare (3.35) with (3.2), the second proposed modified 

RRT model (C-RRT-2) is obtained as in (3.36) 

( )

( ) ( )

( ) ( )

( ) ( )

2 1 11

2

2 2 22

2 3 1 22

ˆ .

ˆ .

ˆ . 1

j x

j

j x

j x

y X with prob p

Z y X with prob p

y X with prob p p

  

  

  

 

 

  

 + −



= + −


+ − − −

gg

         3.36 

Table 1: Members of the Proposed Calibrated Optional Quantitative RRT Model 
( )

, , 1,2
kj

Z k j =gg  

Existing RRT Models 
Corresponding Members of 

( )
, , 1,2

kj
Z k j =gg  

Azeem et al. (2024) 

( )

( )

, 1

,

, 1

AZ i

Y p W

Z Y S J p WA

TY SJ p W A

 = −


= + − =
 + = −

 ( )
( )

( )

( )

( ) ( )

1 1

2 2

3 1 2

ˆ , 1

ˆ ,

ˆ ,1 1

i kj i

kj

i kj iAZ i

i kj i

Y X x p W

Z Y S J X x p WA

TY SJ X x p p W A







 

 

  

 + − = −



= + − + − =


+ + − − − = −

  

where ( ) ( ) ( )0, 1, JE S E T E J = = =  

Properties of the Proposed Calibration RRT 

Estimators 

This subsection presents the theoretical properties 

(Expectation, variance, privacy level) of the proposed 

calibrated estimators. 

Theorem 1: Given that ˆ , , 1,2kj k j  =  is unbiased of 

, , 1,2ij i j  = , then, 
( )( )ˆ kj

yE  =gg . That is, the 
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estimators
( )ˆ , , 1,2
kj

k j =gg  of population mean y are 

unbiased. 

Proof: 

As n N→ , ( )ˆlim , , 1,2kj ij
n N

k j  

→
= = , where 

1
11 2 22

1

N

i i yx y x y xi

N

x xii

Y X

X

    


 

 =

=

+
= =

+




,  

1
12

1

N

i yi

N

xii

Y

X






 =

=

= =



, 21

yx y

x

 




 = , 

1/ /

22 1

1/

y x x y

x x N

  


 



−

−
=

−
.  

Since for all ( )ˆ ˆ ˆ,NS G  gg , ( )ˆ
yE  =gg . Then,  

( )( ) ( )

1

1
ˆ

n
kj kj

i

i

E E Z
n


=

 
=  

 
gg gg                                      3.37 

( )( )

( ) ( )( )
( ) ( )( )
( ) ( )( )

( )

1 11

2 22

1
33

1 2

ˆ

ˆ

ˆ
1

ˆ

1

kj

kj x

n
kj x

i
kj x

E

E y X p

E y X p

n E y X

p p



  

  

  

 

 

=

 

=

 + − +
 
 

+ −
 
 
+ + − 
 
 − −
 


         3.38 

( )( )
( ) ( )

( ) ( )

( ) ( )

( )( )

1 21 2

1 23

1 1 2 2

3 1 2

ˆ

1

1

kj

kj x kj x

kj x

E

y p y p
E

y p p

X p X p
E

X p p



 



   

 

 

 

   

  

=

 +
  +
 + − −
 

 − + −
 
 + − − −
 

                   3.39 

( )( )
( ) ( )

( )( )
1 2

1 2

ˆ

1

kj

x x x x

y kj y

x x

E

p p

p p



   
  

 

 

 

=

 − + −
 + =
 + − − −
 

                  3.40 

Hence, the proof. 

Theorem 2: Given that ˆ , , 1,2kj k j  =  is unbiased of 

, , 1,2kj k j  = , then,  

( )( ) ( ) ( )( )2 21
ˆvar ar 2 cov

kj

kj x kjv Z Z X
n

    = + −gg gg g
        3.41 

Proof: The variance of 
( )ˆ kj

gg  

( )( )
( ) ( )( )( )2 2

2
1 1

ˆvar

1 1
var

kj

n n
kj kj

i i y

i i

Z E Z
n n




= =

=

 
= − 

 
 

                   3.42 

( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )( )

2

1 11

2

2 22

2
2

3 1 23

ˆvar

ˆ

1 ˆ

ˆ 1

kj

kj x

kj x

kj x y

E y X p

E y X p
n

E y X p p



  

  

   

 

 

  

=

 + − +
 
 

+ − 
 
 + + − − − − 
 

         3.43 

( )( )

( )  ( )  ( )  ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

2 2 2

1 2 1 21 2 2

2 2

1 1 2 22

2

3 1 2

1 1 2 21 2 2

3 1 23

ˆvar

1

1

1

2
1

kj

x x

kj

x

x x

kj y

x

y p y p y p p

X p X p
E

n X p p

y X p y X p

y X p p



  

 




   
 

 

   

 



 

 



 

=

 
 
 + + − −
 
  − + −  +  
 + − − −   
  − + −  − −  + − − −   

         3.44 

Simplify (3.44), (3.41) is obtained, Hence the proof. 

Theorem 3: The privacy level of  
( )kj

Zgg  denoted by 

( ) ( )( )
2

kj kj
E Z Y = −gg gg is given as in (3.45). 

( )

( )

( ) ( )( )

2 2 2ar 2

2 cov cov

kj

kj x y kj yx y x

kj

v Z

Z X Z Y

      



 



 =

+ + +

− +

            3.45 

Proof: 
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( )

( ) ( )( )

( ) ( )( )

( ) ( )( ) ( )

2

1 11

2

2 22

2

3 1 23

ˆ

ˆ

ˆ 1

kj

kj x

kj x

kj x

E y X Y p

E y X Y p

E y X Y p p

  

  

  

••

 

 

  

 =

+ − − +

+ − −

+ + − − − −

        3.46 

( )

( )  ( )  ( )  ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

( ) ( ) ( ) ( ) 
( )

22 2
2 2 2 2

1 2 1 21 2 3

2 2

1 1 2 22 2

2

3 1 2

1 1 2 21 2

3 1 23

1 2 1 21 2 3

1 1

1

ˆ

1

ˆ2
1

2 1

ˆ2

x x

kj

x

x xkj

kj

x

x

kj

y p y p y p p

X p X p
Y

X p p

y X p y X p
E

y X p p

y Yp y Yp y Y p p

X Yp

  

 




   


 

  




   

 



 

 



 

   





+ + − −

 − + − 
+ + 

+ − − −  

 − + − 
 = −  

+ − − −  

− + + − −

−
+

( )

( ) ( )
2 2

3 1 21

x

x

X Yp

X Y p p







 

 
 
 
 
 
 
 
 
 
 
 
 
 

 + −  
  

+ − − −    

           3.47 

Take expectation of (3.47), (3.48) is obtained. 

( ) ( )

( ) ( )( )

2 2 2 2

2 2

ar

2 cov 2 cov

2

kj

y kj x y

y kj y

kj yx y x

v Z

Z X Z Y

   

  

   

 = + + + +

− − +

+

                3.48 

Simplify (3.48), (3.45) is obtained, hence, the proof. 

Using results of equations (3.41) and (3.45) in (3.48), the 

combined metric of privacy level and efficiency of 
( )ˆ kj

gg  

denoted by 
( )

( )( )
( )

ˆvar
kj

kj

kj


 =



gg

gg

gg

is obtained as in (3.49). 

( )

( )

( )

( )

( ) ( )( )

2 2

2 2 2

ar

2 cov

ar 2

2 cov cov

kj x

kj kj

kj x y kj yx y x

kj

v Z

Z X

v Z
n

Z X Z Y

 




      



+ −

=
 + + + −
 
 +
 

             3.49 

Properties of Proposed Model 
( )kj

AZZ  

(i) The sample mean of the model 
( )kj

NSZ , denoted by 
( )ˆ kj

AZ

is obtained as in (3.50). 

( ) ( ) ( )
1

1 ˆˆ ˆ
n

kj jk

AZ AZi AZ kj x

i

Z x
n

   

=

= = + −          3.50 

(ii) Let 
( )kj

AZZ Z= gin (3.41), then ( )( )cov
kj

AZZ X and 

( )( )cov
kj

AZZ Y are obtained as in (3.51) and (3.52) 

respectively. 

( )( )
( )( ) ( )( )

( )( ) ( )

1 2

2

cov

1
,

1

kj

AZ

x x

yx y x

x

Z X

Y X W Y S J X WA
E

TY SJ X W A

 
  



=

− − + + − −  
= 

+ + − −  

         3.51 

( )( )
( ) ( )

( ) ( )

2 2

2

2

2

cov

1

1

,

kj

AZ

y

y y J

Z Y

Y W Y SY JY WA
E

TY SJY W A

WA



  

=

 − + + − 
− = 

+ + −  

−

             3.52 

 (iii) Using the result of (3.51), the variance of 
( )ˆ kj

AZ  

denoted by 
( )( )ˆvar
kj

AZ is obtained as in (3.53). 

( )( )

( )

( ) ( ) ( ) 

2 2 2 2

2 2 2 2 2 2

2 2

ˆvar

2

1
1 ,

2

kj

AZ

y s J J J y

T y J s J y

kj x kj yx y x

WA

W A
n



     

     

     

=

 + + + −
 
 + − + + +
 
 + −
 

       3.53 

 (iv) Using the results of (3.51) (3.52) and (3.53), the 

privacy level of 
( )ˆ kj

AZ  denoted by 
( )kj

AZ is obtained as in 

(3.54). 

( )

( )

( ) ( ) ( ) 

2 2 2

2 2 2 2 2 2

2 2

2

1

2 2 2 ,

kj

AZ

s J J J y

T y J s J y

kj x kj yx y x J y

WA

W A

WA

    

     

       

 =

+ + − +

− + + +

+ − +

              3.54 

 (iv) Using the results of (3.53) and (3.54), the combined 

metric of privacy level and efficiency of 
( )ˆ kj

AZ  denoted by 

( )

( )( )
( )

ˆvar
kj

AZkj

AZ kj

AZ


 =


is obtained as in (3.55). 
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( )

( )

( ) ( ) ( ) 

( )

( ) ( ) ( ) 

2 2 2 2

2 2 2 2 2 2

2 2

2 2 2

2 2 2 2 2 2

2 2

2

1

2
.

2

1

2 2 2

y s J J J y

T y J s J y

kj kj x kj yx y x

AZ

s J J J y

T y J s J y

kj x kj yx y x J y

WA

W A

WA

n W A

WA

     

     

     


    

     

       

+ + + − +

− + + +

+ −
=

 + + − +
 
 − + + +
 
 + − +
 

          3.55 

Members of the Proposed Calibrated Optional 

Quantitative RRT Model 
( )kj

AZZ  are presented in (3.56), 

(3.57), (3.58) and (3.59). 

( )
( )
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i iAZ i
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  

  

  

  

  
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    3.56 
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( )
( )

( ) ( )( ) ( )( )

( )

( ) ( )( ) ( )( )

( )

( )

1 2 2

1 2 3

1 2 2

1 2 3

1

1 12 2 2 2

21

2 22 2 2 2

,

,

i i i i i i

i G i G i G

i i

i i i

i G i G i G

i i i i i i

i G i G i G

i iAZ i

i i i

i G i G i G

i i

i G

i

x x Y x x Y S J x x TY SJ

Y X x p
x x x nx

x x Y x x Y S J x x TY SJ

Z Y S J X x p
x x x nx

x x Y

TY SJ

   

  

   

  



− + − + − + − +

+ −
+ + −

− + − + − + − +

= + − + −
+ + −

− +

+ +

  

  

  

  

 ( )( ) ( )( )

( )2 2

1 2 3

3 32 2 2 2
,

i i i i

i G i G

i

i i i

i G i G i G

x x Y S J x x TY SJ

X x p
x x x nx

  

  











 − + − + − +


−
+ + −



 

  

 3.58 
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 (3.59)

  

 

RESULTS AND DISCUSSION 

Applications to Some STIs data 

This section presents the applications of the proposed 

RRT models to SITs data. The study considered the data 

on syphilis, Gonorrhea and Human papillomavirus (HPV) 

with gender, age and marital status of patients as auxiliary 

variables respectively. The data was collected within 

Sokoto metropolis, Nigeria. Sample of size 150 were 

collected using questionnaire. The results of the estimates 

by the considered RRT models as well as their biases, 

variances, PREs, privacy levels and combined metric of 

variance and privacy levels are presented in Tables 2, 3 

and 4 respectively 

 

Table 2: Estimated Rates of Syphilis for Different RRT Models 

Model Estimate 

(Z) 

Bias(Z) Var(Z) PRE(Z) 

(%) 

Privacy level 

Δz 

Combined δz = 

Var(Z)/Δz 

Y 0.0327 0 0.00190667 100 0.00 NA 
 0.0209 0.968 0.00174331 109.3707 0.20 0.0087166 

Proposed C-RRT Models 

 

0.0235 0.294 0.00156083 122.1574 0.35 0.0015608 

 

0.0250 0.420 0.00166667 114.3999 0.50 0.0033333 

 

0.0265 0.546 0.00156083 122.1574 0.65 0.00240127 

 

0.0280 0.672 0.00124331 153.3543 0.80 0.00155413 

 

Table 3: Estimated Rates of Gonorrhea for Different RRT Models 

Model Estimate 

(Z) 

Bias(Z) Var(Z) PRE(Z) 

(%) 

Privacy level 

Δz 

Combined δz = 

Var(Z)/Δz 

Y 0.0689 0 0.00193040 100 0.00 NA 
 0.0520 0.517333 0.00146016 132.2047 0.2101 0.0073008 

AZZ

( )11

AZZ

( )12

AZZ

( )21

AZZ

( )22

AZZ

AZZ
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Proposed C-RRT Models 

 

0.0358 0.205333 0.00131504 146.7940 0.3544 0.0046144 

 

0.0450 0.293333 0.00136667 141.2484 0.4850 0.00333333 

 

0.0415 0.381333 0.00141504 136.4202 0.6152 0.00248468 

 

0.0380 0.469333 0.00146016 132.2047 0.8111 0.0018252 

 

Table 4: Estimated Rates of HPV for Different RRT Models 

Model Estimate 

(Z) 

Bias(Z) Var(Z) PRE(Z) 

(%) 

Privacy level Δz Combined δz = 

Var(Z)/Δz 

Y 0.3616 0 0.00191748 100 0.00 NA 
 0.2066 0.1773333 0.00157696 121.5934 0.1980 0.007964 

Proposed C-RRT Models 

 

0.2521 0.135333 0.00144424 132.7674 0.3499 0.004128 

 

0.2509 0.193333 0.00146667 130.7370 0.5011 0.002927 

 

0.2561 0.251333 0.00144244 132.9331 0.6504 0.002218 

 

0.2480 0.309333 0.00146963 130.4737 0.7991 0.001839 

 

Table 2 shows that all proposed C-RRT models yield 

lower variance and higher efficiency than the baseline 

estimator Y. The PRE values increase steadily from 109% 

at Δz = 0.20 to over 153% at Δz = 0.80, indicating 

substantially improved precision of the estimates. 

Although bias increases with higher privacy levels, the 

corresponding reductions in variance more than 

compensate, making the proposed estimators more 

efficient overall. The combined δz values also decline 

across increasing Δz, showing that the cost of maintaining 

privacy becomes smaller in relation to variance. Overall, 

the proposed models provide more precise Syphilis rate 

estimates while ensuring stronger privacy protection. 

In Table 3, the proposed C-RRT models again outperform 

the baseline Y in terms of efficiency. Variance decreases 

across all models, yielding PRE values ranging from 

132% to nearly 147%, demonstrating substantial 

precision gains. Small increases in bias are observed as 

privacy levels rise, yet the improved variance results in 

consistently higher efficiency than the baseline. The 

combined δz values also fall with increasing Δz, showing 

that variance is reduced more efficiently per unit of 

privacy. These results confirm that the proposed C-RRT 

approach provides a more accurate and privacy-

preserving method for estimating Gonorrhea prevalence. 

Table 4 indicates that the proposed C-RRT models 

improve estimator performance for HPV compared with 

the baseline method. Variance decreases across all 

privacy levels, with PRE values ranging from 

approximately 122% to 133%, signifying enhanced 

estimator efficiency. Although bias increases slightly at 

higher Δz values, these increases are modest relative to 

the reduction in variance. The combined δz metric 

consistently decreases across models, demonstrating that 

greater privacy is achieved with reduced variance cost. 

Thus, the proposed models yield more efficient and 

privacy-enhancing estimates of HPV rates. 

Across all three sensitive conditions examined, Syphilis, 

Gonorrhea, and HPV, the proposed C-RRT models 

consistently outperform the baseline estimator in terms of 

statistical efficiency and privacy preservation. In every 

case, the models achieve lower variance and higher PRE 

values, demonstrating substantial gains in precision over 

the traditional method. Although bias increases gradually 

with higher privacy levels, the reduction in variance more 

than offsets this effect, resulting in overall more efficient 

estimators. The declining combined δz values further 

show that enhanced privacy can be achieved with 

proportionally lower variance cost. Collectively, these 

results confirm that the proposed C-RRT framework 

provides a more reliable, accurate, and privacy-protective 

approach for estimating sensitive population proportions. 

 

Empirical Study with Simulated Data 

In this subsection, simulation studies were carried out 

using various probability distributions listed in Table 5 to 

evaluate the performance of the proposed models in 

comparison to existing ones. Data comprising 1,000 units 

was generated, and a sample of 100 units was drawn using 

simple random sampling without replacement. This 

sample was used to calculate the biases, efficiency, 

( )11

AZZ

( )12

AZZ

( )21

AZZ

( )22

AZZ

AZZ

( )11

AZZ

( )12

AZZ

( )21
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( )22

AZZ
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percentage relative efficiency, privacy level, and a 

combined metric for efficiency and privacy of the 

estimators based on equations (3.61), (3.62), (3.63), 

(3.64), and (3.65) respectively (Audu et al., 2025a). The 

sampling and computation procedures were executed 100 

times, and the averages of the results are presented in 

Tables 6, 7, and 8. 

( ) ( )ZBias Z E Z = −                           3.61 

  ( ) ( )
2

ZVar Z E Z = −                                    3.62 

( )
( )

( )
100

Var Y
PRE Z

Var Z
=                                    3.63 

( )
2

Z E Z Y = −                                           3.64 

( ) /Z ZVar Z =                                                                   3.65      

 

 

Table 5: Distributions of Non-linear Populations used for Empirical Study

 

Population Auxiliary variable x  Study variable y  

I ( )exp 0.1X  ( )

( )

( ) ( )

, 0,1 ,

4,1.5 ,

0,5 , 1,0.5

i i iY X N

J N

S N T N

 = +

 

 

II ( )log 10,11X normal  

III ( )6,7X chisq  

  

Table 6: Bias, Var, PRE, Privacy Level and Combined Metric using Population I 

Models Bias(Z) Var(Z) PRE(Z) Δz Var(Z)/Δz 

 

 7.299543e+12 4.529377e+27 100 0 NA 

 1.831185e-16 180.514 2.509156e+27 4.529377e+27 3.985404e-26 

 -1.07544e-16 112.4349 4.028445e+27 4.529377e+27 2.482347e-26 

 -7.16094e-17 2116.27 2.140264e+26 4.529377e+27 4.67232e-25 

 5.680222e-16 112.2407 4.035413e+27 4.529377e+27 2.478061e-26 

 5.080051e-16 255.3566 1.773746e+27 4.529377e+27 5.637787e-26 

 

 7.299543e+12 4.529377e+27 100 0 NA 

 -5.77611e-16 319.7524 1.416526e+27 4.529377e+27 7.059523e-26 

 -2.75439e-16 232.8546 1.945152e+27 4.529377e+27 5.140986e-26 

 -1.50435e-16 38086.42 1.189237e+25 4.529377e+27 8.408754e-24 

 3 8.9737e-16 232.8119 1.94551e+27 4.529377e+27 5.140041e-26 

 7.547261e-16 309.8074 1.461998e+27 4.529377e+27 6.839956e-26 

 

 7.299543e+12 4.529377e+27 100 0 Not Applicable 

 -3.68178e-16 219.6642 2.061955e+27 4.529377e+27 4.849767e-26 

 8.35495e-16 129.0946 3.508572e+27 4.529377e+27 2.850162e-26 

 1.776357e-15 9961.54 4.546864e+25 4.529377e+27 2.199318e-24 

 7.5405e-16 127.253 3.559347e+27 4.529377e+27 2.809504e-26 

 3.152686e-16 255.0971 1.77555e+27 4.529377e+27 5.632057e-26 

 

0.3, 0.5W A= =

Y
AZZ
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( )21
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0.5, 0.3W A= =
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 7.299543e+12 4.529377e+27 100 ] 0 NA 

 4.531943e-16 358.6833 1.262779e+27 4.529377e+27 7.919042e-26 

 -4.00053e-16 277.88 1.629976e+27 4.529377e+27 6.135061e-26 

 -1.12334e-15 19599.4 2.310977e+25 4.529377e+27 4.327173e-24 

 2.661673e-16 277.2384 1.633748e+27 4.529377e+27 6.120895e-26 

 -6.29991e-16 337.4567 1.34221e+27 4.529377e+27 7.450399e-26 

  

Table 7: Bias, Var, PRE, Privacy Level and Combined Metric using Population II 

Models  Bias(Z) Var(Z) PRE(Z)  Δz Var(Z)/Δz 

                                                    

  -0.00026328 4.476094e+27  100 0 NA 

 0.0004030609 4.47673e+27  99.98578 9.058257e+27  0.4942154 

  -0.00906253 3.565306e+23  1255458 6.366575e+28  5.600038e-06 

  -0.00999999 9.462385e+23  473040.7 6.504376e+28  1.454772e-05 

  -0.00812502 3.564887e+23  1255606 6.367721e+28  5.598371e-06 

 -0.01531239 6.611139e+23  677053.4 6.270543e+28  1.054317e-05 

                                                     

  -0.00026328 4.476094e+27 100 0 NA 

  -0.00014373 4.474655e+27 100.0321 9.056971e+27 0.4940565 

 0.002499977 5.513141e+22 8118953 6.366737e+28  8.659289e-07 

 0.01750645 3.677421e+28  12.17183 9.261665e+29  0.03970583 

  -0.01468749 5.512559e+22  8119811 6.367163e+28  8.657794e-07 

 0.006562519 9.772713e+22  4580196 6.330723e+28  1.543696e-06 

                                                    

  -0.00026328 4.476094e+27  100  0 NA 

 0.0001295567 4.474655e+27 100.0321 9.056682e+27 0.4940722 

  -0.00718751 5.513111e+22  8118997 6.366736e+28 8.659243e-07 

  0.02750168 3.677303e+28 12.17222 9.26145e+29  0.03970548 

  -0.00718751 5.512529e+22  8119856 6.367163e+28 8.657747e-07 

 0.01374997 9.772622e+22  4580238 6.330723e+28 1.543682e-06 

                                                     

  -0.00026328 4.476094e+27  100  0 NA 

  -0.00034432 4.476732e+27 99.98574 9.058519e+27 0.4942013 

  0.01124999 3.565164e+23 1255508 6.36657e+28  5.59982e-06 

  0.03251009 1.089108e+28 41.0987 4.032355e+29  0.02700923 

 0.015625 3.564743e+23  1255657 6.367718e+28 5.598149e-06 

  -0.01531237 6.617826e+23 676369.2 6.270432e+28 1.055402e-05 
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Table 8: Bias, Var, PRE, Privacy Level and Combined Metric using Population III 

Models  Bias(Z) Var(Z) PRE(Z)  Δz Var(Z)/Δz 

                                                    

 7.299543e+12 4.529377e+27 100  0 NA 

 4.355565e-16  119.2031 3.799715e+27 4.529377e+27  2.631776e-26 

 -1.86188e-16 71.8418 6.304654e+27 4.529377e+27  1.58613e-26 

  1.55986e-16 5369.386 8.435558e+25 4.529377e+27  1.185458e-24 

 -8.71495e-16 71.35882 6.347326e+27 4.529377e+27 1.575467e-26 

 1.044859e-15  3326.1 1.361768e+26 4.529377e+27 7.343394e-25 

                                                     

 7.299543e+12 4.529377e+27 100  0 NA 

  -3.97807e-16  228.1726 1.985066e+27 4.529377e+27 5.037616e-26 

  -2.22045e-16  192.0604 2.358309e+27 4.529377e+27  4.240327e-26 

  6.83655e-16  3247.029 1.39493e+26 4.529377e+27  7.16882e-25 

  1.88738e-16 191.0332 2.370989e+27 4.529377e+27 4.217649e-26 

  -1.86864e-16 569.8508 7.948356e+26 4.529377e+27 1.258122e-25 

                                                    

 7.299543e+12 4.529377e+27  100  0 NA 

 -6.98955e-16 150.1174 3.017223e+27 4.529377e+27 3.314306e-26 

 7.642498e-16  114.0262 3.972225e+27 4.529377e+27  2.51748e-26 

 1.126078e-15  5177.384 8.74839e+25 4.529377e+27  1.143068e-24 

  -6.69603e-18  113.4922 3.990916e+27 4.529377e+27 2.505691e-26 

  5.09523e-16 215.4256 2.102525e+27 4.529377e+27  4.756186e-26 

                                                     

 7.299543e+12 4.529377e+27 100  0 NA 

  -2.57901e-16  250.9048 1.805217e+27 4.529377e+27  5.5395e-26 

 4.079723e-16  221.2411 2.047258e+27 4.529377e+27  4.884582e-26 

  2.23762e-15 7547.57 6.001106e+25 4.529377e+27  1.666359e-24 

 4.611589e-16  221.194 2.047694e+27 4.529377e+27  4.883541e-26 

  -1.57155e-15  2079.078 2.178551e+26 4.529377e+27  4.590207e-25 

 

Table 6, 7 and 8 show the results of the Bias, variances, 

percentage relative efficiency (PRE), privacy level and 

combined metric of efficiency and privacy level of 

Azeem et al. (2024) and proposed C-RRT models for 

populations I, II and III respectively for 

0.3, 0.5W A= = , 0.5, 0.3W A= = , 

0.5, 0.7W A= =  and 0.7, 0.5W A= = . At 

0.3, 0.5W A= =  and 0.5, 0.3W A= = , the results 

revealed that the proposed models , , , 

 with exception of few cases, have minimum 

variance, higher PRE, higher privacy level, and minimum 

combined metric of efficiency and privacy level as 

compared to . This implies that models , , 

 are better models as compared to   with the 
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evidence of minimum combined metric of efficiency and 

privacy level . 

CONCLUSION 

This study proposed Calibrated Randomized Response 

Techniques for the Estimation of Quantitative Sensitive 

Variable Information by modifying RRT models 

proposed by Azeem et al. (2024). The existing RRT 

Models were improved by incorporating non-sensitive 

auxiliary variable that is correlated to the sensitive 

variable through calibration approach. The models of the 

proposed calibration schemes were derived. The 

estimators for the population mean, along with their 

theoretical properties such as variance, privacy level, and 

a combined metric for efficiency and privacy, were 

derived to evaluate their efficiency, precision, and 

robustness in estimating sensitive information. The 

proposed models were applied to SITs data, and their 

performance was assessed. An empirical study using 

simulated data, as detailed in section 4, was conducted 

numerically. The results indicated that the proposed C-

RRT models outperformed the existing RRT models 

under consideration, except in a few instances. This 

suggests that incorporating auxiliary information through 

the calibration approach improved the robustness and 

performance of the proposed models. Consequently, it 

can be concluded that the C-RRT models demonstrated a 

better goodness of fit compared to their counterparts. 

This study is limited to incorporation of auxiliary variable 

into RRT models proposed by Azeem et al. (2024) 

through calibration approach; however, other approaches 

like two-step calibration, power calibration and calibrated 

maximum likelihood design weight approaches can be 

used for further studies. 
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