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ABSTRACT

This research explores the extended (3+1)-dimensional Kairat—Il equation by
employing the logistic equation method and the modified Kudryashov approach.
The Kairat family of equations is notable for capturing second-order
spatiotemporal dispersion and group velocity dispersion, which are significant in
the study of curve differential geometry and various equivalence relations. The
extended form of the equation introduces three additional linear diffusion terms,
enriching the physical phenomena already described by the original model. This
work presents a range of solitary wave solutions, including their propagation
patterns, by applying hyperbolic and trigonometric function-based solutions.
These include multiple breather, kink, and other essential wave structures
relevant to optical fiber technology, signal processing, and telecommunication
systems. Additionally, 3D, 2D, contour and polar coordinate plots are provided
to visually represent the analytical soliton dynamics within the extended Kairat
equation. The obtained solutions offer new perspectives in fields such as optical
communication, fiber optics, oceanography, and quantum mechanics.
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INTRODUCTION

Nonlinear integrable partial differential equations
(NLIPDEs) are important in many branches of
mathematics and research because of their intricate
mathematical structures and many practical applications
(Gupta et al 2023; Wazwaz, 2024) NLIPDEs are being
studied within the framework of soliton theory due to
their ability to represent complex nonlinear events,
mathematical sophistication, and physical applicability. It
has been found that soliton solutions provide a correct
explanation for a wide range of physical phenomena, such
as plasma waves, water waves, and optical pulses in fibres
(Ullah et al 2023; Saifullah et al 2024;Wazwaz, 2023).
NLIPDEs are often the source of soliton solutions.
Analytical solutions are necessary to fully analyse
dynamics and apply them to real-world problems (Ali et
al 2023; (Javed et al 2024). Over time, numerous effective
methods have been created to construct analytical
solutions for NLIPDEs. Several scholars have used
techniques such as the planner dynamical scheme (Javed
et al.,, 2023), the modified Tanh method (Wang et al.,
2016), the bilinear approach (Gu et al., 2023), the
generalized Kudryashov technique (Kumar et al., 2023),
Tanh-coth method (Balili, 2024), sine-cosine method
(Balili, 2024), new extended direct algebra method
(Yusuf et al., 2025), logistic equation and exponential
rational function methods (Balili et al., 2024), Tanh-coth
method (Bello et al., 2024), sine-cosine method

(Muhammad et al., 2024) and sine-cosine method
(Muhammad et al., 2025), the exponential rational
function approach (Wazwaz et al 2023; Zhu et al
2024), separation of variable method (Zhu et al., 2023),
generalized extended function method (Kai et al.,
2022) and the logarithmic transformation approach
(Zhu et al., 2023). The extensive literature on the issue
of many types of soliton solutions, such as kink, dark,
and periodic solitons (Parasuraman, 2023). Various
authors have studied soliton solutions and chaotic
behaviour in a nonlinear Schrédinger model with a
random potential (Ali et al., 2024), regularized long-
wave equation (Kai et al.,, 2022) and complex
Ginzburg-Landau equation (Zhu et al., 2024).

In this study, we explore the complex evolutionary
dynamics embedded within the Kairat-1l model
(Awadalla et al., 2023). This model characterizes the
surface geometry of curves and has applications in
various fields, including quantum mechanics, optical
fiber systems, and optical communication technologies
(Igbal et al., 2024; Igbal et al., 2024 and (Wazwaz,
2024).

The classical integrable form of the Kairat-1l model is
given as (Myrzakulova et al., 2023):

vxt + vxxxt - thvxx - 4vxvxt =0, (1)
The main objective of this work is to investigate
certain dynamic behaviors of the extended (3+1)-
dimensional Kairat-11 equation (eKairat- 1IE) that have
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not been adequately addressed in the existing literature.
These include utilizing logistic equation and modified
Kudryashov methods (LEM and MKM) to construct the
exact travelling wave solutions of (eKairat- IIE).

The extended (3+1)-dimensional Kairat-1l equation is
formulated as:

Vxxxt - 4vxvxt + vxt - thvxx + ﬁlvxx + lgzvxy +

ﬁ3vxz =0. (2)

Where V,V,.and V,V,, represent nonlinear terms,
andg;, f,and B; are positive real parameters.

The structure of the paper is organized as follows: Section
2 presents a concise overview of the LEM and MKM
methods. Section 3 introduces the mathematical analysis
for the solution of (eKairat-11E). Section 4 Applications of
the proposed methods are discussed. Section 5 presents
results and graphical discussion. Section 6 concludes the
paper by summarizing the key findings.

MATERIALS AND METHODS

PROPOSED SCHEMES

Analysis of the Logistic Equation Method (LEM)

In this section logistic equation method will be explained
in details (Balili et al., 2024).

Let us consider the NLPDE

P(u, Up, Uy, Uy Uy, ) =0, 3)
Where the function u = u(x, y, z, t) represents an
unknown function in the given context. In order to
proceed, we have to introduce a wave transformation as
follows:

u(x,y,z,t) =U(),where E =x+y+z—wtw #0
(wave speed) 4
Stepl.Transform NPDE to ODE using Eg. (4) as
Q,u,u",..)=0, (5)
Step 2. Assume that Eq. (5) has the following solution
U@) =co+ 21N, ¢, #0, (6)
Where ¢; fori = 0,1,2, ..., n are constants, and N (&)
satisfies the following logistic equation;

N'@) = 5N (1-52), (7)
Step 3. Impose the homogeneous balancing method on
the highest order derivative of U and the highest order
nonlinear term in the Eq. (5) and we can gain the integer
n of Eq. (6). Applying Eqg. (6) and Eq. (7) to Eq. (5), we
are able to acquire an algebraic system through the
coefficients of N with same order. Utilizing the results of
the algebraic system, we can obtain the values of

¢i, So and s; and related restriction conditions.

Step 4. By substituting the results of the previous steps
into Eq. (6) and applying the general solutions of Eq. (7)
as follows:

NE) = @)

1+asiexp(—soé)’
Provided a,s,, and s, are arbitrary constants, we can
achieve closed form solutions of Eq. (5)
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Analysis of the Modified Kudryashov Method
(MKM)

The modified Kudryashov method involves the
following steps in solving the nonlinear partial
differential equation (NLPDE) (Hosseini, et al., 2017,
Seadawy et al., 2018):

Step 1. Consider the given NLPDE of the following
form u =u(x,y,zt):

?(u, Up, Uy Upp, Useyy Uy, Uyy ) Uz, ) =0. 9)
Step 2. Applying the wave
transformation u(x,y,z,t) = U(2), in Eq. (9), where :
z=u(x+y+z—At). (10)
Here, u is the wave variable and A is the velocity;
both are non-zero constants. Eq. (9) transforms to the
following ordinary differential equation (ODE):
Q,u',u",ul’,..) =0, (11)
Where the prime denotes the derivative with respect to
z.

Step 3. Let the initial solution of Eq. (11) assume to be,
U() = ZX,2,Q'(2), (12)
Where N is a non-zero and positive constant,
calculated by the principle of homogeneous balancing
of Egq. (11), a;;i=0,1,2,... are unknowns to be
determined and Q(z) is the solution of the following
auxiliary ODE:

2 — (@ - 1).In(@);a # 1, 13)
0@ = o (14)

Where D is the integral constant and we assume D = 1.

Step 4. Substituting Egs. (12) - (13) in Eq. (11) leads

to the polynomial in (2)}; i =0,1,2,.... As Q(2)' # 0,

so collecting its coefficients and then equating to zero

gives the systems of overdetermined algebraic

equations, which upon solving give the unknowns of

Eg. (12) and Eq. (14).

Step 5. Finally, substituting the values of step 4 in Eq.

(14) and then in Eg. (12) gives the solution U(z) of Eq.

(112).

MATHEMATICAL ANALYSIS (eKairat-11E)

To extract the solution of Eq. (2), we start as follows:

Using the following wave transformation

V(x,y zt) =B(0),0 =x+y+z—wt.
Where @ is the wave’ speed and B(p) is a real

function.

The Eq. (2) reduces to ordinary differential equation

(ODE):

—wB"" +3w(B)> + (B + B, + B — @)V =0.

(16)

The prime above means the derivative w.r.t. ¢ .Eq. (16)

is the reduced ODE.

(15)

RESULTS AND DISCUSSION

Exact Solutions of the extended (3+1) Dimensional
Kairat Il Equation (eKairat- IIE) Using Logistic
Equation Method (LEM)
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In this section, the solution of extended Kairat Il (eKairat- N?2(p): 3ciwsisi + 7c,ws$s? — 1¢1SoSE —

1IE) using logistic equation method Eq. (2) will be B2C1S0SE — B3C1SoSE + cywsysE =0, (20)
discussed. N(o): — ws3S? + B1¢1SoSE + BrciSoSt +
Now to solve Eq. (16) by applying (LEM). BsC15058 — cymsysi = 0. (21)
By homogeneous balancing principle between Solving the above system of algebraic equations, we
B"and (B')? one obtains the value of n = 1 in Eq. (16).  get

Assuming Eq. (16) has the following form: = o = 20 o BitBaths

B(e) = ¢ + ;N (o), 17) ° o s s3+1

Where N(p) satisfy Eq. (7) with value Eq. (8). (22)

By substituting Eq. (17) and its derivatives in Eq. (16), we

obtain the following system of algebraic equations as By inserting these values Eq. (22) into Eqg. (17) and

using the definition of N(o) (Eg. (8), the following

follows:

N*(p): 3ctwsés, + 6c,msé =0, (18)  solutions are extracted for Eq. (16).

N3(0): —6ctwsés? —12c,wsds, = 0, (19) U(p) = % (23)
1

Where o = x +y + z — wt.
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Figure 1. The graphical representation of u, ; (x,y,z,t), EQ.(23) with values a = 2,¢, =1,¢; = 2,5 = 1,5, =
2,w=3,8=2,B,=2,63 =2,y =1,z = 1.(a) 3D surface, (b)Contour plot, (c)2D slice, (d)Polar coordinate
plot
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Exact Solutions for the extended (3+1) Dimensional
Kairat Il Equation (eKairat- IIE) Using Modified
Kudryashov Method (MK M)

In this section, the solution of (eKairat- IIE) using
(MKM) method will be explained.

Solving Eq. (16) by applying (MKM)

We assume the solution to be in this form:

B(e) = ny + 1, M(0),

Where M () satisfy Eq. (13) with value Eq. (14).
By substituting Eq. (24) into Eqg. (16), we obtain the
following system of equations as follows:
M(0)*: — 6wn, In(a)® + 3wn?In(a)? = 0,
M (0)3: 12wn, In(a)® — 6wn?In(a)? =0,
M(0)?: — 7on, In(a)® + 3In(a)? wn? +
In(a) B;n, + In(a) 7, + In(a) B3n, —In(a) wn, =

(24)

(25)
(26)
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0,

@7)

M (0):wnyIn(a)’® + In(a) fyn, — In(a) fony —
In(a) B3n, + In(a) wn, = 0.

(28)
Solving the above system of equations, we obtain
Ny =Ny, N, = 21In(a), w = % (29)

Inputting the above values in Eq. (34) we get the

solutions
2In(a)

uZ,l (x:}’: Z, t) = /n’O + 1+Cal’ (30)
1
Uy, (X, y,2,t) =ny + % (31)

Where o =x+y + z — wt.
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Figure2. (a)
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Figure 2. The graphical illustration of solution u,; (x,y,zt), Eq.(30) with values a =2,n,=1,C =1,w =

6

m’ﬁl =2,B,=2,8;=2,y=1,z=1. (a) 3D plot, (b)Contour plot, (c) 2D, (d)Polar coordinate plot.
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Figure 3. The graphical illustration of solution u,, (x,y, z,t), Eq.(31) with values a = 2,7, =1,C = 1,w =

6

1+In(2)2’

The logistic equation method (LEM) and the modified
Kudryashov Method (MKM) have been applied to
construct exact travelling wave solutions for the extended
Kairat 1lE (eKairat -IIE) utilizing two analytical
techniques: the Modified Kudryashov method (MKM)
and the logistic equation method (LEM) with the aid of
Maple 19 software. Several non-trivial solutions were
acquired through both methods, presented in Eq. (23) for
LEM and Egs. (30) — (31) for MKM. Numerical
simulations were demonstrated for the solutions from
both methods.

Figures 1 through 3

illustrate various graphical

B =2,8,=2,B3=2,y=1,z=1. (a) 3D plot, (b)Contour plot, (c)2D, (d)Polar coordinate plot.

representations of these solutions. In each figure: (a)
shows the 3D surface plot, (b) displays the contour
plot, (c) presents the 2D profile, and (d) provides the
corresponding polar coordinate plot, highlighting the
solution behavior under different parameter settings.
Figure 1. Presents the structures of solution
uy 1 (x,y,2t), Eq. (23) which exhibits dark multiple
solitons for a =2,¢cy =1,¢;, =2,5=1,5, =2,m =
3.60=2,B8,=2,3=2,y=1,z=1.

Figure 2. Shows the solution u,, (x,y,z,t), from Eq.
(30), also illustrating kink solitons behaviour with
parametr valuesa=2,n1,=1,C=1,@ =
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6
m,ﬂl = Z'BZ = 2,B3 = Z,y = 1,Z =1. .
Figure 3. Depicts solution u,, (x,y, z, t),with parameter

6
valuesa = 2,7, =1,C =1,@w = m,ﬁl =20, =

2,B8; =2,y =1,z = 1. From Eq. (31), revealing multiple
solitons structures with identical parameter values.

The extracted solutions encompass rational and
exponential function forms. Their physical properties and
dynamics are effectively visualized through the above
mentioned graphs, showing the influence of varying
parameter values on the solution profiles as depicted in
Figures 1-3.

CONCLUSION

In this study, new solutions of the nonlinear extended
Kairat Il equation is obtained using the logistic equation
method (LEM) and the modified Kudryashov Method
(MKM). By assigning arbitrary values to the free
parameters, a variety of solution types were obtained,
including rational and exponential functions. The results
testify that both techniques are effective and reliable. This
work demonstrates the power and efficiency of the
logistic equation method and the modified Kudryashov
method in generating exact analytical solutions for a
broad type of nonlinear equations. Furthermore, the
approaches are adaptable and can be extended to solve
other complex nonlinear models encountered in
mathematical physics, fiber optics, and plasma physics to
mention a few.
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