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ABSTRACT 
This research explores the extended (3+1)-dimensional Kairat–II equation by 

employing the logistic equation method and the modified Kudryashov approach. 

The Kairat family of equations is notable for capturing second-order 

spatiotemporal dispersion and group velocity dispersion, which are significant in 

the study of curve differential geometry and various equivalence relations. The 

extended form of the equation introduces three additional linear diffusion terms, 

enriching the physical phenomena already described by the original model. This 

work presents a range of solitary wave solutions, including their propagation 

patterns, by applying hyperbolic and trigonometric function-based solutions. 

These include multiple breather, kink, and other essential wave structures 

relevant to optical fiber technology, signal processing, and telecommunication 

systems. Additionally, 3D, 2D, contour and polar coordinate plots are provided 

to visually represent the analytical soliton dynamics within the extended Kairat 
equation. The obtained solutions offer new perspectives in fields such as optical 

communication, fiber optics, oceanography, and quantum mechanics.   
 

 

INTRODUCTION 
Nonlinear integrable partial differential equations 

(NLIPDEs) are important in many branches of 

mathematics and research because of their intricate 

mathematical structures and many practical applications 

(Gupta et al 2023; Wazwaz, 2024)  NLIPDEs are being 
studied within the framework of soliton theory due to 

their ability to represent complex nonlinear events, 

mathematical sophistication, and physical applicability. It 

has been found that soliton solutions provide a correct 

explanation for a wide range of physical phenomena, such 

as plasma waves, water waves, and optical pulses in fibres  

(Ullah et al 2023; Saifullah et al 2024;Wazwaz, 2023). 

NLIPDEs are often the source of soliton solutions. 

Analytical solutions are necessary to fully analyse 

dynamics and apply them to real-world problems (Ali et 

al 2023; (Javed et al 2024). Over time, numerous effective 

methods have been created to construct analytical 

solutions for NLIPDEs. Several scholars have used 

techniques such as the planner dynamical scheme (Javed  

et al., 2023), the modified Tanh method (Wang et al., 

2016), the bilinear approach (Gu et al., 2023), the 

generalized Kudryashov technique (Kumar et al., 2023), 
Tanh-coth method (Balili, 2024), sine-cosine method 

(Balili, 2024), new extended direct algebra method 

(Yusuf et al., 2025), logistic equation and exponential 

rational function methods (Balili et al., 2024), Tanh-coth 

method (Bello et al., 2024), sine-cosine method  

 

 

 

 

 

 

(Muhammad et al., 2024) and sine-cosine method 

(Muhammad et al., 2025), the exponential rational 

function approach (Wazwaz et al 2023; Zhu et al 

2024), separation of variable method (Zhu et al., 2023), 

generalized extended function method (Kai et al., 

2022) and the logarithmic transformation approach 
(Zhu et al., 2023). The extensive literature on the issue 

of many types of soliton solutions, such as kink, dark, 

and periodic solitons (Parasuraman, 2023). Various 

authors have studied soliton solutions and chaotic 

behaviour in a nonlinear Schrödinger model with a 

random potential (Ali et al., 2024), regularized long-

wave equation (Kai et al., 2022) and complex 

Ginzburg-Landau equation (Zhu et al., 2024). 

In this study, we explore the complex evolutionary 

dynamics embedded within the Kairat-II model 

(Awadalla et al., 2023). This model characterizes the 

surface geometry of curves and has applications in 

various fields, including quantum mechanics, optical 

fiber systems, and optical communication technologies 

(Iqbal et al., 2024; Iqbal et al., 2024 and (Wazwaz, 

2024). 

The classical integrable form of the Kairat-II model is 
given as (Myrzakulova et al., 2023): 

𝒱𝑥𝑡 + 𝒱𝑥𝑥𝑥𝑡 − 2𝒱𝑡𝒱𝑥𝑥 − 4𝒱𝑥𝒱𝑥𝑡 = 0,                      (1) 

The main objective of this work is to investigate 

certain dynamic behaviors of the extended (3+1)-

dimensional Kairat-II equation (eKairat- IIE) that have  
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not been adequately addressed in the existing literature. 

These include utilizing logistic equation and modified 

Kudryashov methods (LEM and MKM) to construct the 

exact travelling wave solutions of (eKairat- IIE). 

The extended (3+1)-dimensional Kairat-II equation is 

formulated as: 

𝒱𝑥𝑥𝑥𝑡 − 4𝒱𝑥𝒱𝑥𝑡 + 𝒱𝑥𝑡 − 2𝒱𝑡𝒱𝑥𝑥 + 𝛽1𝒱𝑥𝑥 + 𝛽2𝒱𝑥𝑦 +

𝛽3𝒱𝑥𝑧 = 0.                                                                    (2) 

 

Where 𝒱𝑥𝒱𝑥𝑡and 𝒱𝑡𝒱𝑥𝑥   represent nonlinear terms, 

and𝛽1 , 𝛽2and 𝛽3 are positive real parameters. 

The structure of the paper is organized as follows: Section 

2 presents a concise overview of the LEM and MKM 

methods. Section 3 introduces the mathematical analysis 

for the solution of (eKairat-IIE). Section 4 Applications of 

the proposed methods are discussed. Section 5 presents 

results and graphical discussion. Section 6 concludes the 

paper by summarizing the key findings. 

 

MATERIALS AND METHODS 
 

PROPOSED SCHEMES  

Analysis of the Logistic Equation Method (LEM) 
In this section logistic equation method will be explained 

in details (Balili et al., 2024). 
Let us consider the NLPDE 

𝑃(𝑢, 𝑢𝑡 , 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑥𝑥 , … ) = 0,                                      (3) 

Where the function 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) represents an 

unknown function in the given context. In order to 

proceed, we have to introduce a wave transformation as 

follows: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈(𝜉), where  𝜉 = 𝑥 + 𝑦 + 𝑧 − 𝜛𝑡𝜛 ≠ 0  

(wave speed)                                                             (4)                   
Step1.Transform NPDE to ODE using Eq. (4) as 

𝑄(𝑈, 𝑈′, 𝑈′′, … ) = 0,                                                (5) 

Step 2. Assume that Eq. (5) has the following solution 

𝑈(𝜉) = 𝑐0 + ∑ 𝑐𝑖𝑁(𝜉)𝑖 ,    𝑐𝑛 ≠ 0,𝑛
𝑖=1                       (6) 

Where 𝑐𝑖  for 𝑖 = 0,1,2, … , 𝑛 are constants, and 𝑁(𝜉) 

satisfies the following logistic equation: 

𝑁 ′(𝜉) = 𝑠0𝑁(𝜉) (1 −
𝑁(𝜉)

𝑠1
),                                   (7) 

Step 3. Impose the homogeneous balancing method on 

the highest order derivative of 𝑈 and the highest order 

nonlinear term in the Eq. (5) and we can gain the integer 

𝑛 of Eq. (6). Applying Eq. (6) and Eq. (7) to Eq. (5), we 

are able to acquire an algebraic system through the 

coefficients of 𝑁 with same order. Utilizing the results of 

the algebraic system, we can obtain the values of 

𝑐𝑖 , 𝑠0  𝑎𝑛𝑑 𝑠1 and related restriction conditions. 

Step 4. By substituting the results of the previous steps 

into Eq. (6) and applying the general solutions of Eq. (7) 

as follows: 

𝑁(𝜉) =
𝑠1

1+𝑎𝑠1exp (−𝑠0𝜉)
,                                             (8)     

Provided 𝑎, 𝑠0, 𝑎𝑛𝑑 𝑠1 are arbitrary constants, we can 

achieve closed form solutions of Eq. (5) 

Analysis of the Modified Kudryashov Method 

(MKM) 
The modified Kudryashov method involves the 

following steps in solving the nonlinear partial 

differential equation (NLPDE) (Hosseini, et al., 2017; 

Seadawy et al., 2018): 

Step 1. Consider the given NLPDE of the following 

form  𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡): 

𝒫(𝑢, 𝑢𝑡, 𝑢𝑥 , 𝑢𝑡𝑡 , 𝑢𝑥𝑥 , 𝑢𝑥𝑡 , 𝑢𝑦𝑦 , 𝑢𝑧𝑧  … ) = 0.              (9) 

Step 2. Applying the wave 

transformation  𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈(𝑧), in Eq. (9), where :  

𝑧 = 𝜇(𝑥 + 𝑦 + 𝑧 − 𝜆𝑡).                                          (10) 

Here,   𝜇 is the wave variable and 𝜆 is the velocity; 

both are non-zero constants. Eq. (9) transforms to the 

following ordinary differential equation (ODE): 

𝒬(𝑈, 𝑈′ , 𝑈′′, 𝑈𝑈′, … ) = 0,                                      (11) 

Where the prime denotes the derivative with respect to 

z. 

Step 3. Let the initial solution of Eq. (11) assume to be, 

𝑈(𝑧) = ∑ 𝑎𝑖𝑄𝑖(𝑧)𝑁
𝑖=0 ,                                            (12) 

Where 𝑁 is a non-zero and positive constant, 

calculated by the principle of homogeneous balancing 

of Eq. (11), 𝑎𝑖 ; 𝑖 = 0,1,2, … are unknowns to be 

determined and 𝑄(𝑧) is the solution of the following 

auxiliary ODE: 
𝑑𝑄(𝑧)

𝑑𝑧
= 𝑄(𝑧)(𝑄(𝑧) − 1). ln(𝑎) ; 𝑎 ≠ 1,                (13) 

𝑄(𝑧) =
1

1±𝐷𝑎𝑧,                                                        (14) 

Where 𝐷 is the integral constant and we assume 𝐷 = 1. 
Step 4. Substituting Eqs. (12) - (13) in Eq. (11) leads 

to the polynomial in (𝑧)𝑖 ;   𝑖 = 0,1,2, … . As 𝑄(𝑧)𝑖 ≠ 0, 
so collecting its coefficients and then equating to zero 

gives the systems of overdetermined algebraic 

equations, which upon solving give the unknowns of 

Eq. (12) and Eq. (14). 

Step 5. Finally, substituting the values of step 4 in Eq. 

(14) and then in Eq. (12) gives the solution 𝑈(𝑧) of Eq. 

(11). 

MATHEMATICAL ANALYSIS (eKairat-IIE) 
To extract the solution of Eq. (2), we start as follows: 

Using the following wave transformation 

𝒱(𝑥, 𝑦, 𝑧, 𝑡) = 𝔙(𝜚), 𝜚 = 𝑥 + 𝑦 + 𝑧 − 𝜛𝑡.            (15) 

  Where 𝜛 is the wave’ speed and 𝔙(𝜚) is a real 

function. 

The Eq. (2) reduces to ordinary differential equation 

(ODE): 

−𝜛𝔙′′′ + 3𝜛(𝔙′)2 + (𝛽1 + 𝛽2 + 𝛽3 − 𝜛)𝔙′ = 0.                                                     
(16)                                                                                                                                  

The prime above means the derivative w.r.t. 𝜚 .Eq. (16) 

is the reduced ODE. 

 

RESULTS AND DISCUSSION 

Exact Solutions of the extended (3+1) Dimensional 

Kairat II Equation (eKairat- IIE) Using Logistic 

Equation Method (LEM) 
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In this section, the solution of extended Kairat II (eKairat- 

IIE) using logistic equation method Eq. (2) will be 

discussed. 

Now to solve Eq. (16) by applying (LEM). 

By homogeneous balancing principle between 

𝔙′′𝑎𝑛𝑑 (𝔙′)2 one obtains the value of 𝑛 = 1 in Eq. (16). 

Assuming Eq. (16) has the following form: 

𝔙(𝜚) = 𝑐0 + 𝑐1𝑁(𝜚),                                                 (17) 

Where 𝑁(𝜚) satisfy Eq. (7) with value Eq. (8). 

By substituting Eq. (17) and its derivatives in Eq. (16), we 

obtain the following system of algebraic equations as 

follows: 

𝑁4(𝜚):        3𝑐1
2𝜛𝑠0

2𝑠1 + 6𝑐1𝜛𝑠0
3 = 0,                      (18) 

𝑁3(𝜚):  − 6𝑐1
2𝜛𝑠0

2𝑠1
2 − 12𝑐1𝜛𝑠0

3𝑠1 = 0,                (19) 

𝑁2(𝜚):      3𝑐1
2𝜛𝑠0

2𝑠1
3 + 7𝑐1𝜛𝑠0

3𝑠1
2 − 𝛽1𝑐1𝑠0𝑠1

2 −
𝛽2𝑐1𝑠0𝑠1

2 − 𝛽3𝑐1𝑠0𝑠1
2 + 𝑐1𝜛𝑠0𝑠1

2 = 0,                     (20)                                

𝑁(𝜚):               − 𝑐1𝜛𝑠0
3𝑠1

3 + 𝛽1𝑐1𝑠0𝑠1
3 + 𝛽2𝑐1𝑠0𝑠1

3 +
𝛽3𝑐1𝑠0𝑠1

3 − 𝑐1𝜛𝑠0𝑠1
3 = 0.                                        (21) 

    Solving the above system of algebraic equations, we 

get 

𝑐0 = 𝑐0,𝑐1 = −
2𝑠0

𝑠1
, 𝜛 =

𝛽1+𝛽2+𝛽3

𝑠0
2+1

  .                        

(22) 

.                                                    

By inserting these values Eq. (22) into Eq. (17) and 

using the definition of 𝑁(𝜚) (Eq. (8), the following 

solutions are extracted for Eq. (16). 

𝑈(𝜚) =
𝑎𝑐0𝑠1𝑒𝑠0𝜚+𝑐0−2𝑠0

𝑎 𝑠1𝑒−𝑠0𝜚+1
.                                          (23) 

Where 𝜚 = 𝑥 + 𝑦 + 𝑧 − 𝜛𝑡. 
 

 

 
Figure 1.  The graphical representation of  𝑢1,1 (𝑥, 𝑦, 𝑧, 𝑡), Eq.(23) with values  𝑎 = 2, 𝑐0 = 1, 𝑐1 = 2, 𝑠0 = 1, 𝑠1 =

2, 𝜛 = 3, 𝛽1 = 2, 𝛽2 = 2, 𝛽3 = 2, 𝑦 = 1, 𝑧 = 1.(a) 3𝐷 𝑠𝑢𝑟𝑓𝑎𝑐𝑒, (𝒃)𝐶𝑜𝑛𝑡𝑜𝑢𝑟 𝑝𝑙𝑜𝑡, (𝒄)2𝐷 𝑠𝑙𝑖𝑐𝑒, (𝒅)Polar coordinate 

plot 
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Exact Solutions for the extended (3+1) Dimensional 

Kairat II Equation (eKairat- IIE) Using Modified 

Kudryashov Method (MKM) 
In this section, the solution of (eKairat- IIE) using 

(MKM) method will be explained. 

Solving Eq. (16) by applying (MKM)  

We assume the solution to be in this form: 

𝔙(𝜚) = 𝓃0 + 𝓃1ℳ(𝜚),                                             (24) 

Where ℳ(𝜚) satisfy Eq. (13) with value Eq. (14). 

By substituting Eq. (24) into Eq. (16), we obtain the 

following system of  equations as follows: 

ℳ(𝜚)4 : − 6𝜛𝓃1 ln(𝑎)3 + 3𝜛𝓃1
2 ln(𝑎)2 = 0,         (25) 

ℳ(𝜚)3: 12𝜛𝓃1 ln(𝑎)3 − 6𝜛𝓃1
2 ln(𝑎)2 = 0,           (26) 

ℳ(𝜚)2 : − 7𝜛𝓃1 ln(𝑎)3 + 3 ln(𝑎)2 𝜛𝓃1
2 +

ln(𝑎) 𝛽1𝓃1 + ln(𝑎) 𝛽2𝓃1 + ln(𝑎) 𝛽3𝓃1 − ln(𝑎) 𝜛𝓃1 =

0,                                                                                
(27)                                                                                        

ℳ(𝜚): 𝜛𝓃1 ln(𝑎)3 + ln(𝑎) 𝛽1𝓃1 − ln(𝑎) 𝛽2𝓃1 −
ln(𝑎) 𝛽3𝓃1 + ln(𝑎) 𝜛𝓃1 = 0.                                  
(28) 

Solving the above system of equations, we obtain  

𝓃0 = 𝓃0, 𝓃1 = 2 ln(𝑎) , 𝜛 =
𝛽1+𝛽2+𝛽3

1+ln(𝑎)2                    (29) 

Inputting the above values in Eq. (34) we get the 

solutions  

𝑢2,1(𝑥, 𝑦, 𝑧, 𝑡) = 𝓃0 +
2ln (𝑎)

1+𝐶𝑎𝜚,                                 (30) 

𝑢2,2(𝑥, 𝑦, 𝑧, 𝑡) = 𝓃0 +
2ln (𝑎)

1−𝐶𝑎𝜚,                                  (31)          

Where  𝜚 = 𝑥 + 𝑦 + 𝑧 − 𝜛𝑡. 
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Figure 2.  The graphical illustration of solution 𝑢2,1 (𝑥, 𝑦, 𝑧, 𝑡), Eq.(30) with values  𝑎 = 2, 𝓃0 = 1, 𝐶 = 1, 𝜛 =

6

1+ln(2)2 , 𝛽1 = 2, 𝛽2 = 2, 𝛽3 = 2, 𝑦 = 1, 𝑧 = 1.  (a) 3𝐷 𝑝𝑙𝑜𝑡, (𝒃)𝐶𝑜𝑛𝑡𝑜𝑢𝑟 𝑝𝑙𝑜𝑡, (𝒄) 2𝐷, (𝒅)Polar coordinate plot. 
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Figure 3.  The graphical illustration of solution 𝑢2,2 (𝑥, 𝑦, 𝑧, 𝑡), Eq.(31) with values  𝑎 = 2, 𝓃0 = 1, 𝐶 = 1, 𝜛 =

6

1+ln(2)2 , 𝛽1 = 2, 𝛽2 = 2, 𝛽3 = 2, 𝑦 = 1, 𝑧 = 1.  (a) 3𝐷 𝑝𝑙𝑜𝑡, (𝒃)𝐶𝑜𝑛𝑡𝑜𝑢𝑟 𝑝𝑙𝑜𝑡, (𝒄)2𝐷, (𝒅)Polar coordinate plot. 

 

The logistic equation method (LEM) and the modified 

Kudryashov Method (MKM) have been applied to 

construct exact travelling wave solutions for the extended 
Kairat IIE (eKairat -IIE) utilizing two analytical 

techniques: the Modified Kudryashov method (MKM) 

and the logistic equation method (LEM) with the aid of 

Maple 19 software. Several non-trivial solutions were 

acquired through both methods, presented in Eq. (23) for 

LEM and Eqs. (30) – (31) for MKM. Numerical 

simulations were demonstrated for the solutions from 

both methods. 

Figures 1 through 3 illustrate various graphical 

representations of these solutions. In each figure: (a) 

shows the 3D surface plot, (b) displays the contour 

plot, (c) presents the 2D profile, and (d) provides the 

corresponding polar coordinate plot, highlighting the 
solution behavior under different parameter settings. 

Figure 1. Presents the structures of solution 

𝑢1,1(𝑥, 𝑦, 𝑧, 𝑡), Eq. (23) which exhibits dark multiple 

solitons for 𝑎 = 2, 𝑐0 = 1, 𝑐1 = 2, 𝑠0 = 1, 𝑠1 = 2, 𝜛 =
3, 𝛽1 = 2, 𝛽2 = 2, 𝛽3 = 2, 𝑦 = 1, 𝑧 = 1. 

Figure 2. Shows the solution 𝑢2,1 (𝑥, 𝑦, 𝑧, 𝑡), from Eq. 

(30), also illustrating kink solitons behaviour with 

parametr values 𝑎 = 2, 𝓃0 = 1, 𝐶 = 1, 𝜛 =
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6

1+ln(2)2 , 𝛽1 = 2, 𝛽2 = 2, 𝛽3 = 2, 𝑦 = 1, 𝑧 = 1.  .  

Figure 3. Depicts solution  𝑢2,2 (𝑥, 𝑦, 𝑧, 𝑡),with parameter 

values𝑎 = 2, 𝓃0 = 1, 𝐶 = 1, 𝜛 =
6

1+ln(2)2 , 𝛽1 = 2, 𝛽2 =

2, 𝛽3 = 2, 𝑦 = 1, 𝑧 = 1. From Eq. (31), revealing multiple 

solitons structures with identical parameter values. 

The extracted solutions encompass rational and 

exponential function forms. Their physical properties and 

dynamics are effectively visualized through the above 

mentioned graphs, showing the influence of varying 

parameter values on the solution profiles as depicted in 

Figures 1–3. 

 

CONCLUSION 
In this study, new solutions of the nonlinear extended 

Kairat II equation is obtained using the logistic equation 

method (LEM) and the modified Kudryashov Method 

(MKM). By assigning arbitrary values to the free 

parameters, a variety of solution types were obtained, 
including rational and exponential functions. The results 

testify that both techniques are effective and reliable. This 

work demonstrates the power and efficiency of the 

logistic equation method and the modified Kudryashov 

method in generating exact analytical solutions for a 

broad type of nonlinear equations. Furthermore, the 

approaches are adaptable and can be extended to solve 

other complex nonlinear models encountered in 

mathematical physics, fiber optics, and plasma physics to 

mention a few. 
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