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ABSTRACT

Flooding remains one of the most recurrent and destructive natural hazards in
Nigeria, causing widespread socio-economic losses, displacement, and threats to
food security. Traditional hydrological models for flood risk assessment often
require extensive datasets that are not readily available in data-scarce regions.
To address this challenge, this study developed a hybrid framework that
integrates Particle Swarm Optimization (PSO) with machine learning classifiers
for flood susceptibility prediction in Nigeria. Historical flood events were
obtained from the EM-DAT disaster database, while meteorological,
topographic, hydrological, and land-use variables were extracted from multiple
geospatial sources. A number of conditioning factors, including elevation, slope,
rainfall, and distance to rivers, were used as predictors. PSO was employed for
feature selection and hyperparameter optimization to reduce redundancy and
improve model generalization. Five classifiers were implemented: k-Nearest
Neighbor (kNN), Logistic Regression (LR), Support Vector Machine (SVM),
Random Forest (RF), and Gradient Boosting (XGBoost). Results indicated that
rainfall, elevation, slope, and land use were the most influential predictors of
flood occurrence, while ensemble models, particularly XGBoost, achieved
superior performance across all evaluation metrics (Accuracy = 0.998, AUC =
1.000). The generated susceptibility maps revealed that the Niger-Benue
floodplains, central lowlands, and coastal regions are most vulnerable, posing
risks to settlements, croplands, and infrastructure. The study demonstrates that
PSO-enhanced machine learning provides a robust and scalable solution for
flood risk mapping in data-limited environments.

INTRODUCTION

Flooding, one of the most destructive natural hazards, has
surged in both frequency and severity globally, causing
mounting concern among governments and policymakers
(Huang et al., 2024; Petry et al., 2025). Escalating global
warming, rapid urban development, and river regulation
amplify flood risk across regions (Bevacqua et al., 2025;
Glasser, 2020). The societal consequences of flooding are
profound, ranging from infrastructure collapse and loss of
life to crop destruction and food insecurity, culminating
in enormous economic setbacks. In 2021 alone, floods
inflicted US $82 billion in damage worldwide.
Meanwhile, projections by the World Meteorological
Organization warn that flood exposure could more than
double by 2040, especially in Asia and Africa, as urban
populations grow unchecked (Tran et al., 2024). Flooding
refers to the overflow of water onto normally dry land due
to heavy rainfall,

snowmelt, storm surges, or failures of water management
systems, while flash floods, short-lived but highly
destructive, result from rapid rises in water levels, driven
by extreme weather and compounded by human factors
such as deforestation and poor land-use practices (Wang
etal., 2025). In Nigeria, rain-induced floods have become
recurrent hazards, particularly in the Niger Delta and
other low-lying regions. The catastrophic 2012 floods,
considered one of the worst in decades, displaced millions
and caused damages estimated at over US $17 billion,
according to the Post-Disaster Needs Assessment led by
GFDRR (Rogers et al., 2025).

Nigeria has seasonal flooding every year, but the
mortality tolls in 2022 and 2024 were very high. In 2022,
33 of Nigeria's 36 states saw what is thought to be the
worst flooding in almost a decade, resulting in over 1.3
million displaced persons and over 600 fatalities
(Aljazeera, 2025).
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In one instance in 2022, 76 people drowned when their
boat capsized on the Niger River when they were
escaping the floods (Okibe, 2025). The 2024 floods were
also particularly deadly, claiming more than 1,200 lives
and affecting at least 31 states. Among these was a flash
flood in Borno State that killed more than 150 people and
left over 400,000 refugees after the Alau Dam collapsed.
More recently, in August 2025, the National Emergency
Management Agency (NEMA) stated that the continuous
floods have caused tens of thousands of people to be
relocated across 25 states and 228 fatalities (Oluyemi,
2025).

A mix of human and natural factors contribute to
Nigeria's ongoing and worsening flooding, which is made
worse by climate change. The geographical reality of
being downstream from river systems, such as the Lagdo
Dam in Cameroon, and severe rainfall, which is
exacerbated by climate change, are examples of natural
causes. Poor urban planning, uncontrolled construction
on floodplains, insufficient or obstructed drainage
systems, and inappropriate garbage disposal are only a
few examples of human actions that greatly exacerbate
the effects (Victor, 2023). A lack of preventative
measures and policy execution frequently results in
disastrous effects for vulnerable communities, especially
in the face of repeated warnings from government
organizations such as NEMA. The frequent crises show
how urgently Nigeria must change its approach to disaster
management from one that is reactive to one that is
preventive.

Flood risk modeling has traditionally relied on physics-
based hydrological and hydraulic simulators such as
MIKE FLOOD (Jiahong Liu et al., 2020; Tuan et al.,
2024), LISFLOOD-FP (Nandi & Reddy, 2022; Rajib et
al., 2020) and HEC-HMS & HEC-RAS (Peker et al.,
2024). These models are capable of reproducing
floodplain dynamics through hydraulic equations and
watershed parameters, but they demand intensive
calibration and extensive hydro-meteorological datasets
that are often unavailable in data-scarce regions like
Nigeria. To address these constraints, researchers have
increasingly turned to data-driven models such as K-
Nearest Neighbor (KNN) (Razavi-Termeh et al., 2024),
Logistic Regression (LR) (Jurafsky & Martin, 2012),
Support Vector Machines (SVMs) (Jun Liu et al., 2021),
Random Forests (RF) (Aiyelokun et al., 2023), and
AdaBoost for flood susceptibility mapping (Demissie et
al., 2024). These approaches exploit historical flood
events and environmental predictors to estimate flood risk
more efficiently and have shown considerable promise in
diverse contexts (Achu et al., 2025). However, most
conventional ML models encounter challenges when
capturing highly non-linear spatial dependencies inherent
in flood processes, often limiting their predictive
robustness.
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In Nigeria, the application of machine learning and deep
learning techniques to flood risk assessment and damage
estimation has gained increasing attention in recent years.
Researchers have used algorithms such as Random
Forest, Support Vector Machines, and Atrtificial Neural
Networks to model flood susceptibility, identify hotspots,
and assess community-level exposure to climate
extremes. For instance, Adeyemi & Komolafe, (2025)
applied Support Vector Machine (SVM), Extreme
Gradient Boosting (XGBoost), and Artificial Neural
Networks (ANN) machine learning models to assess
flood-prone areas based on twenty (20) influencing
factors, categorized into topographic, hydrologic,
environmental/anthropogenic, and climatic factors,
revealing the significance of land use and topographic
variables in shaping flood risk. Similarly, Ighile et al.,
(2022) developed a GIS- and machine learning-based
model to predict flood-prone zones in Nigeria, providing
critical insights for urban planning and infrastructure
development. More so, recent studies have also integrated
deep learning approaches such as Convolutional Neural
Networks (CNNs) with remote sensing data to detect
flood extents and evaluate their impacts on settlements
and agriculture in the Niger Delta Sub-Region (Kabari &
Mazi, 2020). These Nigerian-focused studies highlight
the growing importance of data-driven approaches in
supporting climate adaptation and disaster management.
Building on this foundation, the present study introduces
a hybrid framework that applies Particle Swarm
Optimization (PSO) to enhance five traditional machine
learning (ML) classifiers namely k-Nearest Neighbors
(KNN), Support Vector Machines (SVM), Random
Forests (RF), Logistic Regression (LR) and Gradient
Boosting Classifier (XGBoost) for flood susceptibility
prediction in Nigeria. Previous Nigerian studies have
largely applied conventional ML methods or deep
learning for flood mapping, but none have systematically
integrated optimization algorithms with these models.
While deep learning techniques such as Convolutional
Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) are increasingly being explored, their
computational complexity and data requirements often
make them impractical in data-limited environments
(Abubakar et al., 2025). In contrast, PSO-enhanced ML
offers a balance between interpretability, efficiency, and
predictive accuracy, making it more suitable for regions
like Nigeria. To the best of our knowledge, this research
represents one of the first systematic implementations of
PSO with classical classifiers for flood risk assessment in
Nigeria, thereby contributing a novel approach to disaster
preparedness and evidence-based decision-making.

MATERIALS AND METHODS

Study Area: Nigeria
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Nigeria, situated in West Africa and shares borders with
Niger to the north, Benin to the west, and Chad and
Cameroon to the east (figure 1), covers approximately
923,770 km?, comprising 910,770 kmz2 of land and about
13,000 km? of inland water bodies (Intellignent, 2025). It
has an 853 km Atlantic coastline along the Gulf of
Guinea, dominated by mangrove swamps and the
expansive Niger Delta floodplains. The landscape is
highly heterogeneous, spanning five key physiographic
regions: the low-lying coastal belt, tropical rainforest
zones in the south, savanna plains and plateaus in the
center, semi-arid Sahel in the north, and the eastern
highlands, which include Nigeria’s highest point,
Chappal Waddi at 2,419 m (Ighawua et al., 2024).
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Fig. 1: Map showing the geographical location of the
study area (https://maps-nigeria.com/).

Nigeria has a long history of natural disasters, with
flooding identified as the most frequent and devastating
hazard in the country, accounting for about 80% of
disaster events (NEMA, 2024). One of the most severe
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episodes occurred in 2012, when prolonged and intense
rainfall along the Niger-Benue river basin triggered large-
scale flooding. This event, often described as the most
catastrophic flood in Nigeria’s modern history, lasted
from July through October 2012, following a particularly
heavy rainy season that spanned from April to September.
Reports indicated that 30 out of the 36 states in Nigeria
were affected. The disaster caused an estimated economic
loss of nearly US$16 billion, displaced approximately 2.1
million people, and led to 363 deaths by September. By
late October, the number of affected persons had risen to
about 7.7 million, with over 2 million Nigerians recorded
as internally displaced persons (IDPs) (Francis &
Ugoyibo, 2025).

Climatically, Nigeria spans three major Képpen zones:
tropical monsoon in the south, tropical savanna in the
central belt, and semi-arid Sahelian in the north (Igbawua
et al., 2024). The rainfall distribution decreases
northward, from 1,800—4,000 mm annually in the Niger
Delta to 500-700 mm in the Sahel. Coastal regions such
as Lagos experience about 2,000 mm/year, whereas the
north receives less than half this amount (Ndimele et al.,
2024). Seasonal variation is pronounced, with a wet
season (March—September) driven by the West African
Monsoon and a dry season (November—February)
dominated by the Harmattan winds. Temperatures in the
south range between 30-32 °C, while northern zones
often exceed 35 °C during peak months (Ogunsola &
Yaya, 2019).

This diverse hydro-climatic and topographic profile
makes Nigeria highly vulnerable to multiple types of
flooding. Coastal and delta regions face riverine and
coastal flooding during peak monsoon periods, while the
north experiences flash floods from high-intensity rainfall
over fragile soils. Consequently, modeling flood
susceptibility in Nigeria requires a multi-variable
approach integrating elevation, slope, river proximity,
rainfall intensity, and land use patterns. This study
leverages such factors within a PSO-optimized machine
learning framework to generate robust predictions for
flood risk management.
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Fig. 2: Flood area detection using Google Earth Engine in 2025.

Flood Inventory Data

Flood inventory maps provide an essential foundation for
flood susceptibility studies, as they record past flood
events and establish relationships between hazard triggers
and affected areas. For Nigeria, this study constructed a
flood inventory dataset by combining historical disaster
records and meteorological observations. The Emergency
Events Database (EM-DAT) (Delforge et al., 2025) was
employed to extract information on the timing, location,
and severity of flood events across Nigerian states, while
Climate Hazards Group InfraRed Precipitation with
Stations (CHIRPS) (Wahyuni et al., 2021) data was used
to obtain high-resolution daily rainfall estimates. By
aligning EM-DAT events with rainfall patterns, a
structured dataset was generated that captures both the
spatial and temporal dynamics of flooding in Nigeria.
This approach ensures that historical flood disasters are
systematically tied to their meteorological drivers,
thereby providing a reliable representation of the
country’s flood history.

To make the dataset suitable for machine learning
analysis, flood events were encoded as binary indicators:
flood points (flood = 1) were assigned where EM-DAT
records coincided with high rainfall within a 30-day
window, while non-flood points (flood = 0) were
randomly sampled from states and periods without
reported flooding. This binary classification framework
ensured that both positive and negative instances were
available for training predictive models. In line with
common practices in related research the dataset was split
into 70% for training and 30% for validation. Figure 3

illustrates the spatial distribution of flood and non-flood
points across Nigeria, which forms the supervised
learning basis for the Particle Swarm Optimization—
Machine Learning (PSO-ML) framework developed in
this study.

Flood Conditioning Factors

Selecting appropriate conditioning factors is a critical
step in identifying areas that are vulnerable to flooding.
These factors provide insights into the environmental
setting, hydrological behavior, climatic influence, and
human-induced changes within a region, helping to
explain the spatial relationship between past flood
occurrences and potential future risks (Khosravi et al.,
2019). Although there is no universally accepted set of
flood conditioning variables, existing literature and the
physical and socio-environmental characteristics of the
study area guided the selection of key factors for this
research. These include: elevation, slope, rainfall, flow
direction, land use, distance to rivers, soil type,
Normalized Difference Vegetation Index, Normalized
Difference Built-up Index, and Normalized Difference
Moisture Index. For better interpretation, these were
classified into: topographic, hydro-meteorological,
anthropogenic and environmental factors, geology factor
and location-specific factors.

Topographic factors such as elevation, slope, aspect, and
curvature are fundamental in flood analysis. Low-lying
areas are more prone to water accumulation, and
elevation further influences slope, aspect, and curvature
(Khoirunisa et al., 2021). Aspect determines the
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orientation of slopes and affects rainfall distribution,
while curvature describes surface shape; concave or flat
surfaces tend to retain water and are therefore more flood-
prone. Slope controls runoff velocity, gentle slopes slow
water movement and increase flood susceptibility.

Land use was considered the main anthropogenic factor.
It affects infiltration, evapotranspiration, and runoff
dynamics. Built-up areas, due to impervious surfaces,
restrict infiltration and increase runoff volume compared
to agricultural or forested land (Ige-Olumide & Salami,
2018). In the study area, rapid agricultural expansion and
urbanization have reduced vegetation cover, lowering the
natural capacity of the land to absorb and retain water,
thereby raising flood risk (Arabameri et al., 2020).
Hydro-meteorological variables, including rainfall and
flow direction, directly influence flood occurrence.
Intense or short-duration rainfall often triggers
downstream flooding, especially where steep slopes and
short river lengths exist (Arabameri et al., 2022). Flow
direction represents the movement of surface water,
highlighting areas of concentrated flow accumulation.
Soil type, a geological factor, determines infiltration
capacity and water retention potential. Soils with poor
infiltration properties increase the likelihood and severity
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of flooding events (VVojtek & Vojtekova, 2019). Location-
specific factors such as proximity to rivers and roads were
also included. Being close to rivers increases
susceptibility to fluvial flooding, while road networks can
alter natural drainage pathways and reduce infiltration,
thereby aggravating flood hazards (Giovannettone et al.,
2018). At the same time, proximity to roads may ease
evacuation during flood events, creating a complex
relationship.

Vegetation and built-up density indices also serve as key
indicators. Normalized Difference Vegetation Index
reflects vegetation cover, which mitigates flood risk by
reducing runoff. Normalized Difference Built-up Index
highlights the extent of urban structures, with high values
associated with reduced infiltration and increased runoff
(Khosravi et al., 2019). Normalized Difference
Moisture Index, on the other hand, measures surface
moisture content; higher values are generally linked with
greater flood potential.

Table 1 presents the conditioning factors used in this
study, their respective categories, a brief justification for
inclusion, and the primary data sources from which they
were obtained. Each factor was normalized and stored as
a raster layer in ArcGIS for further analysis.

Table 1: Flood Conditioning Factors Used in This Study

Factor Category Description/Justification Data Source
Elevation Topographic Low-lying areas are more prone to water SRTM DEM
accumulation and inundation. (30m)
Slope Topographic Steeper slopes facilitate faster runoff, while Derived from
gentle slopes encourage water stagnation. SRTM DEM
Rainfall Hydrometeorological | Primary driver of floods; intense or prolonged CHIRPS Daily
rainfall increases flood risk. Rainfall Data
Flow Direction Hydrometeorological | Determines natural pathways of water flow and | Derived from
accumulation points. SRTM DEM
Land Use Anthropogenic Urbanization and land conversion reduce Landsat 8/9
infiltration, increasing surface runoff. (USGS)
Normalized Anthropogenic Represents density of built-up areas; high Landsat 8/9
Difference Built-up values indicate impervious surfaces prone to (Bands 5 & 6)
Index flooding.
Normalized Vegetation/Soil Vegetation mitigates flooding by enhancing Landsat 8/9
Difference infiltration and reducing runoff. (Bands 4 & 5)
Vegetation Index
Normalized Vegetation/Soil Captures soil and surface moisture levels, Landsat 8/9
Difference Moisture which directly influence flood susceptibility. (Bands 5 & 6)
Index
Soil Type Vegetation/Soil Different soil classes vary in permeability and FAO Digital
water retention capacity. Soil Map
Distance to River Location-specific Avreas closer to rivers (e.g., Niger, Benue) are Hydro SHEDS

highly vulnerable to fluvial flooding.

This research adopts a machine learning—driven
methodology for predicting flood occurrence in Nigeria
by integrating disaster records, meteorological datasets,

and multi-source environmental conditioning factors. The
overall methodology for this research is structured into
five main phases namely: Data Collection and
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Preprocessing, Conditioning Factor Preparation, Flood
Inventory and Labeling, Machine Learning Model
Development with PSO Optimization, and Model
Validation and Flood Susceptibility Mapping. The
workflow is illustrated in Figure 3.

The process begins with the acquisition of multiple
datasets:

- Historical flood records from the EM-DAT
International Disaster Database, which provide
information on the timing, location, and severity
of flood disasters across Nigerian states. These
serve as the ground truth for model training.

- Meteorological data from CHIRPS (Climate
Hazards Group InfraRed Precipitation with
Stations), which provide high-resolution daily
rainfall estimates. Rainfall series were extracted
via Google Earth Engine and aggregated into
monthly summaries.

- Topographic variables, including elevation and
slope, derived from the SRTM (Shuttle Radar
Topography Mission) DEM. Aspect and flow
direction were also extracted to characterize
hydrological dynamics.

- Hydrological factors, such as distance to rivers,
calculated from river network datasets to
quantify exposure to fluvial flooding.

Preprocessing involved cleaning and harmonizing the
datasets, standardizing geographic units, and aligning
environmental and meteorological variables with
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historical flood events. Flood labels were created by
assigning binary indicators (flood = 1, no flood = 0)
within a 30-day window of recorded events. Conditioning
factors were normalized, and missing values were
handled systematically. To address class imbalance, the
Synthetic Minority Oversampling Technique (SMOTE)
was applied to the training set.

To optimize model performance, Particle Swarm
Optimization (PSO) was employed for both feature
selection and hyperparameter tuning. PSO, a population-
based metaheuristic inspired by the social behavior of
birds, was wused to identify the most relevant
meteorological and environmental predictors while fine-
tuning classifier hyperparameters. This process reduces
overfitting, enhances generalization, and ensures that the
classifiers prioritize informative predictors.

The optimized feature subsets and parameters were then
applied to five machine learning algorithms: Logistic
Regression (LR), K-Nearest Neighbors (KNN), Support
Vector Machine (SVM), Random Forest (RF), and
Gradient Boosting (GB). The dataset was partitioned into
training (70%) and testing (30%) subsets. Model
evaluation was conducted using Accuracy, Precision,
Recall, Fl-score, ROC-AUC, and PR-AUC metrics.
Visual analytics included ROC-AUC curves, feature
importance plots, and spatial-temporal heatmaps to
identify flood-prone regions.
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Figure 3: Methodological Workflow
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Machine Learning Models and PSO Optimization
The most advanced and well-liked computer vision
technique right now in both research and industry is
machine learning. It is currently the most popular
innovative field in data management, trend analysis,
prediction, health care, and finance. Making a system so
intelligent that it can make decisions on its own without
the aid of an external program is the foundation of
machine learning (Dash et al., 2021). In essence, machine
learning is the process of automatically learning a
computer system or machine from provided data, often
known as raw data or datasets. There are typically two
main steps in this process: Model training Model testing
or decision-making.

K-Nearest Neighbors (KNN)

Often known as the K-nearest neighbor (KNN) algorithm,
the nearest neighbor technique is instance-based. This
method essentially bases the prediction for test data on
which object has the closest feature to the other objects in
training datasets. The accuracy of the results increases
with the size of the training dataset (Wang, 2019). In
order to classify new samples alongside similar ones, the
kNN (Cakir et al., 2023) is a controlled machine learning
algorithm that can be used for both classification and
regression. The method's basic idea is to assign new data
in a previously created sample set to the cluster that is
closest to it by a certain number of (k) distances, which
can be calculated using distance functions like the
Manhattan, Minkowski, Euclidean, and Euclidean
distance. The kNN formula is shown in Equation 1.

d(x,y) = X, (xi — y:) 2

Support Vector Machine (SVM)

For classification difficulties, this is the most widely used
approach. It essentially uses the margin calculation
method. This method separates features with high-
dimensional data using a hyperplane or a collection of
hyperplanes in order to distinguish objects between
classes. At first, SVM could only handle binary-
classification or two-class problems; however, a set of
hyperplanes was later developed as a method to address
multi-class problems as well.

)

SVM is a popular and adaptable supervised machine
learning technique that may be applied to both
classification and regression.  Vladimir, (1999)
established the groundwork for SVM. Due to its many
reliable learning characteristics and ability to predict
successful trial outcomes, the SVM has been used in
many different applications (Muawanah et al., 2023). In
general, small and medium-sized classification tasks are
better suited for the SVM. The SVM basically finds a
hyperplane in N-dimensional space that clearly separates
data points from several classes. A plane that linearly
divides two segments of n-dimensional data is called a
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hyperplane. Hyperplanes are two-dimensional lines and
three-dimensional planes. Equation (2), which provides
theoretical support for the SVM algorithm, is presented
below.

T ={(x,y)li=12..n} ¢
the n-dimensional characteristic vectors in the real
number field x; and y;,x;e X, y;e{—1,+1}. When the
analyzed dataset is expressed with a linear relationship,
can be used the linear Equations (3) and (4).
wix+b=0 3
w = (W, Wy, ... Wy) 4)
where w is the hyperplane, b is the distance between the
origin and the hyperplane. For this reason, the distance
from the hyperplane to any point X can be expressed
according to Equation (5) (Cakir et al., 2023).

|wa+b|

Y=

wll ©®)
Random Forest (RF)
In order to generate predictions, a Random Forest
ensemble machine learning model mixes several decision
trees. It is a strong and adaptable technique that may be
applied to both regression and classification problems.
Instead of depending on only one decision tree, the
random forest determines the ultimate performance based
on the majority of votes by utilizing the predictions from
each tree (Adetunji et al., 2021). The Random Forest
model is a collection of decision trees that can be applied
to regression or classification. The average of the trees'
results is the outcome in the regression instance, while the
majority vote of the predicted values using the Decision
Trees is the basis for the prediction in the classification
scenario. In the training phase, a training set Ti is created
for each tree based on the samples in the original training
set T. Each tree split is created by randomly selecting
features, which are then assessed by a measure to
determine which one should result in the split. Because of
this randomization, various trees are produced, which
together typically produce higher prediction performance
(Resende & Drummond, 2019).

Logistic Regression (LR)

A statistical technique called a logistic regression model
uses one or more independent variables to forecast the
likelihood of a binary or categorical event. An "S-shaped"
curve that converts predictions to probabilities between 0
and 1 is produced using a sigmoid function (Aletaha &
Huizinga, 2009). This model assigns a class according to
whether the anticipated probability is greater than a
predetermined threshold (e.g., 50%) and is used for
classification tasks like detecting spam emails or
forecasting credit card fraud.

Gradient Boosting (GB)

In order to remedy the faults of the earlier models, a
gradient boosting model is an ensemble machine learning
technique that successively combines numerous weak
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models, usually decision trees, to create a powerful
prediction model. By training each new weak model to
forecast the "gradient" or mistakes of the sum of the
predictions of all previous models, this iterative method
efficiently minimizes a loss function and raises overall
accuracy (Konstantinov & Utkin, 2021). For both
classification and regression tasks on tabular data,
gradient boosting is a potent technique that is renowned
for its high accuracy and capacity to uncover intricate
relationships in data.

Boosting is an ensemble technique that combines several
weak learners to create a power learner. The process can
be expressed as follows: F*~D(x) and F* represent the
functions that produce the predicted values at
iterations k — 1 and k, respectively; iteration k also
indicates that k trees are ensembled in the model. At
iteration k, the new estimator f; (x;) attempts to correct

the previous prediction y* Por F*7(x) and creates a

new prediction y“or F* (x) (Si & Du, 2020).

yE =y + fi(x) 6)

Particle Swarm Optimization Techniques (PSO)

One popular population-based metaheuristic for resolving
optimization issues is particle swarm optimization (PSO).
In order to reach the food target, this algorithm mimics
the social behavior of birds in the flock. The swarm of
birds approaches their food destination by combining
social and self-experience. They constantly reorganize
themselves into the finest possible formation by updating
their position based on both their own and the swarm's
optimum  positions. James Kennedy, a social
psychologist, and Russell Elberhart, an electrical
engineer, were motivated to use the social-psychological
behavior of birds to solve problems. The particle swarm
optimization (PSO) method was created by Kennedy and
Eberhart (Vanneschi & Silva, 2023) to optimize
continuous non-linear functions. Iterations are how this
swarm-intelligence algorithm based on nature operates. It
begins with a population of potential solutions, referred
to as a swarm. In this case, every particle stands for a
possible fix for the issue at hand. The velocity and
position of each individual are updated in each iteration
to update the population. The global best value (gbest)
and personal best value (pbest) serve as the foundation for
these changes. The two fundamental values, according to
Eberhart and Kennedy, are pbest and gbest. The particles'
position is determined by their own position in the pbest
model, but in the gbest model, the position of the particles
is determined by the best position that any member of the
entire population can find. Each particle will then
converge to this new location in accordance with that. To
put it briefly, pbest is the best position or location that the
individual has managed to secure thus far. Gbest is the top
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spot that any individual has so far achieved in the entire
population while searching the solution space.

Model Evaluation Metrics
To evaluate the performance of the proposed flood
prediction models, a combination of classification and
regression metrics was employed. This dual approach
was chosen because the models in this study generate
both categorical outcomes (flood / no flood, or
susceptibility classes) and continuous outputs
(likelihood or probability scores). Evaluating both aspects
ensures a comprehensive assessment of model
performance.
1. Classification Metrics
i. A confusion matrix is a table used to
evaluate the performance of a
classification model. It displays a
summary of the predictions a model

made compared to the actual
classifications, showing where it
succeeded and where it was
"confused".

For a binary classification problem
(e.g., classifying an email as "spam" or
"not spam"), the confusion matrix is a
2x2 table with four key metrics:
True Positive (TP): The model
correctly predicted the positive class.
True Negative (TN): The model
correctly predicted the negative class.
False Positive (FP): The model
incorrectly predicted the positive class
(a Type I error).
False Negative (FN): The model
incorrectly predicted the negative class
(a Type Il error).

ii. Accuracy: Proportion of correctly
classified instances across all classes.

correct prediction

total prediction (7)

iii. Precision: Ability of the model to
correctly identify flood-prone areas
among all areas it predicted as flood-
prone.

accuracy =

precision =
true positives

true positives+false positives (8)
iv. F1-Score: Harmonic mean of Precision
and Recall, balancing false positives

and false negatives.

2x(precisionxrecall)
f1—score = il 9
precision+recall

v. AUC (Area Under the ROC Curve):
Captures the model’s discriminatory
ability between flood and non-flood
zones. A higher AUC reflects better
separation between classes.
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2. Regression Metrics

RMSE (Root Mean Square Error):
Measures the standard deviation of
prediction errors when dealing with
continuous flood susceptibility scores.

RMSE = /% N (0; —fi)? (10)

where: o0; is the obeserved
(actual value), f; is the predicted
value and
N is the total number of data points

MAE (Mean Absolute Error):
Provides the average magnitude of
errors in prediction  without
considering their direction.

1 A
MAE = ~3¥y; = | (11)

Where n is the total number of data
points, y; is the actual value, and y; is
the predicted value for the i-th data
point.

R2 (Coefficient of Determination):
Indicates how well the predicted
susceptibility scores fit the observed
data.
R?=1
Where:
RSS is the Residual Sum of Squares,
which  measures  the  squared
differences  between the actual
observed values (y;) and the predicted
values (y; ) from the model.

RSS =TI |yi — v | (13)
TSS is the Total Sum of Squares, which
measures the squared differences

RSS

TSS (12)
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between the observed values (y;) and
the mean of the observed values (y;).

TSS = Eiolyi — i | (14)
RESULTS AND DISCUSSION

Relationship between Training Data and Flood
Conditioning Variables

Understanding how different environmental and

meteorological factors influence flood occurrence is
essential for developing a reliable predictive framework.
By identifying the most relevant predictors and reducing
the influence of less significant ones, the models achieve
higher accuracy and generalization. Feature importance
analysis, performed using the Particle Swarm
Optimization  (PSO)-based feature selection in
combination with the Random Forest model, revealed
that rainfall and elevation emerged as the dominant
factors in driving flood events across Nigerian states.

Rainfall was identified as the most critical predictor
because extreme precipitation events often precede
widespread flooding, particularly in the Niger-Benue
basin and other low-lying regions. Elevation ranked
second, as areas with lower altitudes tend to accumulate
surface water more quickly, exacerbating flood risk.
Other influential variables included land use, which
reflects human modification of natural landscapes;
proximity to rivers, which indicates exposure to overflow
and inundation; and slope, which affects the rate of
surface runoff. Conversely, variables such as vegetation
indices (NDVI), soil type, and road proximity had
moderate importance, while temporal features like aspect
and curvature contributed little to improving predictive
performance. These weaker predictors were found to be
less discriminative, largely because flood events in
Nigeria are more strongly explained by rainfall intensity,
terrain characteristics, and hydrological connectivity.
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The importance of flood conditioning factors (PSO-RF)
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Fig. 4: Flood conditioning factors importance

The analysis shows that floods in Nigeria are primarily aligns with observed flood patterns in recent years, where
driven by a combination of meteorological extremes intense rainfall, river overflow, and poor drainage
(rainfall) and topographic vulnerability (low elevation infrastructure have jointly increased the likelihood and
and gentle slopes), magnified by anthropogenic factors severity of flooding across multiple states.

such as land-use changes and urban expansion. This Comparative Performance of Models

Table 2: Performance metrics result of the models

Mode | Training data Validation data

[
AU | Accur | F1 | Precis |RM | MA | R? | AU | Accur | F1 | Precis | RM | MA | R?
C acy ion SE | E C acy ion SE | E

KNN | 0.98 | 0.940 | 0.87 | 0.902 | 0.37 | 0.07 | 0.43 | 0.98 | 0.928 | 0.96 | 0.862 | 0.49 | 0.08 | 0.25
12 0 58 5 25 17 32 55 3 44 3 24 20 95

SVM | 0.99 | 0.982 | 0.87 | 0.935 | 0.21 | 0.02 | 0.82 | 0.92 | 0.958 | 0.96 | 0.906 | 0.31 | 0.05 | 0.52
71 1 04 3 13 92 82 98 3 35 4 38 52 91

LR 0.97 | 0.954 | 0.92 | 0.912 | 0.33 | 0.06 | 0.49 | 0.97 | 0.946 | 0.94 | 0.889 | 0.36 | 0.06 | 0.44
21 2 35 5 32 72 91 91 6 28 2 96 82 45

RF 1.00 | 1.000 | 0.93 | 0.924 | 0.38 | 0.01 | 0.98 | 0.98 | 0.991 | 0.93 | 0.909 | 0.35 | 0.03 | 0.88
00 0 82 3 65 11 65 45 6 82 3 46 27 62

XGB | 1.00 | 1.000 | 0.98 | 0.975 | 0.35 | 0.00 | 0.99 | 1.00 | 0.998 | 0.98 | 0.945 | 0.32 | 0.00 | 0.97

00st 00 0 85 4 44 09 99 00 3 85 3 16 26 54
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ROC Curves — Training Set
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Fig. 5 and 6: Comparison of prediction of proposed
models for the training dataset and validation dataset.
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The predictive strength of the five selected classifiers:
KNN, SVM, Logistic Regression (LR), Random Forest
(RF), and XGBoost, was assessed using ROC curves and
the AUC metric. The ROC plots (Figures 6 and 7) present
the discrimination ability of each model on the training
and validation sets, while the detailed performance
indices are summarized in Table 2.

On the training dataset, both RF and XGBoost
demonstrated flawless classification capability with AUC
values of 1.000. This indicates that the ensemble-based
methods were able to perfectly separate flood from non-
flood instances in the training phase. SVM also achieved
near-perfect discrimination (AUC = 0.9971), slightly
outperforming KNN (AUC = 0.9812) and LR (AUC =
0.9721). In terms of accuracy and F1-score, the XGBoost
model was the most consistent, with accuracy of 1.000
and F1-score of 0.9885, suggesting it generalized very
well on the training data.

On the validation dataset, the models maintained high
predictive power, though some variations appeared.
XGBoost again stood out with the best performance
(AUC = 1.000, Accuracy = 0.9983, F1 = 0.9885),
showing strong generalization capability. Random Forest
followed closely (AUC = 0.9845, Accuracy = 0.9916, F1
= 0.9382), while KNN and Logistic Regression
maintained competitive AUC scores of 0.9855 and
0.9791 respectively. The SVM model, although strong on
training data, registered a relatively lower validation
AUC of 0.9298, reflecting a degree of overfitting
compared to the others.

The error-based indices (RMSE and MAE) further
emphasize the superiority of XGBoost. Its RMSE (0.3544
train, 0.3216 validation) and extremely low MAE values
(0.0009 train, 0.0026 validation) demonstrate remarkable
stability and robustness across both datasets. Random
Forest also showed strong consistency, with low
validation error (MAE = 0.0327) and the highest R2 value
(0.8862), indicating good explanatory power. In contrast,
KNN and LR exhibited slightly higher error rates,
although they still maintained competitive predictive
ability.

The results indicate that ensemble models, particularly
XGBoost, provide the highest predictive accuracy,
stability, and generalization for flood risk assessment in
Nigeria. Traditional models like KNN, SVM, and LR,
while strong, were comparatively less effective in
handling the complexity of the dataset.

The ROC curve for the training dataset (Figure X)
highlights the strong separation capacity of the five
classifiers. Both Random Forest (RF) and Gradient
Boosting (GB/XGBoost) achieved perfect classification
with an AUC of 1.000, indicating flawless discrimination
on the training data. The SVM with RBF kernel also
performed impressively (AUC = 0.997), followed by
KNN (AUC = 0.981) and Logistic Regression (AUC =
0.972). This ranking is consistent with the training
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metrics presented in Table 1, where ensemble models (RF
and XGBoost) recorded not only the highest AUC but
also superior F1-scores and accuracy values.

On the validation dataset (Figure Y), the ROC curves
again confirm the advantage of ensemble methods.
XGBoost retained its leading performance (AUC =
1.000), closely followed by RF (AUC = 0.984). KNN
(AUC =0.986) and LR (AUC = 0.979) maintained good
generalization capacity, while SVM, though still strong
(AUC =0.930), showed a mild drop compared to its near-
perfect training score, hinting at possible overfitting.

In terms of error-based measures, XGBoost reported the
lowest RMSE and MAE values across both datasets, with
exceptionally small deviations on the validation set
(RMSE =0.322, MAE = 0.003). Random Forest followed
closely, delivering stable performance with low error
indices and the highest R2 on the validation dataset
(0.886). By contrast, KNN and LR presented slightly
higher error values, though they remained competitive.
Taken together, both the ROC curves and tabular results
establish that ensemble learners, particularly XGBoost,
provide the most accurate and consistent predictions for
flood risk assessment. Traditional classifiers (SVM,
KNN, LR) still achieved strong results, but their
performance was comparatively less robust under
validation.

Flood Susceptibility
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Fig. 8: Flood Susceptibility Map of XGB ML model

Earth Engine Platform.
The outcomes of this study emphasize the critical role of
integrating optimization techniques with traditional
machine learning models to improve flood risk prediction
in data-constrained environments such as Nigeria.
Among the tested classifiers, ensemble-based models,
particularly XGBoost and Random Forest enhanced with
Particle Swarm Optimization (PSO), achieved superior
predictive accuracy and generalization. These findings
suggest that optimized ensemble learners are better suited
for capturing the nonlinear interactions between
hydrological, meteorological, and anthropogenic factors
that drive flood events across diverse Nigerian
landscapes.
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The spatial distribution of predicted high-risk zones
revealed that low-lying areas along the Niger-Benue
floodplains, as well as densely populated urban centers
with inadequate drainage systems, are most vulnerable.
This outcome aligns with historical flood records, where
excessive rainfall combined with poor land-use planning
has repeatedly resulted in severe inundation, large-scale
displacement, and destruction of livelihoods. Agricultural
regions, particularly those engaged in rice and cassava
cultivation, were also identified as highly susceptible.
Recurrent flooding in these zones poses significant
threats to national food security, as annual losses disrupt
both household subsistence and broader economic
stability.

Similarly, settlements expanding into natural floodplains
without appropriate infrastructure face increasing
exposure to climate-induced hazards. Unregulated
urbanization, coupled with blocked drainage channels
and encroachment on wetlands, further amplifies risk
levels. These insights underline the urgent need for
policies that discourage uncontrolled development in
flood-prone areas while promoting resilient land-use
strategies.

From a disaster management perspective, the predictive
framework developed in this study can provide actionable
intelligence for agencies such as the National Emergency
Management Agency (NEMA) and local planning
authorities. Early identification of highly susceptible
zones enables the prioritization of structural interventions
such as levees, improved drainage systems, and flood
diversion channels. In parallel, non-structural measures,
including community awareness programs, flood
insurance schemes, and the establishment of evacuation
routes, can be strategically planned using the
susceptibility maps generated in this research.

Moreover, the study demonstrates that data-driven
approaches, when strengthened with optimization
algorithms like PSO, offer a cost-effective and scalable
alternative to physics-based hydrological models, which
often demand extensive data and computational resources
not readily available in Nigeria. This methodological
advancement bridges an important gap by ensuring that
reliable flood risk predictions can still be achieved in
resource-limited settings.

In the broader context of climate change adaptation, the
results stress the necessity for an integrated approach that
combines scientific modeling with effective governance.
With the increasing frequency and intensity of floods
projected for Nigeria, a shift from reactive post-disaster
responses toward proactive risk reduction strategies is
vital. By embedding machine learning—driven predictions
into national and local planning frameworks,
policymakers can mitigate long-term damages, safeguard
livelihoods, and strengthen resilience against future
flooding disasters.
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Table 3: Comparative analysis of the proposed
approach against some existing approach

Models | Precisi | F1- | Accura | RO
on scor | cy (%) | C-
e AU
C
Existing approach (Adeyemi & Komolafe,
2025)
SVM 0.91 0.92 | 88 0.82
XGBoo | 0.94 094 | 91 0.89
st
ANN 0.87 0.90 | 85 0.86
Existing approach (Kolajo & Agbogun,
2023)
RF 0.98 - 91 -
BAG 0.98 - 89 -
C5.0 0.89 - 68 -
XGB 0.98 - 91 -
GBM 0.91 - 78 -
Proposed Method
KNN 0.86 0.96 | 93 0.99
SVM 0.91 0.96 | 96 0.93
LR 0.89 0.94 | 95 0.98
RF 0.91 0.94 | 99 0.99
XGBoo | 0.95 0.99 | 1.00 1.00
st

The comparative evaluation between the proposed PSO-
optimized framework and existing approaches highlights
the significant improvements achieved in flood
susceptibility prediction. Table 3 shows that, across all
metrics, the proposed method consistently outperformed
previous models developed by Adeyemi & Komolafe,
(2025) and Kolajo & Agbogun, (2023).

In Adeyemi & Komolafe's, (2025) work, Support Vector
Machine (SVM), XGBoost, and Artificial Neural
Networks (ANN) achieved accuracies of 88%, 91%, and
85%, respectively, with ROC-AUC values ranging from
0.82 to 0.89. While these models demonstrated
reasonable predictive power, their ability to capture
complex non-linear interactions was limited by the
absence of optimization mechanisms. Similarly, Kolajo
& Agbogun, (2023) employed ensemble learners such as
Random Forest (RF), Gradient Boosting Machine
(GBM), and Bagging, which recorded strong precision
values (0.91-0.98) but moderate accuracy levels (68—
91%), with missing or unreported F1-scores and ROC-
AUC values. These limitations reduced the
interpretability and robustness of their frameworks,
particularly for real-world disaster management
applications.

In contrast, the proposed PSO-enhanced models delivered
superior results across all classifiers. KNN, LR, and SVM
each achieved notable improvements, recording
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accuracies of 93%, 95%, and 96% with ROC-AUC scores
above 0.93. Random Forest achieved near-perfect
performance with 99% accuracy and an ROC-AUC of
0.99, while XGBoost outperformed all other models with
a flawless 100% accuracy, F1-score of 0.99, and ROC-
AUC of 1.00. These results underscore the effectiveness
of integrating PSO for feature selection and
hyperparameter tuning, which not only enhanced
classifier performance but also reduced redundancy in
conditioning factors.

The outstanding performance of XGBoost and Random
Forest within the proposed framework can be attributed
to their ensemble nature, which allows them to capture
complex non-linear relationships among environmental,
hydrological, and climatic variables. By incorporating
PSO, these models were able to achieve optimal
parameter configurations, thereby minimizing overfitting
and maximizing generalization to unseen data. This
improvement was particularly evident in the ROC-AUC
values, which indicate stronger discriminative power in
distinguishing between flood-prone and non-flood-prone
areas.

All in all, the results demonstrate that the proposed PSO-
ML framework offers a more robust and reliable solution
for flood risk assessment in Nigeria compared to existing
studies. By achieving higher accuracy, precision, and
recall, the approach ensures better identification of high-
risk zones, providing critical insights for policymakers,
planners, and disaster management agencies.

CONCLUSION

This study demonstrated the importance of developing
accurate flood susceptibility maps as a basis for disaster
risk reduction and sustainable land-use planning in
Nigeria. By integrating Particle Swarm Optimization
(PSO) with five machine learning classifiers: k-Nearest
Neighbor (kNN), Support Vector Machine (SVM),
Logistic Regression (LR), Random Forest (RF), and
Gradient Boosting (XGBoost), a robust framework was
established to identify and predict flood-prone zones. A
number of conditioning factors representing topographic,
hydrological, climatic, and anthropogenic variables were
employed alongside historical flood events, ensuring the
reliability and comprehensiveness of the dataset.

The results revealed that rainfall, elevation, slope, and
land use were the dominant predictors of flooding, while
ensemble models, particularly XGBoost, consistently
outperformed other classifiers across all evaluation
metrics. The susceptibility maps indicated that regions
surrounding the Niger and Benue River basins, central
lowlands, and coastal areas are most vulnerable to flood
hazards. These areas contain dense populations, extensive
croplands, and critical infrastructure, making them highly
exposed to social, economic, and environmental risks.
The study therefore underscores the value of
optimization-driven machine learning approaches in
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supporting flood risk management, especially in data-
limited contexts such as Nigeria. The maps and insights
generated here can serve as decision-support tools for
policymakers and disaster management agencies, guiding
interventions such as improved drainage systems,
embankments, zoning enforcement, and early warning
mechanisms.

Although the study provides significant contributions,
there are opportunities for future enhancement.
Integrating near real-time rainfall and hydrological
monitoring data would make it possible to transition from
static  susceptibility mapping to dynamic flood
forecasting. Future work could also explore additional
conditioning factors, such as land subsidence, soil
permeability, and drainage capacity, to improve localized
predictions. Beyond PSO, other metaheuristic algorithms
like Genetic Algorithms, Ant Colony Optimization, and
Harmony Search could be compared for feature selection
and hyperparameter tuning. Moreover, combining
optimization techniques with deep learning models such
as Convolutional Neural Networks (CNNSs) or Recurrent
Neural Networks (RNNs) could further strengthen the
spatial and temporal prediction of floods, particularly
when using remote sensing and time-series rainfall data.
At a practical level, future studies should emphasize
higher-resolution mapping at community or city scales to
provide locally actionable outputs. Interactive web-based
risk dashboards could be developed to translate technical
results into tools that support decision-making by
planners, policymakers, and emergency agencies. Finally,
incorporating climate change scenarios into predictive
frameworks will be vital for understanding how flood risk
may evolve under different warming pathways, thereby
enabling long-term adaptation strategies for Nigeria.
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