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ABSTRACT 

Flooding remains one of the most recurrent and destructive natural hazards in 

Nigeria, causing widespread socio-economic losses, displacement, and threats to 

food security. Traditional hydrological models for flood risk assessment often 

require extensive datasets that are not readily available in data-scarce regions. 

To address this challenge, this study developed a hybrid framework that 

integrates Particle Swarm Optimization (PSO) with machine learning classifiers 

for flood susceptibility prediction in Nigeria. Historical flood events were 

obtained from the EM-DAT disaster database, while meteorological, 

topographic, hydrological, and land-use variables were extracted from multiple 

geospatial sources. A number of conditioning factors, including elevation, slope, 

rainfall, and distance to rivers, were used as predictors. PSO was employed for 

feature selection and hyperparameter optimization to reduce redundancy and 

improve model generalization. Five classifiers were implemented: k-Nearest 

Neighbor (kNN), Logistic Regression (LR), Support Vector Machine (SVM), 

Random Forest (RF), and Gradient Boosting (XGBoost). Results indicated that 

rainfall, elevation, slope, and land use were the most influential predictors of 

flood occurrence, while ensemble models, particularly XGBoost, achieved 

superior performance across all evaluation metrics (Accuracy = 0.998, AUC = 

1.000). The generated susceptibility maps revealed that the Niger-Benue 

floodplains, central lowlands, and coastal regions are most vulnerable, posing 

risks to settlements, croplands, and infrastructure. The study demonstrates that 

PSO-enhanced machine learning provides a robust and scalable solution for 

flood risk mapping in data-limited environments.

 

INTRODUCTION 

Flooding, one of the most destructive natural hazards, has 

surged in both frequency and severity globally, causing 

mounting concern among governments and policymakers 

(Huang et al., 2024; Petry et al., 2025). Escalating global 

warming, rapid urban development, and river regulation 

amplify flood risk across regions (Bevacqua et al., 2025; 

Glasser, 2020). The societal consequences of flooding are 

profound, ranging from infrastructure collapse and loss of 

life to crop destruction and food insecurity, culminating 

in enormous economic setbacks. In 2021 alone, floods 

inflicted US $82 billion in damage worldwide. 

Meanwhile, projections by the World Meteorological 

Organization warn that flood exposure could more than 

double by 2040, especially in Asia and Africa, as urban 

populations grow unchecked (Tran et al., 2024). Flooding 

refers to the overflow of water onto normally dry land due 

to heavy rainfall,  

 

 

 

 

 

snowmelt, storm surges, or failures of water management 

systems, while flash floods, short-lived but highly 

destructive, result from rapid rises in water levels, driven 

by extreme weather and compounded by human factors 

such as deforestation and poor land-use practices (Wang 

et al., 2025). In Nigeria, rain-induced floods have become 

recurrent hazards, particularly in the Niger Delta and 

other low-lying regions. The catastrophic 2012 floods, 

considered one of the worst in decades, displaced millions 

and caused damages estimated at over US $17 billion, 

according to the Post-Disaster Needs Assessment led by 

GFDRR (Rogers et al., 2025).  

Nigeria has seasonal flooding every year, but the 

mortality tolls in 2022 and 2024 were very high. In 2022, 

33 of Nigeria's 36 states saw what is thought to be the 

worst flooding in almost a decade, resulting in over 1.3 

million displaced persons and over 600 fatalities 

(Aljazeera, 2025).  
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In one instance in 2022, 76 people drowned when their 

boat capsized on the Niger River when they were 

escaping the floods (Okibe, 2025). The 2024 floods were 

also particularly deadly, claiming more than 1,200 lives 

and affecting at least 31 states. Among these was a flash 

flood in Borno State that killed more than 150 people and 

left over 400,000 refugees after the Alau Dam collapsed. 

More recently, in August 2025, the National Emergency 

Management Agency (NEMA) stated that the continuous 

floods have caused tens of thousands of people to be 

relocated across 25 states and 228 fatalities (Oluyemi, 

2025). 

A mix of human and natural factors contribute to 

Nigeria's ongoing and worsening flooding, which is made 

worse by climate change. The geographical reality of 

being downstream from river systems, such as the Lagdo 

Dam in Cameroon, and severe rainfall, which is 

exacerbated by climate change, are examples of natural 

causes. Poor urban planning, uncontrolled construction 

on floodplains, insufficient or obstructed drainage 

systems, and inappropriate garbage disposal are only a 

few examples of human actions that greatly exacerbate 

the effects (Victor, 2023). A lack of preventative 

measures and policy execution frequently results in 

disastrous effects for vulnerable communities, especially 

in the face of repeated warnings from government 

organizations such as NEMA. The frequent crises show 

how urgently Nigeria must change its approach to disaster 

management from one that is reactive to one that is 

preventive. 

Flood risk modeling has traditionally relied on physics-

based hydrological and hydraulic simulators such as 

MIKE FLOOD (Jiahong Liu et al., 2020; Tuan et al., 

2024), LISFLOOD-FP (Nandi & Reddy, 2022; Rajib et 

al., 2020) and HEC-HMS & HEC-RAS (Peker et al., 

2024). These models are capable of reproducing 

floodplain dynamics through hydraulic equations and 

watershed parameters, but they demand intensive 

calibration and extensive hydro-meteorological datasets 

that are often unavailable in data-scarce regions like 

Nigeria. To address these constraints, researchers have 

increasingly turned to data-driven models such as K-

Nearest Neighbor (KNN) (Razavi-Termeh et al., 2024), 

Logistic Regression (LR) (Jurafsky & Martin, 2012), 

Support Vector Machines (SVMs) (Jun Liu et al., 2021), 

Random Forests (RF) (Aiyelokun et al., 2023), and 

AdaBoost for flood susceptibility mapping (Demissie et 

al., 2024). These approaches exploit historical flood 

events and environmental predictors to estimate flood risk 

more efficiently and have shown considerable promise in 

diverse contexts (Achu et al., 2025). However, most 

conventional ML models encounter challenges when 

capturing highly non-linear spatial dependencies inherent 

in flood processes, often limiting their predictive 

robustness. 

In Nigeria, the application of machine learning and deep 

learning techniques to flood risk assessment and damage 

estimation has gained increasing attention in recent years. 

Researchers have used algorithms such as Random 

Forest, Support Vector Machines, and Artificial Neural 

Networks to model flood susceptibility, identify hotspots, 

and assess community-level exposure to climate 

extremes. For instance, Adeyemi & Komolafe, (2025) 

applied Support Vector Machine (SVM), Extreme 

Gradient Boosting (XGBoost), and Artificial Neural 

Networks (ANN) machine learning models to assess 

flood-prone areas based on twenty (20) influencing 

factors, categorized into topographic, hydrologic, 

environmental/anthropogenic, and climatic factors, 

revealing the significance of land use and topographic 

variables in shaping flood risk. Similarly, Ighile et al., 

(2022) developed a GIS- and machine learning-based 

model to predict flood-prone zones in Nigeria, providing 

critical insights for urban planning and infrastructure 

development. More so, recent studies have also integrated 

deep learning approaches such as Convolutional Neural 

Networks (CNNs) with remote sensing data to detect 

flood extents and evaluate their impacts on settlements 

and agriculture in the Niger Delta Sub-Region (Kabari & 

Mazi, 2020). These Nigerian-focused studies highlight 

the growing importance of data-driven approaches in 

supporting climate adaptation and disaster management. 

Building on this foundation, the present study introduces 

a hybrid framework that applies Particle Swarm 

Optimization (PSO) to enhance five traditional machine 

learning (ML) classifiers namely k-Nearest Neighbors 

(kNN), Support Vector Machines (SVM), Random 

Forests (RF), Logistic Regression (LR) and Gradient 

Boosting Classifier (XGBoost) for flood susceptibility 

prediction in Nigeria. Previous Nigerian studies have 

largely applied conventional ML methods or deep 

learning for flood mapping, but none have systematically 

integrated optimization algorithms with these models. 

While deep learning techniques such as Convolutional 

Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs) are increasingly being explored, their 

computational complexity and data requirements often 

make them impractical in data-limited environments 

(Abubakar et al., 2025). In contrast, PSO-enhanced ML 

offers a balance between interpretability, efficiency, and 

predictive accuracy, making it more suitable for regions 

like Nigeria. To the best of our knowledge, this research 

represents one of the first systematic implementations of 

PSO with classical classifiers for flood risk assessment in 

Nigeria, thereby contributing a novel approach to disaster 

preparedness and evidence-based decision-making. 

 

MATERIALS AND METHODS 

 

Study Area: Nigeria 
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Nigeria, situated in West Africa and shares borders with 

Niger to the north, Benin to the west, and Chad and 

Cameroon to the east (figure 1), covers approximately 

923,770 km², comprising 910,770 km² of land and about 

13,000 km² of inland water bodies (Intellignent, 2025). It 

has an 853 km Atlantic coastline along the Gulf of 

Guinea, dominated by mangrove swamps and the 

expansive Niger Delta floodplains. The landscape is 

highly heterogeneous, spanning five key physiographic 

regions: the low-lying coastal belt, tropical rainforest 

zones in the south, savanna plains and plateaus in the 

center, semi-arid Sahel in the north, and the eastern 

highlands, which include Nigeria’s highest point, 

Chappal Waddi at 2,419 m (Igbawua et al., 2024). 

 

 
 

Fig. 1: Map showing the geographical location of the 

study area (https://maps-nigeria.com/). 

Nigeria has a long history of natural disasters, with 

flooding identified as the most frequent and devastating 

hazard in the country, accounting for about 80% of 

disaster events (NEMA, 2024). One of the most severe 

episodes occurred in 2012, when prolonged and intense 

rainfall along the Niger-Benue river basin triggered large-

scale flooding. This event, often described as the most 

catastrophic flood in Nigeria’s modern history, lasted 

from July through October 2012, following a particularly 

heavy rainy season that spanned from April to September. 

Reports indicated that 30 out of the 36 states in Nigeria 

were affected. The disaster caused an estimated economic 

loss of nearly US$16 billion, displaced approximately 2.1 

million people, and led to 363 deaths by September. By 

late October, the number of affected persons had risen to 

about 7.7 million, with over 2 million Nigerians recorded 

as internally displaced persons (IDPs) (Francis & 

Ugoyibo, 2025).  

Climatically, Nigeria spans three major Köppen zones: 

tropical monsoon in the south, tropical savanna in the 

central belt, and semi-arid Sahelian in the north (Igbawua 

et al., 2024). The rainfall distribution decreases 

northward, from 1,800–4,000 mm annually in the Niger 

Delta to 500–700 mm in the Sahel. Coastal regions such 

as Lagos experience about 2,000 mm/year, whereas the 

north receives less than half this amount (Ndimele et al., 

2024). Seasonal variation is pronounced, with a wet 

season (March–September) driven by the West African 

Monsoon and a dry season (November–February) 

dominated by the Harmattan winds. Temperatures in the 

south range between 30–32 °C, while northern zones 

often exceed 35 °C during peak months (Ogunsola & 

Yaya, 2019). 

This diverse hydro-climatic and topographic profile 

makes Nigeria highly vulnerable to multiple types of 

flooding. Coastal and delta regions face riverine and 

coastal flooding during peak monsoon periods, while the 

north experiences flash floods from high-intensity rainfall 

over fragile soils. Consequently, modeling flood 

susceptibility in Nigeria requires a multi-variable 

approach integrating elevation, slope, river proximity, 

rainfall intensity, and land use patterns. This study 

leverages such factors within a PSO-optimized machine 

learning framework to generate robust predictions for 

flood risk management. 
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Fig. 2: Flood area detection using Google Earth Engine in 2025. 

Flood Inventory Data 

Flood inventory maps provide an essential foundation for 

flood susceptibility studies, as they record past flood 

events and establish relationships between hazard triggers 

and affected areas. For Nigeria, this study constructed a 

flood inventory dataset by combining historical disaster 

records and meteorological observations. The Emergency 

Events Database (EM-DAT) (Delforge et al., 2025) was 

employed to extract information on the timing, location, 

and severity of flood events across Nigerian states, while 

Climate Hazards Group InfraRed Precipitation with 

Stations (CHIRPS) (Wahyuni et al., 2021) data was used 

to obtain high-resolution daily rainfall estimates. By 

aligning EM-DAT events with rainfall patterns, a 

structured dataset was generated that captures both the 

spatial and temporal dynamics of flooding in Nigeria. 

This approach ensures that historical flood disasters are 

systematically tied to their meteorological drivers, 

thereby providing a reliable representation of the 

country’s flood history. 

To make the dataset suitable for machine learning 

analysis, flood events were encoded as binary indicators: 

flood points (flood = 1) were assigned where EM-DAT 

records coincided with high rainfall within a 30-day 

window, while non-flood points (flood = 0) were 

randomly sampled from states and periods without 

reported flooding. This binary classification framework 

ensured that both positive and negative instances were 

available for training predictive models. In line with 

common practices in related research the dataset was split 

into 70% for training and 30% for validation. Figure 3 

illustrates the spatial distribution of flood and non-flood 

points across Nigeria, which forms the supervised 

learning basis for the Particle Swarm Optimization–

Machine Learning (PSO–ML) framework developed in 

this study. 

 

Flood Conditioning Factors 

Selecting appropriate conditioning factors is a critical 

step in identifying areas that are vulnerable to flooding. 

These factors provide insights into the environmental 

setting, hydrological behavior, climatic influence, and 

human-induced changes within a region, helping to 

explain the spatial relationship between past flood 

occurrences and potential future risks (Khosravi et al., 

2019). Although there is no universally accepted set of 

flood conditioning variables, existing literature and the 

physical and socio-environmental characteristics of the 

study area guided the selection of key factors for this 

research. These include: elevation, slope, rainfall, flow 

direction, land use, distance to rivers, soil type, 

Normalized Difference Vegetation Index, Normalized 

Difference Built-up Index, and Normalized Difference 

Moisture Index. For better interpretation, these were 

classified into: topographic, hydro-meteorological, 

anthropogenic and environmental factors, geology factor 

and location-specific factors. 

Topographic factors such as elevation, slope, aspect, and 

curvature are fundamental in flood analysis. Low-lying 

areas are more prone to water accumulation, and 

elevation further influences slope, aspect, and curvature 

(Khoirunisa et al., 2021). Aspect determines the 
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orientation of slopes and affects rainfall distribution, 

while curvature describes surface shape; concave or flat 

surfaces tend to retain water and are therefore more flood-

prone. Slope controls runoff velocity, gentle slopes slow 

water movement and increase flood susceptibility. 

Land use was considered the main anthropogenic factor. 

It affects infiltration, evapotranspiration, and runoff 

dynamics. Built-up areas, due to impervious surfaces, 

restrict infiltration and increase runoff volume compared 

to agricultural or forested land (Ige-Olumide & Salami, 

2018). In the study area, rapid agricultural expansion and 

urbanization have reduced vegetation cover, lowering the 

natural capacity of the land to absorb and retain water, 

thereby raising flood risk (Arabameri et al., 2020). 

Hydro-meteorological variables, including rainfall and 

flow direction, directly influence flood occurrence. 

Intense or short-duration rainfall often triggers 

downstream flooding, especially where steep slopes and 

short river lengths exist (Arabameri et al., 2022). Flow 

direction represents the movement of surface water, 

highlighting areas of concentrated flow accumulation.  

Soil type, a geological factor, determines infiltration 

capacity and water retention potential. Soils with poor 

infiltration properties increase the likelihood and severity 

of flooding events (Vojtek & Vojteková, 2019). Location-

specific factors such as proximity to rivers and roads were 

also included. Being close to rivers increases 

susceptibility to fluvial flooding, while road networks can 

alter natural drainage pathways and reduce infiltration, 

thereby aggravating flood hazards (Giovannettone et al., 

2018). At the same time, proximity to roads may ease 

evacuation during flood events, creating a complex 

relationship. 

Vegetation and built-up density indices also serve as key 

indicators. Normalized Difference Vegetation Index 

reflects vegetation cover, which mitigates flood risk by 

reducing runoff. Normalized Difference Built-up Index 

highlights the extent of urban structures, with high values 

associated with reduced infiltration and increased runoff 

(Khosravi et al., 2019). Normalized Difference 

Moisture Index, on the other hand, measures surface 

moisture content; higher values are generally linked with 

greater flood potential. 

Table 1 presents the conditioning factors used in this 

study, their respective categories, a brief justification for 

inclusion, and the primary data sources from which they 

were obtained. Each factor was normalized and stored as 

a raster layer in ArcGIS for further analysis. 

 

Table 1: Flood Conditioning Factors Used in This Study 

 

Factor Category Description/Justification Data Source 

Elevation Topographic Low-lying areas are more prone to water 

accumulation and inundation. 

SRTM DEM 

(30m) 

Slope Topographic Steeper slopes facilitate faster runoff, while 

gentle slopes encourage water stagnation. 

Derived from 

SRTM DEM 

Rainfall Hydrometeorological Primary driver of floods; intense or prolonged 

rainfall increases flood risk. 

CHIRPS Daily 

Rainfall Data 

Flow Direction Hydrometeorological Determines natural pathways of water flow and 

accumulation points. 

Derived from 

SRTM DEM 

Land Use Anthropogenic Urbanization and land conversion reduce 

infiltration, increasing surface runoff. 

Landsat 8/9 

(USGS) 

Normalized 

Difference Built-up 

Index 

Anthropogenic Represents density of built-up areas; high 

values indicate impervious surfaces prone to 

flooding. 

Landsat 8/9 

(Bands 5 & 6) 

Normalized 

Difference 

Vegetation Index 

Vegetation/Soil Vegetation mitigates flooding by enhancing 

infiltration and reducing runoff. 

Landsat 8/9 

(Bands 4 & 5) 

Normalized 

Difference Moisture 

Index 

Vegetation/Soil Captures soil and surface moisture levels, 

which directly influence flood susceptibility. 

Landsat 8/9 

(Bands 5 & 6) 

Soil Type Vegetation/Soil Different soil classes vary in permeability and 

water retention capacity. 

FAO Digital 

Soil Map 

Distance to River Location-specific Areas closer to rivers (e.g., Niger, Benue) are 

highly vulnerable to fluvial flooding. 

Hydro SHEDS 

This research adopts a machine learning–driven 

methodology for predicting flood occurrence in Nigeria 

by integrating disaster records, meteorological datasets, 

and multi-source environmental conditioning factors. The 

overall methodology for this research is structured into 

five main phases namely: Data Collection and 
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Preprocessing, Conditioning Factor Preparation, Flood 

Inventory and Labeling, Machine Learning Model 

Development with PSO Optimization, and Model 

Validation and Flood Susceptibility Mapping. The 

workflow is illustrated in Figure 3. 

The process begins with the acquisition of multiple 

datasets: 

- Historical flood records from the EM-DAT 

International Disaster Database, which provide 

information on the timing, location, and severity 

of flood disasters across Nigerian states. These 

serve as the ground truth for model training. 

- Meteorological data from CHIRPS (Climate 

Hazards Group InfraRed Precipitation with 

Stations), which provide high-resolution daily 

rainfall estimates. Rainfall series were extracted 

via Google Earth Engine and aggregated into 

monthly summaries. 

- Topographic variables, including elevation and 

slope, derived from the SRTM (Shuttle Radar 

Topography Mission) DEM. Aspect and flow 

direction were also extracted to characterize 

hydrological dynamics. 

- Hydrological factors, such as distance to rivers, 

calculated from river network datasets to 

quantify exposure to fluvial flooding. 

Preprocessing involved cleaning and harmonizing the 

datasets, standardizing geographic units, and aligning 

environmental and meteorological variables with 

historical flood events. Flood labels were created by 

assigning binary indicators (flood = 1, no flood = 0) 

within a 30-day window of recorded events. Conditioning 

factors were normalized, and missing values were 

handled systematically. To address class imbalance, the 

Synthetic Minority Oversampling Technique (SMOTE) 

was applied to the training set. 

To optimize model performance, Particle Swarm 

Optimization (PSO) was employed for both feature 

selection and hyperparameter tuning. PSO, a population-

based metaheuristic inspired by the social behavior of 

birds, was used to identify the most relevant 

meteorological and environmental predictors while fine-

tuning classifier hyperparameters. This process reduces 

overfitting, enhances generalization, and ensures that the 

classifiers prioritize informative predictors. 

The optimized feature subsets and parameters were then 

applied to five machine learning algorithms: Logistic 

Regression (LR), K-Nearest Neighbors (KNN), Support 

Vector Machine (SVM), Random Forest (RF), and 

Gradient Boosting (GB). The dataset was partitioned into 

training (70%) and testing (30%) subsets. Model 

evaluation was conducted using Accuracy, Precision, 

Recall, F1-score, ROC-AUC, and PR-AUC metrics. 

Visual analytics included ROC-AUC curves, feature 

importance plots, and spatial–temporal heatmaps to 

identify flood-prone regions. 
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Figure 3: Methodological Workflow 
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Machine Learning Models and PSO Optimization 

The most advanced and well-liked computer vision 

technique right now in both research and industry is 

machine learning. It is currently the most popular 

innovative field in data management, trend analysis, 

prediction, health care, and finance. Making a system so 

intelligent that it can make decisions on its own without 

the aid of an external program is the foundation of 

machine learning (Dash et al., 2021). In essence, machine 

learning is the process of automatically learning a 

computer system or machine from provided data, often 

known as raw data or datasets. There are typically two 

main steps in this process: Model training Model testing 

or decision-making.  

 

K-Nearest Neighbors (KNN) 

Often known as the K-nearest neighbor (KNN) algorithm, 

the nearest neighbor technique is instance-based. This 

method essentially bases the prediction for test data on 

which object has the closest feature to the other objects in 

training datasets. The accuracy of the results increases 

with the size of the training dataset (Wang, 2019). In 

order to classify new samples alongside similar ones, the 

kNN (Çakir et al., 2023) is a controlled machine learning 

algorithm that can be used for both classification and 

regression. The method's basic idea is to assign new data 

in a previously created sample set to the cluster that is 

closest to it by a certain number of (k) distances, which 

can be calculated using distance functions like the 

Manhattan, Minkowski, Euclidean, and Euclidean 

distance. The kNN formula is shown in Equation 1. 

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖) 2𝑛
𝑖=1      (1) 

 

Support Vector Machine (SVM) 

For classification difficulties, this is the most widely used 

approach. It essentially uses the margin calculation 

method. This method separates features with high-

dimensional data using a hyperplane or a collection of 

hyperplanes in order to distinguish objects between 

classes. At first, SVM could only handle binary-

classification or two-class problems; however, a set of 

hyperplanes was later developed as a method to address 

multi-class problems as well.  

 

SVM is a popular and adaptable supervised machine 

learning technique that may be applied to both 

classification and regression. Vladimir, (1999) 

established the groundwork for SVM. Due to its many 

reliable learning characteristics and ability to predict 

successful trial outcomes, the SVM has been used in 

many different applications (Muawanah et al., 2023). In 

general, small and medium-sized classification tasks are 

better suited for the SVM. The SVM basically finds a 

hyperplane in N-dimensional space that clearly separates 

data points from several classes. A plane that linearly 

divides two segments of n-dimensional data is called a 

hyperplane. Hyperplanes are two-dimensional lines and 

three-dimensional planes. Equation (2), which provides 

theoretical support for the SVM algorithm, is presented 

below. 

𝑇 = {(𝑥𝑖 , 𝑦𝑖)|𝑖 = 1,2, … 𝑛}                                          (2) 

the n-dimensional characteristic vectors in the real 

number field 𝑥𝑖  𝑎𝑛𝑑 𝑦𝑖 ,𝑥𝑖є 𝑋, 𝑦𝑖є{−1, +1}. When the 

analyzed dataset is expressed with a linear relationship, 

can be used the linear Equations (3) and (4). 

𝑤𝑇𝑥 + 𝑏 = 0                (3) 

𝑤 = (𝑤1, 𝑤2, … 𝑤𝑑)               (4) 

where w is the hyperplane, b is the distance between the 

origin and the hyperplane. For this reason, the distance 

from the hyperplane to any point X can be expressed 

according to Equation (5) (Çakir et al., 2023). 

𝑦 =
|𝑤𝑇𝑥+𝑏|

‖𝑤‖
                (5) 

 

Random Forest (RF) 

In order to generate predictions, a Random Forest 

ensemble machine learning model mixes several decision 

trees. It is a strong and adaptable technique that may be 

applied to both regression and classification problems. 

Instead of depending on only one decision tree, the 

random forest determines the ultimate performance based 

on the majority of votes by utilizing the predictions from 

each tree (Adetunji et al., 2021). The Random Forest 

model is a collection of decision trees that can be applied 

to regression or classification. The average of the trees' 

results is the outcome in the regression instance, while the 

majority vote of the predicted values using the Decision 

Trees is the basis for the prediction in the classification 

scenario. In the training phase, a training set Ti is created 

for each tree based on the samples in the original training 

set T. Each tree split is created by randomly selecting 

features, which are then assessed by a measure to 

determine which one should result in the split. Because of 

this randomization, various trees are produced, which 

together typically produce higher prediction performance 

(Resende & Drummond, 2019). 

 

Logistic Regression (LR) 

A statistical technique called a logistic regression model 

uses one or more independent variables to forecast the 

likelihood of a binary or categorical event. An "S-shaped" 

curve that converts predictions to probabilities between 0 

and 1 is produced using a sigmoid function (Aletaha & 

Huizinga, 2009). This model assigns a class according to 

whether the anticipated probability is greater than a 

predetermined threshold (e.g., 50%) and is used for 

classification tasks like detecting spam emails or 

forecasting credit card fraud. 

Gradient Boosting (GB) 

In order to remedy the faults of the earlier models, a 

gradient boosting model is an ensemble machine learning 

technique that successively combines numerous weak 
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models, usually decision trees, to create a powerful 

prediction model. By training each new weak model to 

forecast the "gradient" or mistakes of the sum of the 

predictions of all previous models, this iterative method 

efficiently minimizes a loss function and raises overall 

accuracy (Konstantinov & Utkin, 2021). For both 

classification and regression tasks on tabular data, 

gradient boosting is a potent technique that is renowned 

for its high accuracy and capacity to uncover intricate 

relationships in data. 

Boosting is an ensemble technique that combines several 

weak learners to create a power learner. The process can 

be expressed as follows: 𝐹(𝑘−1)(𝑥) 𝑎𝑛𝑑 𝐹𝑘 represent the 

functions that produce the predicted values at 

iterations 𝑘 − 1 𝑎𝑛𝑑 𝑘, respectively; iteration 𝑘 also 

indicates that 𝑘 trees are ensembled in the model. At 

iteration 𝑘, the new estimator 𝑓𝑘(𝑥𝑖) attempts to correct 

the previous prediction 𝑦𝑖
(𝑘−1)

𝑜𝑟 𝐹𝑖
(𝑘−1)

(𝑥) and creates a 

new prediction 𝑦𝑖
(𝑘)

𝑜𝑟 𝐹𝑖
(𝑘)

(𝑥) (Si & Du, 2020). 

𝑦𝑖
𝑘 = 𝑦𝑖

(𝑘−1)
+ 𝑓𝑘(𝑥𝑖)                 (6) 

 

Particle Swarm Optimization Techniques (PSO) 

 

One popular population-based metaheuristic for resolving 

optimization issues is particle swarm optimization (PSO). 

In order to reach the food target, this algorithm mimics 

the social behavior of birds in the flock. The swarm of 

birds approaches their food destination by combining 

social and self-experience. They constantly reorganize 

themselves into the finest possible formation by updating 

their position based on both their own and the swarm's 

optimum positions. James Kennedy, a social 

psychologist, and Russell Elberhart, an electrical 

engineer, were motivated to use the social-psychological 

behavior of birds to solve problems. The particle swarm 

optimization (PSO) method was created by Kennedy and 

Eberhart (Vanneschi & Silva, 2023) to optimize 

continuous non-linear functions. Iterations are how this 

swarm-intelligence algorithm based on nature operates. It 

begins with a population of potential solutions, referred 

to as a swarm. In this case, every particle stands for a 

possible fix for the issue at hand. The velocity and 

position of each individual are updated in each iteration 

to update the population. The global best value (gbest) 

and personal best value (pbest) serve as the foundation for 

these changes. The two fundamental values, according to 

Eberhart and Kennedy, are pbest and gbest. The particles' 

position is determined by their own position in the pbest 

model, but in the gbest model, the position of the particles 

is determined by the best position that any member of the 

entire population can find. Each particle will then 

converge to this new location in accordance with that. To 

put it briefly, pbest is the best position or location that the 

individual has managed to secure thus far. Gbest is the top 

spot that any individual has so far achieved in the entire 

population while searching the solution space. 

 

Model Evaluation Metrics 

To evaluate the performance of the proposed flood 

prediction models, a combination of classification and 

regression metrics was employed. This dual approach 

was chosen because the models in this study generate 

both categorical outcomes (flood / no flood, or 

susceptibility classes) and continuous outputs 

(likelihood or probability scores). Evaluating both aspects 

ensures a comprehensive assessment of model 

performance. 

1. Classification Metrics 

i. A confusion matrix is a table used to 

evaluate the performance of a 

classification model. It displays a 

summary of the predictions a model 

made compared to the actual 

classifications, showing where it 

succeeded and where it was 

"confused". 

For a binary classification problem 

(e.g., classifying an email as "spam" or 

"not spam"), the confusion matrix is a 

2x2 table with four key metrics:  

True Positive (TP): The model 

correctly predicted the positive class. 

True Negative (TN): The model 

correctly predicted the negative class. 

False Positive (FP): The model 

incorrectly predicted the positive class 

(a Type I error). 

False Negative (FN): The model 

incorrectly predicted the negative class 

(a Type II error). 

ii. Accuracy: Proportion of correctly 

classified instances across all classes. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 
          (7) 

iii. Precision: Ability of the model to 

correctly identify flood-prone areas 

among all areas it predicted as flood-

prone. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
               (8) 

iv. F1-Score: Harmonic mean of Precision 

and Recall, balancing false positives 

and false negatives.  

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
      (9) 

v. AUC (Area Under the ROC Curve): 

Captures the model’s discriminatory 

ability between flood and non-flood 

zones. A higher AUC reflects better 

separation between classes. 
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2. Regression Metrics 

i. RMSE (Root Mean Square Error): 

Measures the standard deviation of 

prediction errors when dealing with 

continuous flood susceptibility scores. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ 〈𝑜𝑖 − 𝑓𝑖〉 2𝑁

𝑖=1           (10) 

𝑤ℎ𝑒𝑟𝑒: 𝑜𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑜𝑏𝑒𝑠𝑒𝑟𝑣𝑒𝑑  
(𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒), 𝑓𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑛𝑑 

𝑁 𝑖𝑠 𝑡ℎ𝑒 total number of data points 

  
ii. MAE (Mean Absolute Error): 

Provides the average magnitude of 

errors in prediction without 

considering their direction. 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦𝑖

^|𝑁
𝑖                    (11) 

Where 𝑛 is the total number of data 

points, 𝑦𝑖 is the actual value, and 𝑦𝑖
^ is 

the predicted value for the 𝑖-th data 

point.  

iii. R² (Coefficient of Determination): 

Indicates how well the predicted 

susceptibility scores fit the observed 

data. 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
                                     (12) 

Where: 

RSS is the Residual Sum of Squares, 

which measures the squared 

differences between the actual 

observed values (𝑦𝑖) and the predicted 

values (𝑦𝑖
^) from the model. 

𝑅𝑆𝑆 = ∑ |𝑦𝑖 − 𝑦𝑖
 ^|𝑁

𝑖=0                     (13) 

TSS is the Total Sum of Squares, which 

measures the squared differences 

between the observed values (𝑦𝑖) and 

the mean of the observed values (𝑦𝑖
−). 

𝑇𝑆𝑆 = ∑ |𝑦𝑖 − 𝑦𝑖
 −|𝑁

𝑖=0                                                  (14) 

 

RESULTS AND DISCUSSION 

 

Relationship between Training Data and Flood 

Conditioning Variables 

Understanding how different environmental and 

meteorological factors influence flood occurrence is 

essential for developing a reliable predictive framework. 

By identifying the most relevant predictors and reducing 

the influence of less significant ones, the models achieve 

higher accuracy and generalization. Feature importance 

analysis, performed using the Particle Swarm 

Optimization (PSO)-based feature selection in 

combination with the Random Forest model, revealed 

that rainfall and elevation emerged as the dominant 

factors in driving flood events across Nigerian states. 

Rainfall was identified as the most critical predictor 

because extreme precipitation events often precede 

widespread flooding, particularly in the Niger-Benue 

basin and other low-lying regions. Elevation ranked 

second, as areas with lower altitudes tend to accumulate 

surface water more quickly, exacerbating flood risk. 

Other influential variables included land use, which 

reflects human modification of natural landscapes; 

proximity to rivers, which indicates exposure to overflow 

and inundation; and slope, which affects the rate of 

surface runoff. Conversely, variables such as vegetation 

indices (NDVI), soil type, and road proximity had 

moderate importance, while temporal features like aspect 

and curvature contributed little to improving predictive 

performance. These weaker predictors were found to be 

less discriminative, largely because flood events in 

Nigeria are more strongly explained by rainfall intensity, 

terrain characteristics, and hydrological connectivity.
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Fig. 4: Flood conditioning factors importance 

 

The analysis shows that floods in Nigeria are primarily 

driven by a combination of meteorological extremes 

(rainfall) and topographic vulnerability (low elevation 

and gentle slopes), magnified by anthropogenic factors 

such as land-use changes and urban expansion. This 

aligns with observed flood patterns in recent years, where 

intense rainfall, river overflow, and poor drainage 

infrastructure have jointly increased the likelihood and 

severity of flooding across multiple states. 

Comparative Performance of Models 

 

Table 2: Performance metrics result of the models 

 

Mode

l 

Training data Validation data 

 AU

C 

Accur

acy 

F1 Precis

ion  

RM

SE 

MA

E 

R2 AU

C 

Accur

acy 

F1 Precis

ion  

RM

SE 

MA

E 

R2 

KNN 0.98

12 

0.940

0 

0.87

58 

0.902

5 

0.37

25 

0.07

17 

0.43

32 

0.98

55 

0.928

3 

0.96

44 

0.862

3 

0.49

24 

0.08

20 

0.25

95 

SVM 0.99

71 

0.982

1 

0.87

04 

0.935

3 

0.21

13 

0.02

92 

0.82

82 

0.92

98 

0.958

3 

0.96

35 

0.906

4 

0.31

38 

0.05

52 

0.52

91 

LR 0.97

21 

0.954

2 

0.92

35 

0.912

5 

0.33

32 

0.06

72 

0.49

91 

0.97

91 

0.946

6 

0.94

28 

0.889

2 

0.36

96 

0.06

82 

0.44

45 

RF 1.00

00 

1.000

0 

0.93

82 

0.924

3 

0.38

65 

0.01

11 

0.98

65 

0.98

45 

0.991

6 

0.93

82 

0.909

3 

0.35

46 

0.03

27 

0.88

62 

XGB

oost 

1.00

00 

1.000

0 

0.98

85 

0.975

4 

0.35

44 

0.00

09 

0.99

99 

1.00

00 

0.998

3 

0.98

85 

0.945

3 

0.32

16 

0.00

26 

0.97

54 
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Fig. 5 and 6: Comparison of prediction of proposed 

models for the training dataset and validation dataset. 

 
Fig. 7: RMSE value after 50 epochs for the validation 

dataset. 

The predictive strength of the five selected classifiers: 

KNN, SVM, Logistic Regression (LR), Random Forest 

(RF), and XGBoost, was assessed using ROC curves and 

the AUC metric. The ROC plots (Figures 6 and 7) present 

the discrimination ability of each model on the training 

and validation sets, while the detailed performance 

indices are summarized in Table 2. 

On the training dataset, both RF and XGBoost 

demonstrated flawless classification capability with AUC 

values of 1.000. This indicates that the ensemble-based 

methods were able to perfectly separate flood from non-

flood instances in the training phase. SVM also achieved 

near-perfect discrimination (AUC = 0.9971), slightly 

outperforming KNN (AUC = 0.9812) and LR (AUC = 

0.9721). In terms of accuracy and F1-score, the XGBoost 

model was the most consistent, with accuracy of 1.000 

and F1-score of 0.9885, suggesting it generalized very 

well on the training data. 

On the validation dataset, the models maintained high 

predictive power, though some variations appeared. 

XGBoost again stood out with the best performance 

(AUC = 1.000, Accuracy = 0.9983, F1 = 0.9885), 

showing strong generalization capability. Random Forest 

followed closely (AUC = 0.9845, Accuracy = 0.9916, F1 

= 0.9382), while KNN and Logistic Regression 

maintained competitive AUC scores of 0.9855 and 

0.9791 respectively. The SVM model, although strong on 

training data, registered a relatively lower validation 

AUC of 0.9298, reflecting a degree of overfitting 

compared to the others. 

The error-based indices (RMSE and MAE) further 

emphasize the superiority of XGBoost. Its RMSE (0.3544 

train, 0.3216 validation) and extremely low MAE values 

(0.0009 train, 0.0026 validation) demonstrate remarkable 

stability and robustness across both datasets. Random 

Forest also showed strong consistency, with low 

validation error (MAE = 0.0327) and the highest R² value 

(0.8862), indicating good explanatory power. In contrast, 

KNN and LR exhibited slightly higher error rates, 

although they still maintained competitive predictive 

ability. 

The results indicate that ensemble models, particularly 

XGBoost, provide the highest predictive accuracy, 

stability, and generalization for flood risk assessment in 

Nigeria. Traditional models like KNN, SVM, and LR, 

while strong, were comparatively less effective in 

handling the complexity of the dataset. 

The ROC curve for the training dataset (Figure X) 

highlights the strong separation capacity of the five 

classifiers. Both Random Forest (RF) and Gradient 

Boosting (GB/XGBoost) achieved perfect classification 

with an AUC of 1.000, indicating flawless discrimination 

on the training data. The SVM with RBF kernel also 

performed impressively (AUC = 0.997), followed by 

KNN (AUC = 0.981) and Logistic Regression (AUC = 

0.972). This ranking is consistent with the training 
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metrics presented in Table 1, where ensemble models (RF 

and XGBoost) recorded not only the highest AUC but 

also superior F1-scores and accuracy values. 

On the validation dataset (Figure Y), the ROC curves 

again confirm the advantage of ensemble methods. 

XGBoost retained its leading performance (AUC = 

1.000), closely followed by RF (AUC = 0.984). KNN 

(AUC = 0.986) and LR (AUC = 0.979) maintained good 

generalization capacity, while SVM, though still strong 

(AUC = 0.930), showed a mild drop compared to its near-

perfect training score, hinting at possible overfitting. 

In terms of error-based measures, XGBoost reported the 

lowest RMSE and MAE values across both datasets, with 

exceptionally small deviations on the validation set 

(RMSE = 0.322, MAE = 0.003). Random Forest followed 

closely, delivering stable performance with low error 

indices and the highest R² on the validation dataset 

(0.886). By contrast, KNN and LR presented slightly 

higher error values, though they remained competitive. 

Taken together, both the ROC curves and tabular results 

establish that ensemble learners, particularly XGBoost, 

provide the most accurate and consistent predictions for 

flood risk assessment. Traditional classifiers (SVM, 

KNN, LR) still achieved strong results, but their 

performance was comparatively less robust under 

validation. 

 

 
 

Fig. 8: Flood Susceptibility Map of XGB ML model 

Earth Engine Platform. 

The outcomes of this study emphasize the critical role of 

integrating optimization techniques with traditional 

machine learning models to improve flood risk prediction 

in data-constrained environments such as Nigeria. 

Among the tested classifiers, ensemble-based models, 

particularly XGBoost and Random Forest enhanced with 

Particle Swarm Optimization (PSO), achieved superior 

predictive accuracy and generalization. These findings 

suggest that optimized ensemble learners are better suited 

for capturing the nonlinear interactions between 

hydrological, meteorological, and anthropogenic factors 

that drive flood events across diverse Nigerian 

landscapes. 

The spatial distribution of predicted high-risk zones 

revealed that low-lying areas along the Niger-Benue 

floodplains, as well as densely populated urban centers 

with inadequate drainage systems, are most vulnerable. 

This outcome aligns with historical flood records, where 

excessive rainfall combined with poor land-use planning 

has repeatedly resulted in severe inundation, large-scale 

displacement, and destruction of livelihoods. Agricultural 

regions, particularly those engaged in rice and cassava 

cultivation, were also identified as highly susceptible. 

Recurrent flooding in these zones poses significant 

threats to national food security, as annual losses disrupt 

both household subsistence and broader economic 

stability. 

Similarly, settlements expanding into natural floodplains 

without appropriate infrastructure face increasing 

exposure to climate-induced hazards. Unregulated 

urbanization, coupled with blocked drainage channels 

and encroachment on wetlands, further amplifies risk 

levels. These insights underline the urgent need for 

policies that discourage uncontrolled development in 

flood-prone areas while promoting resilient land-use 

strategies. 

From a disaster management perspective, the predictive 

framework developed in this study can provide actionable 

intelligence for agencies such as the National Emergency 

Management Agency (NEMA) and local planning 

authorities. Early identification of highly susceptible 

zones enables the prioritization of structural interventions 

such as levees, improved drainage systems, and flood 

diversion channels. In parallel, non-structural measures, 

including community awareness programs, flood 

insurance schemes, and the establishment of evacuation 

routes, can be strategically planned using the 

susceptibility maps generated in this research. 

Moreover, the study demonstrates that data-driven 

approaches, when strengthened with optimization 

algorithms like PSO, offer a cost-effective and scalable 

alternative to physics-based hydrological models, which 

often demand extensive data and computational resources 

not readily available in Nigeria. This methodological 

advancement bridges an important gap by ensuring that 

reliable flood risk predictions can still be achieved in 

resource-limited settings. 

In the broader context of climate change adaptation, the 

results stress the necessity for an integrated approach that 

combines scientific modeling with effective governance. 

With the increasing frequency and intensity of floods 

projected for Nigeria, a shift from reactive post-disaster 

responses toward proactive risk reduction strategies is 

vital. By embedding machine learning–driven predictions 

into national and local planning frameworks, 

policymakers can mitigate long-term damages, safeguard 

livelihoods, and strengthen resilience against future 

flooding disasters. 
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Table 3: Comparative analysis of the proposed 

approach against some existing approach 

 

Models Precisi

on 

F1-

scor

e 

Accura

cy (%) 

RO

C-

AU

C 

Existing approach (Adeyemi & Komolafe, 

2025) 

SVM 0.91 0.92 88 0.82 

XGBoo

st 

0.94 0.94 91 0.89 

ANN 0.87 0.90 85 0.86 

Existing approach (Kolajo & Agbogun, 

2023) 

RF 0.98 - 91 - 

BAG 0.98 - 89 - 

C5.0 0.89 - 68 - 

XGB 0.98 - 91 - 

GBM 0.91 - 78 - 

Proposed Method 

KNN 0.86 0.96 93 0.99 

SVM 0.91 0.96 96 0.93 

LR 0.89 0.94 95 0.98 

RF 0.91 0.94 99 0.99 

XGBoo

st 

0.95 0.99 1.00 1.00 

 

The comparative evaluation between the proposed PSO-

optimized framework and existing approaches highlights 

the significant improvements achieved in flood 

susceptibility prediction. Table 3 shows that, across all 

metrics, the proposed method consistently outperformed 

previous models developed by Adeyemi & Komolafe, 

(2025) and Kolajo & Agbogun, (2023). 

In Adeyemi & Komolafe's, (2025) work, Support Vector 

Machine (SVM), XGBoost, and Artificial Neural 

Networks (ANN) achieved accuracies of 88%, 91%, and 

85%, respectively, with ROC-AUC values ranging from 

0.82 to 0.89. While these models demonstrated 

reasonable predictive power, their ability to capture 

complex non-linear interactions was limited by the 

absence of optimization mechanisms. Similarly, Kolajo 

& Agbogun, (2023) employed ensemble learners such as 

Random Forest (RF), Gradient Boosting Machine 

(GBM), and Bagging, which recorded strong precision 

values (0.91–0.98) but moderate accuracy levels (68–

91%), with missing or unreported F1-scores and ROC-

AUC values. These limitations reduced the 

interpretability and robustness of their frameworks, 

particularly for real-world disaster management 

applications. 

In contrast, the proposed PSO-enhanced models delivered 

superior results across all classifiers. KNN, LR, and SVM 

each achieved notable improvements, recording 

accuracies of 93%, 95%, and 96% with ROC-AUC scores 

above 0.93. Random Forest achieved near-perfect 

performance with 99% accuracy and an ROC-AUC of 

0.99, while XGBoost outperformed all other models with 

a flawless 100% accuracy, F1-score of 0.99, and ROC-

AUC of 1.00. These results underscore the effectiveness 

of integrating PSO for feature selection and 

hyperparameter tuning, which not only enhanced 

classifier performance but also reduced redundancy in 

conditioning factors. 

The outstanding performance of XGBoost and Random 

Forest within the proposed framework can be attributed 

to their ensemble nature, which allows them to capture 

complex non-linear relationships among environmental, 

hydrological, and climatic variables. By incorporating 

PSO, these models were able to achieve optimal 

parameter configurations, thereby minimizing overfitting 

and maximizing generalization to unseen data. This 

improvement was particularly evident in the ROC-AUC 

values, which indicate stronger discriminative power in 

distinguishing between flood-prone and non-flood-prone 

areas. 

All in all, the results demonstrate that the proposed PSO-

ML framework offers a more robust and reliable solution 

for flood risk assessment in Nigeria compared to existing 

studies. By achieving higher accuracy, precision, and 

recall, the approach ensures better identification of high-

risk zones, providing critical insights for policymakers, 

planners, and disaster management agencies.  

 

CONCLUSION 

This study demonstrated the importance of developing 

accurate flood susceptibility maps as a basis for disaster 

risk reduction and sustainable land-use planning in 

Nigeria. By integrating Particle Swarm Optimization 

(PSO) with five machine learning classifiers: k-Nearest 

Neighbor (kNN), Support Vector Machine (SVM), 

Logistic Regression (LR), Random Forest (RF), and 

Gradient Boosting (XGBoost), a robust framework was 

established to identify and predict flood-prone zones. A 

number of conditioning factors representing topographic, 

hydrological, climatic, and anthropogenic variables were 

employed alongside historical flood events, ensuring the 

reliability and comprehensiveness of the dataset. 

The results revealed that rainfall, elevation, slope, and 

land use were the dominant predictors of flooding, while 

ensemble models, particularly XGBoost, consistently 

outperformed other classifiers across all evaluation 

metrics. The susceptibility maps indicated that regions 

surrounding the Niger and Benue River basins, central 

lowlands, and coastal areas are most vulnerable to flood 

hazards. These areas contain dense populations, extensive 

croplands, and critical infrastructure, making them highly 

exposed to social, economic, and environmental risks. 

The study therefore underscores the value of 

optimization-driven machine learning approaches in 
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supporting flood risk management, especially in data-

limited contexts such as Nigeria. The maps and insights 

generated here can serve as decision-support tools for 

policymakers and disaster management agencies, guiding 

interventions such as improved drainage systems, 

embankments, zoning enforcement, and early warning 

mechanisms. 

Although the study provides significant contributions, 

there are opportunities for future enhancement. 

Integrating near real-time rainfall and hydrological 

monitoring data would make it possible to transition from 

static susceptibility mapping to dynamic flood 

forecasting. Future work could also explore additional 

conditioning factors, such as land subsidence, soil 

permeability, and drainage capacity, to improve localized 

predictions. Beyond PSO, other metaheuristic algorithms 

like Genetic Algorithms, Ant Colony Optimization, and 

Harmony Search could be compared for feature selection 

and hyperparameter tuning. Moreover, combining 

optimization techniques with deep learning models such 

as Convolutional Neural Networks (CNNs) or Recurrent 

Neural Networks (RNNs) could further strengthen the 

spatial and temporal prediction of floods, particularly 

when using remote sensing and time-series rainfall data. 

At a practical level, future studies should emphasize 

higher-resolution mapping at community or city scales to 

provide locally actionable outputs. Interactive web-based 

risk dashboards could be developed to translate technical 

results into tools that support decision-making by 

planners, policymakers, and emergency agencies. Finally, 

incorporating climate change scenarios into predictive 

frameworks will be vital for understanding how flood risk 

may evolve under different warming pathways, thereby 

enabling long-term adaptation strategies for Nigeria. 
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