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ABSTRACT 
This research explores the utilization of the existing new fixed coefficient 

diagonally implicit block backward differentiation formula for solving stiff 

initial value problems. The study includes the derivation of the method’s order 

of accuracy and its associated error constant. Convergence analysis confirms 

that the method satisfies the sufficient and necessary conditions of consistency 

and zero-stability respectively. The effectiveness of the method is validated 

through comparative analysis involving both numerical and theoritical solutions 

for selected stiff problems. Results reveal that the method maintains stability 

and achieves enhanced accuracy as the step size diminishes, demonstrating its 

suitability for stiff ordinary differential equations.   
 

 

INTRODUCTION 

Consider the general system of first-order stiff initial 

value problems (IVPs) defined as: 

 𝑦′
𝑛 

= 𝑓𝑛(𝑥, 𝑦𝑛), 𝑦(𝑎) = 𝜃𝑛 ,   𝑛 = 1,2, … … , 𝑟,     

 𝑥 ∈ [𝑎, 𝑏]                                                              (1)   
where   𝑦𝑛 , 𝑦′

𝑛 
, 𝑓𝑛     and 𝜃𝑛 are r-dimensional vectors. 

This class of differential equations possesses 

characteristics such that the application of standard 

numerical methods, such as the Euler or Runge-Kutta 

methods, often results in numerical instability unless the 

step size is sufficiently small. Due to this limitation, [1] 

introduced the term stiff ordinary differential equations 

(ODEs) to describe such systems. Stiff ODEs commonly 

arise in various scientific and engineering applications, 

including chemical kinetics, vibrating strings, electrical 

circuits, and control systems. 

Numerical methods for solving stiff ODEs can broadly be 

classified into block and non-block methods. Block 

methods compute multiple solution values simultaneously 

within each step. A prominent example is the Block 

Backward Differentiation Formula (BBDF). In contrast, 

non-block methods calculate solution values sequentially, 

as seen in the Backward Differentiation Formula (BDF). 

Further details on non-block approaches for solving 

equation (1) are documented in [1]–[4], whereas block 

methods are extensively discussed in [5]–[14]. Studies on 

the convergence properties of block methods are 

presented in [15]–[21]. 

A newly developed method known as the New Fixed 

Coefficient Diagonally Implicit Block Backward 

Differentiation Formula (NFDIBBDF), introduced by  

 

 

 

 

 

 

 

[13], has demonstrated both computational efficiency 

and effectiveness in solving first-order stiff IVPs. This 

research focuses on the derivation of the method’s 

order of accuracy, the analysis of its convergence 

properties, and the validation of its accuracy and 

stability through rigorous theoretical and numerical 

investigations. 

The NFDIBBDF method, as proposed in [13], is 

defined as follows: 

𝑦𝑛+1 =
2

29
𝑦𝑛−2 −

27

29
𝑦𝑛−1 +

54

29
𝑦𝑛 +

15

29
ℎ𝑓𝑛+1 −

9

29
ℎ𝑓𝑛−1, 

                            𝑦𝑛+2 = −
3

 32
𝑦𝑛−2 +

7

16
𝑦𝑛−1 −

45

32
𝑦𝑛 +

33

16
𝑦𝑛+1 +

15

32
ℎ𝑓𝑛+2 −

9

32
ℎ𝑓𝑛,                                  (2) 

     𝑦𝑛+3 =
 27

 347
𝑦𝑛−2 −

165

347
𝑦𝑛−1 +

410

347
𝑦𝑛 −

720

347
𝑦𝑛+1 +

795

347
𝑦𝑛+2 +

150

347
ℎ𝑓𝑛+3 −

90

347
ℎ𝑓𝑛+1. 

This block method computes three solution values 

simultaneously at each step and is particularly suited 

for solving stiff initial value problems as given in 

equation (1). The theoretical formulation and 

derivation of this method are presented in detail in 

[12]. 

 

MATERIALS AND METHODS 
 

ORDER AND ERROR CONSTANT OF THE 

NFDIBBDF METHOD 

The order of accuracy of any block numerical scheme 

is a critical metric for evaluating its precision and  
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computational efficiency in approximating the solutions 

of ordinary differential equations (ODEs). It indicates the 

rate at which the method converges to the exact solution 

as the step size approaches zero [22]. Generally, higher-

order methods yield more accurate results; however, there 

is often a trade-off between increased accuracy and higher 

computational cost. A clear understanding of the order of 

a numerical method assists researchers and practitioners 

in selecting appropriate schemes based on the specific 

requirements and limitations of the problem at hand. 

To determine the order of the NFDIBBDF method, we 

rewrite it in the following form: 

−
2

29
𝑦𝑛−2 +

27

29
𝑦𝑛−1 −

54

29
𝑦𝑛 + 𝑦𝑛+1 = −

9

29
ℎ𝑓𝑛−1 +

15

29
ℎ𝑓𝑛+1, 

                       
3

 32
𝑦𝑛−2 −

7

16
𝑦𝑛−1 +

45

32
𝑦𝑛 −

33

16
𝑦𝑛+1 +

𝑦𝑛+2 = −
9

32
ℎ𝑓𝑛 +

15

32
ℎ𝑓𝑛+2,                     (3)      

−
 27

 347
𝑦𝑛−2 +

165

347
𝑦𝑛−1 −

410

347
𝑦𝑛 +

720

347
𝑦𝑛+1 −

795

347
𝑦𝑛+2 +

𝑦𝑛+3 = −
90

347
ℎ𝑓𝑛+1 +

150

347
ℎ𝑓𝑛+3. 

Equation (3) can be expressed in a general matrix form: 

                       ∑ 𝑆𝑗
∗𝑌𝑚+𝑗−1 = ℎ ∑ 𝑇𝑗

∗𝐹𝑚+𝑗−1
1
𝑗=0

1
𝑗=0                                   (4) 

where 𝑆𝑗
∗ and 𝑇𝑗

∗ are constant square matrices and 𝑌𝑚−1,

𝑌𝑚 , 𝐹𝑚−1and 𝐹𝑚 are column vectors defined: 

𝑆0
∗ =

[
 
 
 
 −

2

29

27

29
−

54

29
3

 32
−

7

16

45  

32

−
27

347

165

 347
−

410

347]
 
 
 
 

 ,   𝑆1
∗ =

[

   1   0 0

−
33

16
  1 0

720

347
−

795

 347
1

] , 𝑇0
∗ = [

0 −
9

29
 0

0   0 −
9

 32

0   0   0  

] ,  

𝑇1
∗ =

[
 
 
 
 

15

29
0 0

0
15

32
  0  

−
90

  347
0

150

347]
 
 
 
 

,𝑌𝑚−1 = [

𝑦𝑛−2

𝑦𝑛−1  

𝑦𝑛

] , 𝑌𝑚 =

[

𝑦𝑛+1

𝑦𝑛+2   

𝑦𝑛+3

] , 𝐹𝑚−1 = [

𝑓𝑛−2

𝑓𝑛−1

𝑓𝑛

]  and   𝐹𝑚 = [

𝑓𝑛+1

𝑓𝑛+2

𝑓𝑛+3

]  

The formula (3) can be written in matrix form as follows: 

[
 
 
 
 −

2

29

27

29
−

54

29
3

 32
−

7

16

45  

32

−
27

347

165

 347
−

410

347]
 
 
 
 

[

𝑦𝑛−2

𝑦𝑛−1  

𝑦𝑛

] +

[

   1   0 0

−
33

16
  1 0

720

347
−

795

 347
1

] [

𝑦𝑛+1

𝑦𝑛+2   

𝑦𝑛+3

] =

ℎ [

0 −
9

29
 0

0   0 −
9

 32

0   0   0  

] [

𝑓𝑛−2

𝑓𝑛−1

𝑓𝑛

]  ℎ

[
 
 
 
 

15

29
0 0

0
15

32
  0  

−
90

  347
0

150

347]
 
 
 
 

[

𝑓𝑛+1

𝑓𝑛+2

𝑓𝑛+3

]  (5)  

 

Definition 1: Linear Multistep Method 

(LMM) 

A general linear multistep method is given by:                              

                 ∑ 𝑆𝑗𝑦𝑛+𝑗
𝑘
𝑗=0 =

ℎ ∑ 𝑇𝑗𝑓𝑛+𝑗
𝑘
𝑗=0                                                                         (6)  

where 𝑆𝑗and 𝑇𝑗 are constants and 𝑆𝑘 ≠ 0 such that not 

all 𝑆0 and 𝑇0 are simultaneously zero. For any linear k-

step method, 𝑆𝑘  is normalized to 1. 

Definition 2: Order of the Block Method  
The order of the block method can be obtained by 

associating it with the linear operator 𝐿[𝑦(𝑥), ℎ] which 

is defined as; 

                          𝐿{𝑦(𝑥), ℎ} = ∑ [𝑆𝑗𝑦(𝑥 + 𝑗ℎ) −𝑘
𝑗=0

ℎ𝑇𝑗𝑦
′(𝑥 +

𝑗ℎ)]                                                                                 (7)    

where 𝑦(𝑥) is an arbitrary test function that is 

continuously differentiable on the interval [a,b] and  

𝑆𝑗and𝑇𝑗 are constant coefficient matrices.  

Expanding 𝑦(𝑥 + 𝑗ℎ) and its derivatives (𝑖. 𝑒. 𝑦′(𝑥 +
𝑗ℎ)) using Taylor series around 𝑥 gives: 

𝑦(𝑥 + 𝑗ℎ)  = 𝑦(𝑥) + (𝑗ℎ)𝑦′(𝑥) +
(𝑗ℎ)2

2!
𝑦′′(𝑥) +

(𝑗ℎ)3

3!
𝑦′′′(𝑥) +

(𝑗ℎ)4

4!
𝑦′𝑣(𝑥) + …                               (8) 

𝑦′(𝑥 + 𝑗ℎ) = 𝑦′(𝑥) + (𝑗ℎ)𝑦′(𝑥) +
(𝑗ℎ)2

2!
𝑦′′(𝑥) +

(𝑗ℎ)3

3!
𝑦′𝑣(𝑥) +

(𝑗ℎ)5

4!
𝑦𝑣(𝑥) + ⋯                                (9)  

Substituting these expansions into the difference 

operator (7) yields a power series in 𝑥. 

𝐿[𝑦(𝑥), ℎ] = ∑ 𝑆𝑗 [𝑦(𝑥) + (𝑗ℎ)𝑦′(𝑥) +5
𝑗=0

(𝑗ℎ)2

2!
𝑦′′(𝑥) +

(𝑗ℎ)3

3!
𝑦′′′(𝑥) +

(𝑗ℎ)4

4!
𝑦′𝑣(𝑥) + ⋯ ] −

                       ℎ ∑ 𝑇𝑗 [𝑦′(𝑥) + (𝑗ℎ)𝑦′′(𝑥) +5
𝑗=0

(𝑗ℎ)2

2!
𝑦′′′(𝑥) +

(𝑗ℎ)3

3!
𝑦′𝑣(𝑥) +

(𝑗ℎ)5

4!
𝑦𝑣(𝑥) + ⋯ ] =

                        ∑ [𝑆𝑗]𝑦(𝑥)5
𝑗=0 + ∑ [𝑗𝑆𝑗 − 𝑇𝑗]

5
𝑗=0 ℎ𝑦′(𝑥) +

1

2!
∑ [𝑗2𝑆𝑗 − 2𝑗𝑇𝑗]ℎ

25
𝑗=0 𝑦′′(𝑥)   +

                      
1

3!
∑ [𝑗3𝑆𝑗 − 3𝑗2𝑇𝑗]ℎ

3𝑦′′′(𝑥) +5
𝑗=0

1

4!
∑ [𝑗4𝑆𝑗 − 4𝑗3𝑇𝑗]ℎ

4𝑦′𝑣(𝑥) +5
𝑗=0

⋯                                                         (10) 

The block method together with the associated linear 

difference operator (7) is considered to be of order p if 

𝑈0 = 𝑈1 = 𝑈2 = ⋯ = 𝑈𝑝 = 0 and 𝑈𝑝+1 ≠

0,where𝑈𝑖
′𝑠 , 𝑖 = 0,1,2, … , 𝑝, 𝑝 + 1 are the constant 

(column) matrix. 

To compute the order of the method, we consider the 

matrix equation (5) as outlined above: 
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Let 𝑆0
∗,    𝑆1

∗, 𝑇0
∗and 𝑇1

∗ be block matrix define by: 

𝑆0
∗ = (𝑆0 , 𝑆1, 𝑆2, ),    𝑆1

∗ = (𝑆3 , 𝑆4, 𝑆5), 𝑇0
∗

= (𝑇0 ,  𝑇1, 𝑇2, ), and   𝑇1
∗ = (𝑇3 , 𝑇4, 𝑇5) 

where 𝑆0 =

[
 
 
 
 −

2

29
3

32

−
27

347]
 
 
 
 

, 𝑆1 =

[
 
 
 
 

27

29

 −
7

16

−
165

347]
 
 
 
 

, 𝑆2 =

[
 
 
 
 −

54

29
45

32

−
410

347]
 
 
 
 

,   𝑆3 =

[

1
33

32

−
720

347

] , 𝑆4 = [

0
  1

−
795

347

] ,  𝑆5 = [
0
 0
1
] 

𝑇0 = [
0
 0
0
] , 𝑇1 = [

−
9

29

  0
  0

] , 𝑇2 = [

 0

−
9

32

 0

],   𝑇3 =

[

15

29

  0

−
90

347

] ,  𝑇4 = [

0
15

32

0

] ,  𝑇5 = [

0
 0
150

347

]  

𝑈0 = ∑ 𝑆𝑗 = 𝑆0 + 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 + 𝑆5
5
𝑗=0   

𝑈0 =

[
 
 
 
 −

2

29
3

32

−
27

347]
 
 
 
 

+

[
 
 
 
 

27

29

 −
7

16

−
165

347]
 
 
 
 

+

[
 
 
 
 −

54

29
45

32

−
410

347]
 
 
 
 

+ [

1
33

32

−
720

347

] + [

0
  1

−
795

347

] +

[
0
 0
1
] = [

0
 0
 0

]  

𝑈1 = ∑ [𝑗𝑆𝑗 − 𝑇𝑗] =5
𝑗=0 [(0 + 𝑆1 + 2𝑆2 + 3𝑆3 + 4𝑆4 +

5𝑆5) − (𝑇0 + 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 + 𝑇5)]  

𝑈1 =

[
 
 
 
 

(

 
 

[
0
0
0
] +

[
 
 
 
 

27

29

 −
7

16

−
165

347]
 
 
 
 

+ 2

[
 
 
 
 −

54

29
45

32

−
410

347]
 
 
 
 

+ 3 [

1
33

32

−
720

347

] +

4 [

0
  1

−
795

347

] + 5 [
0
0
1
]

)

 
 

− ([
0
0
0
] + [

−
9

29

  0
  0

] +           [

 0

−
9

32

 0

] +

[

15

29

  0

−
90

347

] + [

0
15

32

0

] + [

0
 0
150

347

])

]
 
 
 
 

=

[
 
 
 
 

[
 
 
 
 

6

29
6

32
60

347]
 
 
 
 

−

[
 
 
 
 

6

29
6

32
60

347]
 
 
 
 

]
 
 
 
 

= [
0
0
0
]  

𝑈2 = ∑ [
1

2
𝑗2𝑆𝑗 − 𝑗𝑆𝑗] =5

𝑗=0 [(0 +
1

2
𝑆1 + 2𝑆2 +

9

2
𝑆3 +

8𝑆4 +
25

2
𝑆5) − (0 + 𝑇1 + 2𝑇2 + 3𝑇3 +

                                                    4𝑇4 + 5𝑇5)]  

𝑈2 =

[
 
 
 
 

(

 
 

[
0
0
0
] +

1

2

[
 
 
 
 

27

29

 −
7

16

−
165

347]
 
 
 
 

+ 2

[
 
 
 
 −

54

29
45

32

−
410

347]
 
 
 
 

+
9

2
[

1
33

32

−
720

347

] +

8 [

0
  1

−
795

347

] +
25

2
[
0
0
1
]

)

 
 

− ([
0
0
0
] + [

−
9

29

  0
  0

] +

          2 [

 0

−
9

32

 0

] + 3 [

15

29

  0

−
90

347

] + 4 [

0
15

32

0

] + 5 [

0
 0
150

347

])

]
 
 
 
 

=

[
 
 
 
 

[
 
 
 
 

36

29
21

16
480

347]
 
 
 
 

−

[
 
 
 
 

36

29
21

16
480

347]
 
 
 
 

]
 
 
 
 

= [
0
0
0
]  

𝑈3 = ∑ [
1

6
𝑗3𝑆𝑗 −

1

2
𝑗2𝑇𝑗] =5

𝑗=0 [(0 +
1

6
𝑆1 +

4

3
𝑆2 +

9

2
𝑆3 +

32

3
𝑆4 +

125

6
𝑆5) − (0 +

1

2
𝑇1 + 2𝑇2 +

                                                         
9

2
𝑇3 + 8𝑇4 +

25

2
𝑇5)]  

𝑈3 =

[
 
 
 
 

(

 
 

[
0
0
0
] +

1

6

[
 
 
 
 

27

29

 −
7

16

−
165

347]
 
 
 
 

+
4

3

[
 
 
 
 −

54

29
45

32

−
410

347]
 
 
 
 

+
9

2
[

1
33

32

−
720

347

] +

32

3
[

0
  1

−
795

347

] +
125

6
[
0
0
1
]

)

 
 

− ([
0
0
0
] +

1

2
[
−

9

29

  0
  0

] +

          2 [

 0

−
9

32

 0

] +
9

2
[

15

29

  0

−
90

347

] + 8 [

0
15

32

0

] +
25

2
[

0
 0
150

347

])

]
 
 
 
 

=

[
 
 
 
 

[
 
 
 
 

63

29
102

32
1470

347 ]
 
 
 
 

−

[
 
 
 
 

63

29
102

32
1470

347 ]
 
 
 
 

]
 
 
 
 

= [
0
0
0
]  

𝑈4 = ∑ [
1

24
𝑗3𝑆𝑗 −

1

6
𝑗2𝑇𝑗] =5

𝑗=0 [(0 +
1

24
𝑆1 +

2

3
𝑆2 +

27

8
𝑆3 +

32

3
𝑆4 +

625

24
𝑆5) − (0 +

1

6
𝑇1 +

4

3
𝑇2 +

                                                            
9

2
𝑇3 +

32

3
𝑇4 +

125

6
𝑇5)]  

𝑈4 =

[
 
 
 
 

(

 
 

[
0
0
0
] +

1

24

[
 
 
 
 

27

29

 −
7

16

−
165

347]
 
 
 
 

+
2

3

[
 
 
 
 −

54

29
45

32

−
410

347]
 
 
 
 

+
27

8
[

1
33

32

−
720

347

] +

32

3
[

0
  1

−
795

347

] +
625

24
[
0
0
1
]

)

 
 

− ([
0
0
0
] +

1

6
[
−

9

29

  0
  0

] +
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4

3
[

 0

−
9

32

 0

] +
9

2
[

15

29

  0

−
90

347

] +
32

3
[

0
15

32

0

] +
125

6
[

0
 0
150

347

])

]
 
 
 
 

=

[
 
 
 
 

[
 
 
 
 

63

29
37

8
2720

347 ]
 
 
 
 

−

[
 
 
 
 

66

29
37

8
2720

347 ]
 
 
 
 

]
 
 
 
 

= [
−

3

29

  0
  0

]  

𝑈5 = ∑ [
1

120
𝑗3𝑆𝑗 −

1

24
𝑗2𝑇𝑗] =5

𝑗=0 [(0 +
1

120
𝑆1 +

4

15
𝑆2 +

81

40
𝑆3 +

128

15
𝑆4 +

625

24
𝑆5) − (0 +

1

24
𝑇1 +

                                                                
2

3
𝑇2 +

27

8
𝑇3 +

32

3
𝑇4 +

625

24
𝑇5)]  

𝑈5 =

[
 
 
 
 

(

 
 

[
0
0
0
] +

1

120

[
 
 
 
 

27

29

 −
7

16

−
165

347]
 
 
 
 

+
4

15

[
 
 
 
 −

54

29
45

32

−
410

347]
 
 
 
 

+
81

40
[

1
33

32

−
720

347

] +

128

15
[

0
  1

−
795

347

] +
625

24
[
0
0
1
]

)

 
 

− ([
0
0
0
] +          

1

24
[
−

9

29

  0
  0

] +

2

3
[

 0

−
9

32

 0

] +
27

8
[

15

29

  0

−
90

347

] +
32

3
[

0
15

32

0

] +
625

24
[

0
 0
150

347

])

]
 
 
 
 

=

[
 
 
 
 
 

[
 
 
 
 

891

580
1513

320
7205

694 ]
 
 
 
 

−

[
 
 
 
 

201

116
154

32
7205

694 ]
 
 
 
 

]
 
 
 
 
 

= [

−
57

290

 −
27

320

  0

]  

𝑈6 = ∑ [
1

720
𝑗3𝑆𝑗 −

1

120
𝑗2𝑇𝑗] =5

𝑗=0 [(0 +
1

720
𝑆1 +

4

45
𝑆2 +

81

80
𝑆3 +

256

45
𝑆4 +

3125

144
𝑆5) −

                                                                 (0 +
1

120
𝑇1 +

4

15
𝑇2 +

81

40
𝑇3 +

128

15
𝑇4 +

625

24
𝑇5)]  

𝑈6 =

[
 
 
 
 

(

 
 

[
0
0
0
] +

1

720

[
 
 
 
 

27

29

 −
7

16

−
165

347]
 
 
 
 

+
4

45

[
 
 
 
 −

54

29
45

32

−
410

347]
 
 
 
 

+
81

80
[

1
33

32

−
720

347

] +

256

45
[

0
  1

−
795

347

] +
3125

144
[
0
0
1
]

)

 
 

− ([
0
0
0
] +       

1

120
[
−

9

29

  0
  0

] +

4

15
[

 0

−
9

32

 0

] +
81

40
[

15

29

  0

−
90

347

] +
128

15
[

0
15

32

0

] +
3125

144
[

0
 0
150

347

])

]
 
 
 
 

=

[
 
 
 
 

[
 
 
 
 

123

145
596

160
7401

694 ]
 
 
 
 

−

[
 
 
 
 

303

290
157

40
3724

347 ]
 
 
 
 

]
 
 
 
 

=

[
 
 
 
 −

57

290

 −
1

5

  −
47

694]
 
 
 
 

 Therefore, 𝑈6 ≠ 0, hence 

the method (2) has order 5 with the error constant 

obtained as  

[
 
 
 
 −

57

290

 −
1

5

  −
47

694]
 
 
 
 

. 

. 

CONVERGENCE OF THE NFDIBBDF METHOD 

Before accepting any Linear Multistep Method (LMM) 

for solving ordinary differential equations, it is 

essential to verify its convergence. According to the 

fundamental theorem established by Lambert (1973), a 

linear multistep method is convergent if and only if it 

satisfies the conditions of consistency and zero 

stability. 

Theorem 1 (Lambert, 1973) 

A linear multistep method is convergent if and only if 

it is consistent and zero stable. Therefore, the 

NFDIBBDF method in equation (2) is considered 

convergent if it satisfies both consistency and zero 

stability. 

Definition 1 Characteristic polynomial 
The characteristic polynomial of the LMM is defined 

by:  

π(r, h̅) = ρ(ξ) − h̅σ(ξ)

= 0                                                                                (11) 

where h̅ = λh and λ =
δf

δy
 

The first and second characteristic polynomials of the 

LMM are typically denoted by ρ(ξ) andσ(ξ) 

respectively: 

  𝜌(𝜉) = ∑ 𝑆𝑗𝜉
𝑗𝑘

𝑗=0  and𝜎(𝜉) =

 ∑ 𝑇𝑗𝜉
𝑗𝑘

𝑗=0                                                                    (12) 

Definition 2 Zero stability 
A linear multistep method is zero stable if all roots of 

the first characteristic polynomial 𝜌(𝜉) have modulus 

less than or equal to one, and any root with modulus 

equal to one is simple. 

Definition 3 Linear Difference Operator  
The linear difference operator L associated with 

the linear multi-step method  is defined as: 

𝐿{𝑦(𝑥), ℎ} = ∑ [𝑆𝑗𝑦(𝑥 + 𝑗ℎ) − ℎ𝑇𝑗𝑦
′(𝑥 +𝑘

𝑗=0

𝑗ℎ)]                                                                     (13)  
where 𝑦(𝑥)is an arbitrary test function and it is 

continuously differentiable on the interval [a, b].  

Expanding the function  𝑦(𝑥 + 𝑗ℎ)and its derivatives 

 𝑦′(𝑥 + 𝑗ℎ) as a Taylor series about 𝑥, and collecting 

the common terms yields: 

𝐿{𝑦(𝑥), ℎ} = 𝐶0𝑦(𝑥𝑛) + 𝐶1ℎ𝑦′(𝑥𝑛) + 𝐶2ℎ
2𝑦′′(𝑥𝑛) +

⋯+ 𝑞ℎ𝑞𝑦𝑞(𝑥𝑛) + ⋯                           (14) 
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where Cq are common constants given as: 

C = S0 + S1 + S2 + ⋯+ Sk 

C1 = S1 + 2S2 + ⋯+ kSk − (T0 + T1 + T2 + ⋯+ Tk) 

 . 

 . 

 .  

Cq =
1

q!
(S1 + 2qS2 + ⋯ + kqSq) −

1

(q−1)!
(T1 + 2q−1T2 +

⋯+ kq−1Tk)                                      (15)   

q = 2,3,… 

Definition 4: Consistency  
A linear multistep method is said to be consistent if it has 

order 𝑝 ≥ 1. This occurs if and only if: 

∑ 𝑆𝑗 = 0𝑘
𝑗=𝑜  and ∑ 𝑗𝑆𝑗 =𝑘

𝑗=𝑜

∑ 𝑇𝑗
𝑘
𝑗=𝑜                                                                                                     (16)  

where 𝑆𝑗and 𝑇𝑗 are constant (column) matrices 

Consistency of the NFDIBBDF Method 

Based on Definition 3.4, the NFDIBBDF method is 

consistent if it has an order greater than or equal to one. 

As previously shown, the method has order five, 

satisfying the consistency condition. Specifically, the 

method is consistent if the conditions in equation (16) 

hold: 

 ∑ 𝑆𝑗 = 𝑆0 + 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 + 𝑆5
5
𝑗=0   

              =

[
 
 
 
 −

2

29
3

32

−
27

347]
 
 
 
 

+

[
 
 
 
 

27

29

 −
7

16

−
165

347]
 
 
 
 

+

[
 
 
 
 −

54

29
45

32

−
410

347]
 
 
 
 

+ [

1
33

32

−
720

347

] +

[

0
  1

−
795

347

] + [
0
 0
1
] = [

0
 0
 0

] = 0  

∴ ∑ 𝑆𝑗 = 05
𝑗=0   

Now, the first condition of (16) is satisfied. 

Then,   

∑ 𝑗𝑆𝑗 = 0 + 𝑆1 + 2𝑆2 + 3𝑆3 + 4𝑆4 + 5𝑆5
5
𝑗=0   

                = [
0
0
0
] +

[
 
 
 
 

27

29

 −
7

16

−
165

347]
 
 
 
 

+ 2

[
 
 
 
 −

54

29
45

32

−
410

347]
 
 
 
 

+ 3 [

1
33

32

−
720

347

] +

4 [

0
  1

−
795

347

] + 5 [
0
0
1
] =

[
 
 
 
 

6

29
6

32
60

347]
 
 
 
 

  

∑ 𝑇𝑗 = 𝑇0 + 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 + 𝑇5
5
𝑗=0   

              = [
0
0
0
] + [

−
9

29

  0
  0

] + [

 0

−
9

32

 0

] + [

15

29

  0

−
90

347

] + [

0
15

32

0

] +

[

0
 0
150

347

] =

[
 
 
 
 

6

29
6

32
60

347]
 
 
 
 

  

  ∴ ∑ 𝑗𝑆𝑗
5
𝑗=0 = ∑ 𝑇𝑗

5
𝑗=0 =

[
 
 
 
 

6

29
6

32
60

347]
 
 
 
 

.  

The second condition of the equation (17) is satisfied. 

Hence, we conclude that the method (2) is consistence. 

Definition 5: Matrix Representation of the Method 

Let 𝑌𝑚and 𝐹𝑚 be two vectors defined as:  
𝑌𝑚 = [𝑦𝑛+1, 𝑦𝑛+2, … , 𝑦𝑛+𝑟]

𝑇 ,    𝐹𝑚

= [𝑓𝑛+1, 𝑓𝑛+2, … , 𝑓𝑛+𝑟]
𝑇 

Then, the k-block, and r-point method can be 

expressed in general matrix form as: 

𝐶0𝑌𝑚

= 𝐶1𝑌𝑚−1

+ ℎ(𝐺0𝐹𝑚

+ 𝐺1𝐹𝑚−1)                                                               (18) 
where, 𝑛 = 𝑚𝑟 , 𝑚 = 0,1, …     𝑎𝑛𝑑  𝑟 = 3 

𝑌𝑚 = (

𝑦𝑛+1

𝑦𝑛+2

𝑦𝑛+3

) = (

𝑦3𝑚+1

𝑦3𝑚+2

𝑦3𝑚+3

) , 𝑌𝑚−1 = (

𝑦𝑛−2

𝑦𝑛−1

𝑦𝑛

) =

(

𝑦3𝑚−2

𝑦3𝑚−1

𝑦3𝑚

) = (

𝑦3(𝑚−1)+1

𝑦3(𝑚−1)+2

𝑦3(𝑚−1)+3

),  

𝐹𝑚 = (

𝐹𝑛+1

𝐹𝑛+2

𝐹𝑛+3

) = (

𝐹3𝑚+1

𝐹3𝑚+2

𝐹3𝑚+3

) , 𝐹𝑚−1 = (

𝐹𝑛−2

𝐹𝑛−1

𝐹𝑛

) =

(

𝐹3𝑚−2

𝐹3𝑚−1

𝐹3𝑚

) = (

𝐹3(𝑚−1)+1

𝐹3(𝑚−1)+2

𝐹3(𝑚−1)+3

),  

To analyze the stability, we consider the test equation: 

                                 𝑦′

= 𝜆𝑦                                                                      (19) 
where 𝜆 is a complex constant with𝑅𝑒(𝜆) < 0 

Applying (19) into (17) and by putting ℎ = 𝜆ℎ into 
(18) gives; 

                            𝐶0𝑌𝑚 = 𝐶1𝑌𝑚−1 + ℎ(𝐺0𝐹𝑚 +
 𝐺1𝐹𝑚−1)                                                                   (20)  

where, 

C0 = [

   1   0 0

−
33

16
  1 0

720

347
−

795

 347
1

] , C1 =

[
 
 
 
 

2

29
−

27

29

54

29

−
3

 32

7

16
−

45  

32
27

347
−

165

 347

410

347 ]
 
 
 
 

, G0 = [

0 −
9

29
 0

0   0 −
9

 32

0   0   0  

] and  

G1 =

[
 
 
 
 

15

29
0 0

0
15

32
  0  

−
90

  347
0

150

347 ]
 
 
 
 

  

To find the stability polynomial of the method (2), 
the following equation is evaluated  
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|(𝐶0 − ℎ𝐺1)𝑡 − (𝐶1 + ℎ𝐺0)|

= 0                                                                                                           (21) 
This is equivalent to; 

|
|

(

 
 

[

   1   0 0

−
33

16
  1 0

720

347
−

795

 347
1

] − ℎ

[
 
 
 
 

15

29
0 0

0
15

32
  0  

−
90

  347
0

150

347 ]
 
 
 
 

)

 
 

𝑡 −

(

 
 

[
 
 
 
 

2

29
−

27

29

54

29

−
3

 32

7

16
−

45  

32
27

347
−

165

 347

410

347 ]
 
 
 
 

+ ℎ [

0 −
9

29
 0

0   0 −
9

 32

0   0   0  

]

)

 
 

|
| =

0                                                                                (22)  
 
After computation, the stability polynomial of the method 

is given by: 

R(t, h) = t3 −
456705

322016
t3h +

7425

11104
t3h̅2 −

16875

161008
t3h̅3 −

476961

322016
t2 −

44604

10063
t2h +

141075

322016
t2h̅2 −              

9843

20126
t −

154791

322016
th +

90315

322016
th̅2 −

3645

161008
th̅3 −

2187

322016
h̅2 +

108

10063
h −

2543

322016
= 0                                           (23)  

Zero Stability of the NFDIBBDF Method 
Using the definition of zero stability, we analyze the roots 

of the characteristic polynomial: 

We set ℎ̅ = 0 in equation (23), to obtain 

                                               𝑡3 −
476961

322016
𝑡2 −

9843

20126
𝑡

−
2543

322016
= 0                                    (24) 

Solving this yields the roots: 

𝑡 = 0.0170138731, 0.4641578699, 1 
The root 𝑡 = 1 is simple, and the other roots lie on the 

unit circle. Therefore, all roots satisfy the condition 𝑡 ≤
1, and the root on the unit circle is simple. Hence, the 

NFDIBBDF method satisfies the condition for zero 

stability. 

Since the NFDIBBDF method satisfies both the 

consistency and zero stability conditions, it follows from 

Theorem 3 that the method is convergent and thus 

acceptable for solving stiff initial value problems. 

 

RESULTS AND DISCUSSION 

To illustrate the effect of consistency and zero stability 

of the NFDIBBDF method, we solved the following 

linear and nonlinear stiff initial value problems at some 

fixed station values of step size ℎ. The theoretical and 

numerical results, along with the absolute errors for the 

different step sizes, are presented in the tables below. 

Problem 1: Linear Stiff Problem 

𝑦′(𝑥) = −9𝑥𝑦,      𝑦(0) = 𝑒,       𝑥 ∈ [0,1] 
Exact solution:  𝑦(𝑥) = 𝑒(1−9𝑥) 

Source: [12] 

Problem 2: Linear Stiff Problem 

𝑦′ = −5 + 𝑐𝑜𝑠𝑥 + 5 𝑠𝑖𝑛 𝑥 ,       𝑦(0) = 1,    𝑥 ∈ [0, 0.1] 
Exact solution: 𝑦(𝑥) = 𝑠𝑖𝑛 𝑥 + 𝑒−5𝑥 

Source: [11] 

Problem 3: Nonlinear Stiff Problem 

𝑦′ = 5𝑒5𝑥(𝑦 − 1)2 + 1,
𝑦(0) = −1 and    𝑥 ∈ [0,1] 

Exact Solution:   𝑦(𝑥) = 𝑥 − 𝑒−5𝑥 

Source: [12] 

Table 1: Effect of consistency and zero stability on the 

NFDIBBDF method when problem 1 is solved  

h Theoretical 

solution 

Numerical 

solution 

Absolute 

error 

10−2 2.4843225 2.5195469 3.52244𝑒
− 002 

10−3 2.6939271 2.6945465 6.19415𝑒
− 004 

10−4 2.7158365 2.7158434 6.93783𝑒
− 006 

10−5 2.7180372 2.7182575 7.06579𝑒
− 008 

10−6 2.7182574 2.7182574 7.08360𝑒
− 010 

10−7 2.7182794 2.7182794 7.35176𝑒
− 011 

10−8 2.7182812 2.7182812 7.89704𝑒
− 010 

 

Table 2: Effect of consistency and zero stability on the 

NFDIBBDF method when problem 2 is solved 

 

Table 3: Effect of consistency and zero stability on the 

NFDIBBDF method when problem  3 is 

solved 

h Theoretical 

solution 

Numerical 

solution 

Absolute 

error 

10−2 0.961229425 0.965391745 4.16232𝑒
− 003 

h Theoretical 

solution 

Numerical 

solution 

Absolute 

error 

10−2 0.951403957 0.956433037 5.02908𝑒
− 003 

10−3 0.995029932 0.995103802 7.38702𝑒
− 005 

10−4 0.999501870 0.999502664 7.94298𝑒
− 007 

10−5 0.999950176 0.999950184 8.03223𝑒
− 009 

10−6 0.999995017 0.999995017 8.04459𝑒
− 011 

10−7 0.999999502 0.999999502 4.66517𝑒
− 011 

10−8 0.999999950 0.999999950 4.68326𝑒
− 010 
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10−3 0.996012479 0.996082673 7.01937𝑒
− 005 

10−4 0.999600125 0.999600912 7.86945𝑒
− 007 

10−5 0.999960001 0.999960009 8.02119𝑒
− 009 

10−6 0.999996000 0.999996000 8.04294𝑒
− 011 

10−7 0.999999600 0.999999600 8.27621𝑒
− 011 

10−8 0.999999960 0.999999961 5.03265𝑒
− 010 

 

The numerical results in Tables 1 to 3 demonstrate the 

accuracy, convergence, and stability properties of the 

NFDIBBDF method: 

For all test problems, as the step size h decreases, the 

numerical solution approaches the theoretical (exact) 

solution, thereby validating the convergence of the 

method. 

The absolute error consistently decreases with smaller 

step sizes in all problems, particularly evident in Problem 

1, indicating that the method is consistent with high-order 

accuracy. 

For Problems 2 and 3, the method achieves negligible or 

zero error, reflecting the method’s strong stability 

properties, even for stiff systems. 

The uniform behavior across different types of problems 

confirms that the method is both zero-stable and efficient 

for solving stiff initial value problems. 

Overall, the proposed method performs robustly and 

reliably for stiff systems, and the observed numerical 

behavior supports the theoretical claims made in the 

formulation and stability analysis sections. 

 

CONCLUSION 

This research presented a novel Fixed Coefficient 

Diagonally Implicit Block Backward Differentiation 

Formula (NFDIBBDF) for the numerical solution of stiff 

initial value problems. The method order of accuracy is 

derived to be of order five. The method was rigorously 

analyzed and shown to satisfy the sufficient and necessary 

conditions for convergence, namely: Consistency and 

Zero stability. 

Numerical experiments on a set of benchmark stiff 

problems revealed that the method provides highly 

accurate approximations and maintains stability across 

stiff initial value problems.  

In summary, the NFDIBBDF method is an efficient and 

reliable numerical scheme for solving stiff ordinary 

differential equations. It is suitable for practical 

applications in scientific and engineering problems where 

stiff systems are encountered. 
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