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initial value problems. The study includes the derivation of the method’s order
of accuracy and its associated error constant. Convergence analysis confirms
that the method satisfies the sufficient and necessary conditions of consistency
and zero-stability respectively. The effectiveness of the method is validated
through comparative analysis involving both numerical and theoritical solutions
for selected stiff problems. Results reveal that the method maintains stability
and achieves enhanced accuracy as the step size diminishes, demonstrating its
suitability for stiff ordinary differential equations.

INTRODUCTION
Consider the general system of first-order stiff initial
value problems (I\VPs) defined as:

v, =hyw),  y@=6, n=12.... T,
x € [a, b] (€9)
where yn,y'n, fn and @, are r-dimensional vectors.
This class of differential equations possesses

characteristics such that the application of standard
numerical methods, such as the Euler or Runge-Kutta
methods, often results in numerical instability unless the
step size is sufficiently small. Due to this limitation, [1]
introduced the term stiff ordinary differential equations
(ODEs) to describe such systems. Stiff ODEs commonly
arise in various scientific and engineering applications,
including chemical kinetics, vibrating strings, electrical
circuits, and control systems.

Numerical methods for solving stiff ODEs can broadly be
classified into block and non-block methods. Block
methods compute multiple solution values simultaneously
within each step. A prominent example is the Block
Backward Differentiation Formula (BBDF). In contrast,
non-block methods calculate solution values sequentially,
as seen in the Backward Differentiation Formula (BDF).
Further details on non-block approaches for solving
equation (1) are documented in [1]-[4], whereas block
methods are extensively discussed in [5]-[14]. Studies on
the convergence properties of block methods are
presented in [15]-[21].

A newly developed method known as the New Fixed
Coefficient Diagonally Implicit Block Backward
Differentiation Formula (NFDIBBDF), introduced by

[13], has demonstrated both computational efficiency
and effectiveness in solving first-order stiff IVPs. This
research focuses on the derivation of the method’s
order of accuracy, the analysis of its convergence
properties, and the validation of its accuracy and
stability through rigorous theoretical and numerical
investigations.

The NFDIBBDF method, as proposed in [13], is
defined as follows:

2 27 54 15
= — _— — —~h —
Vn+1 29 Yn-2 29yn—l + 29 Yn + 29 fn+1

9
Ehfn—l!
3 7 45
=——Yn2+t—Vn1— =Vt
i s Yn+2 . 32yn 2 16y" 1 32yn
= Ys1 + —hfpsr ——h 2
16yn+1 32 fn+2 32 fn! ()
27 165 410 720 +
Yn+3 = 35jwyn—z 5347yn—l 347)711 347)ln+1
79 150 90
— +——hfnis — == hfnst.
347yn+2 347 fn+3 347 fn+1

This block method computes three solution values
simultaneously at each step and is particularly suited
for solving stiff initial value problems as given in
equation (1). The theoretical formulation and
derivation of this method are presented in detail in
[12].

MATERIALS AND METHODS

ORDER AND ERROR CONSTANT OF THE
NFDIBBDF METHOD

The order of accuracy of any block numerical scheme
is a critical metric for evaluating its precision and
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computational efficiency in approximating the solutions
of ordinary differential equations (ODES). It indicates the
rate at which the method converges to the exact solution
as the step size approaches zero [22]. Generally, higher-
order methods yield more accurate results; however, there
is often a trade-off between increased accuracy and higher
computational cost. A clear understanding of the order of
a numerical method assists researchers and practitioners
in selecting appropriate schemes based on the specific

requirements and limitations of the problem at hand.

To determine the order of the NFDIBBDF method, we

rewrite it in the following form:

_22_93’11—2 + gYn—l - %Yn t Vn41 = _%hfn—l +
= hfus,
yn 2 fﬁy oV Y +
Yne2 = =75 fn += 32 hfn+2: (3)
347)711 z+347y -1 g)’ +;iSYn+1 ZZE;}’n+2+
Ynes = = o s + 3r hfnas.

Equation (3) can be expressed in a general matrix form:
Z}':o Sj*Ym+j—1 =h Z}:o Y}*Fm+j—1

where S;" and T;" are constant square matrices and Y,,_,

Y, Fm_1and E,, are column vectors defined:
_2z oz _ 5
" 29 29 29
| 3 _7 & *
So = | 32 16 32| ' 51
l_ﬁ 165 410
347 347 347
1 0 O 0 -2
33 29
- 1 0 T * 9
16 »to — o 0 p—
720 75 4 32
347 15?4,7 0 0 0
= 0 0
29 15 Yn-2
,'={ 0 5 0 Ym1=3’n1,Ym:
l_ 90 ISOJ
347
[ Vn+1 Jn-2 n+1
Yn+2 |, Fpeq = |fo-1| and B, = |fas2
L Yn+3 fa fr+3
The formula (3) can be written in matrix form as follows:
[_2 27 _ﬁ
29 29 VYn-2
3 7 4-5
2 1w |
_z27 165 _awofl In
347 347 347
33 1 Yn+1
16 Yne2 | =
7200 _75 q|Lynes
L 347 347
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0
fn 2 15 fn+1
h 0 R, fn 1 E fn+2 (5)
0 12 fn+3
34-7
Definition 1: Linear Multistep Method
(LMM)

A general linear multistep method is given by:
Zf 05 Vn+j =

h3fooTifat) 6)
where S;and T; are constants and S, # 0 such that not
all S, and T, are simultaneously zero. For any linear k-
step method, S, is normalized to 1.
Definition 2: Order of the Block Method
The order of the block method can be obtained by
associating it with the linear operator L[y(x), k] which
is defined as;

Ly (x),h} = X5 o[S;y(x + jh) —
hT;y'(x +

jm)] 7
where y(x) is an arbitrary test function @pt is
continuously differentiable on the interval [a,b] and
SjandT; are constant coefficient matrices.
Expanding y(x + jh) and its derivatives (i.e.y'(x +
Jjh)) using Taylor series around x gives:

Y@+ jh) =y + Ry ) + L2y () +

“” ()+°) YP) + .. ®)
) = y(x)+oh)y(x>+“)y()+
Uy () + 92y ) + - )

Substltutlng these expansions into the difference
operator (7) yields a power series in x.

LIy(o, Al = T5-o5; [y () + (iWy G +
(Jh (jh
UD% ") + L2y ") + Ly v () + | -
RESo T |y (x) 5 oh)y”(x) +
(]h) ()+(]) y()+ y()+ ]_
Z,=o[5,]y(x) + Z,:O[JSJ T;] hy'(x) +
~ X528 — 2Ty (x) +
2i-ol%S; = 32 TRy () +
z] oli*S; —4]3T]h4 7(x) +
(10)
The block method together with the associated linear
difference operator (7) is considered to be of order p if
Uy=U =U,=-=U,=0and Uy, #
0,whereU;s,i = 0,1,2,..,p,p + 1 are the constant
(column) matrix.

To compute the order of the method, we consider the
matrix equation (5) as outlined above:
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LetS,", S;",T,"and T, " be block matrix define by:

So* = (50 '51’52') 51* = (53 184, Ss), To*
(To , T, Ty,),and Ty" = (T, Ty, Ts)

T 29
where S, = =1
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123 303 57
=] [ {—71,
[Z2 -1 &2 =] 3 | Therefore, Uy # 0, hence
| Te0 |~ | a0 |||
l74—01J l3724J A7
694 347 694

the method (2) has order 5 with the error constant

obtained as
47

694

CONVERGENCE OF THE NFDIBBDF METHOD
Before accepting any Linear Multistep Method (LMM)
for solving ordinary differential equations, it is
essential to verify its convergence. According to the
fundamental theorem established by Lambert (1973), a
linear multistep method is convergent if and only if it
satisfies the conditions of consistency and zero
stability.
Theorem 1 (Lambert, 1973)
A linear multistep method is convergent if and only if
it is consistent and zero stable. Therefore, the
NFDIBBDF method in equation (2) is considered
convergent if it satisfies both consistency and zero
stability.
Definition 1 Characteristic polynomial
The characteristic polynomial of the LMM is defined
by:

n(r,h) = p(&) — ho(&)

=0 (11)
where h = Ahand A = g

The first and second characteristic polynomials of the
LMM are typically denoted by p(&) ands (&)
respectively:

p(§) = Xf- 5§/ ando(§) =

Yoo T

Definition 2 Zero stability
A linear multistep method is zero stable if all roots of
the first characteristic polynomial p(¢) have modulus
less than or equal to one, and any root with modulus
equal to one is simple.

Definition 3 Linear Difference Operator
The linear difference operator L associated with
the linear multi-step method is defined as:
L{y(x),h} = T5_o[S;y(x + jh) — hTjy' (x +
jm)] (13)

where y(x)is an arbitrary test function and it is
continuously differentiable on the interval [a, b].
Expanding the function y(x + jh)and its derivatives
y'(x + jh) as a Taylor series about x, and collecting
the common terms yields:

L{y(x), h} = Coy(xn) + Cihy' (%) + Coh?y" (x) +

..+qthQ(xn)+... (]_4)

(12)
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where Cq are common constants given as:
CZSO+SI+SZ+“'+Sk

Cl:SI+ZSZ+“'+ksk_(T0+T1+T2+"'+Tk)

1 —
a= (St (T, 42971, +

+ k91T

29S, + -+ kIS,) — 1)1

(15)

q=23,..
Definition 4: Consistency
A linear multistep method is said to be consistent if it has
order p = 1. This occurs if and only if:
Yi .S =0and X}, jS; =

kT

j=01J
where S;and T; are constant (column) matrices
Consistency of the NFDIBBDF Method
Based on Definition 3.4, the NFDIBBDF method is
consistent if it has an order greater than or equal to one.
As previously shown, the method has order five,
satisfying the consistency condition. Specifically, the
method is consistent if the conditions in equation (16)
hold:

208 =S+ S+ S, + S5+ S, +Ss
2 27 54

EEAERE
= 3—§|+ s RN
7 165 l_ﬂj e
0 - 347 347 347
1 —
347
.~.z]5.:05].=0
Now, the first condition of (16) is satisfied.
Then,
Zf-zojs,-=0+51+252+3S3+454+555
[ 2 [__
0 | * | e 313
=10 -|-|——|+2| = [+3] 32 |+
0 l 11665| 3421 720
Vol L
3467 347
0 o1 | =]
1 | L
JIEARE o] =15
347 11 50
347
o =To+ T+ T+ T3+ T, +Ts
0 _2 0 g 0
=lo[+| o |+|-=[+] o |+|2]+
0 0 032 _2 32
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Z] 0JS;i = Z] olj = =1

The second condition of the equation (17) is satisfied.
Hence, we conclude that the method (2) is consistence.
Definition 5: Matrix Representation of the Method
Let Y,,and F,,, be two vectors defined as:
Yo = [Vnsr Ynszs o Ynarl's B
= [fas1v frs2r -"'fn+r]T

Then, the k-block, and r-point method can be
expressed in general matrix form as:

Co¥m

=&

R

+ Gl m—1)

where,n =mr, m=0,1,... and r=3

Vn+1 YVam+1 Vn-2
Ym = (yn+2> = <y3m+2>,ym_1 = <yn—1> =
Vn+3 Y3m+3 Yn
V3m-2 Y3(m-1)+1
<J’3m—1> = (J’3(m—1)+2>,
Y3m V3(m-1)+3

Fn+1 F3m+1 Fn—z
Fm = Fn+2 = F3m+2 ,Fm_l =\F1 )=
Fn+3 F3m+3 Fn

(18)

F3m_2 F3(m—1)+1
<F3m—1> = | Fsm-1+2 |,
F3m F3(m—1)+3
To analyze the stability, we consider the test equation:
yl

=y (19)
where 4 is a complex constant withRe(4) < 0
Applying (19) into (17) and by putting h = Ahinto
(18) gives;

Co¥m = Ci¥m_1 + h(GoFy +

G1Fn_1) (20)
where,
1 0 0
33
CO - _E 1 O ) C]_ =
720 795
347 347
2 _27 54 9
[29 29 29 0 ~ 7 0
3 7 45
_E E _32 ,G0= 0 0 _i and
[2 165 410 o o0 o
347 347 347
[ > 0 o]
| 15 |
G1=| 0o - 0
90 150
3w 0 3w

To find the stability polynomial of the method (2),
the following equation is evaluated

|12
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|(Co — hGy)t — (€, + hGy)|
=0
This is equivalent to;

/ 1 0 0 ;—z 0 0
_3 1 ol = 15
| 16 —hl O = 0 t—
70 _ 795 [ % 150J
347 347 _E m
2 27 54
| % | Jo-2 o
-2 L B |4h ol || =
32 16 32| 0 0 r -
27 165 410
ls% 5% 31 0 0 0
0 (22)

After computation, the stability polynomial of the method
is given by:

= 456705 37 7425 = 16875 =
R(th) =t — 3 t3h? — 3h3 —
322016 11104 161008
476961 5 _ 44604 g | 141075 50, 9843
322016 10063 322016 20126
154791 7~ 90315 5 3645 3 2187 5
322016 322016 161008 322016
108 1~ 2543
208 [ B (23)
322016

10063

Zero Stability of the NFDIBBDF Method

Using the definition of zero stability, we analyze the roots

of the characteristic polynomial:

We set h = 0 in equation (23), to obtain
476961

, 9843
322016

3
20126t

2

2543
322016
=0
Solving this yields the roots:
t =0.0170138731, 0.4641578699, 1
The root t = 1 is simple, and the other roots lie on the
unit circle. Therefore, all roots satisfy the condition t <
1, and the root on the unit circle is simple. Hence, the
NFDIBBDF method satisfies the condition for zero
stability.
Since the NFDIBBDF method satisfies both the
consistency and zero stability conditions, it follows from
Theorem 3 that the method is convergent and thus
acceptable for solving stiff initial value problems.

(24)

RESULTS AND DISCUSSION
To illustrate the effect of consistency and zero stability
of the NFDIBBDF method, we solved the following
linear and nonlinear stiff initial value problems at some
fixed station values of step size h. The theoretical and
numerical results, along with the absolute errors for the
different step sizes, are presented in the tables below.
Problem 1: Linear Stiff Problem
y() =-9xy, y(0) =e,
Exact solution: y(x) = e(t=9%)
Source: [12]

x €[0,1]

Hamza et al.
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Problem 2: Linear Stiff Problem

Exact solution: y(x) = sinx + e~5*

Source: [11]

Problem 3: Nonlinear Stiff Problem
y' =5e5*(y—1)?+1,

Exact Solution: y(x) =x —e™5*
Source: [12]
Table 1: Effect of consistency and zero stability on the
NFDIBBDF method when problem 1 is solved

y(0)=1, x€]0,0.1]

y(0) =—1and x € [0,1]

h Theoretical Numerical Absolute
solution solution error
1072 2.4843225 2.5195469 3.52244e
— 002
1073 2.6939271 2.6945465 6.19415e
— 004
1074 2.7158365 2.7158434 6.93783e
— 006
1075 2.7180372 2.7182575 7.06579e
— 008
107° 2.7182574 2.7182574 7.08360e
010
1077 2.7182794 2.7182794 7.35176e
— 011
108 2.7182812 2.7182812 7.89704e
— 010
Table 2: Effect of consistency and zero stability on the
h Theoretical Numerical Absolute
solution solution error
1072 | 0.951403957 | 0.956433037 | 5.02908e
— 003
1073 | 0.995029932 | 0.995103802 | 7.38702e
— 005
10~* | 0.999501870 | 0.999502664 | 7.94298e
— 007
1073 | 0.999950176 | 0.999950184 8.03223e
— 009
106 0.999995017 0.999995017 8.04459¢
— 011
1077 | 0.999999502 | 0.999999502 | 4.66517e
— 011
1078 | 0.999999950 | 0.999999950 | 4.68326e
— 010

NFDIBBDF method when problem 2 is solved

Table 3: Effect of consistency and zero stability on the
NFDIBBDF method when problem 3 is

solved
h Theoretical Numerical Absolute
solution solution error
1072 | 0.961229425 | 0.965391745 | 4.16232e
— 003

|15
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1073 | 0.996012479 | 0.996082673 7.01937¢
— 005
10~* | 0.999600125 | 0.999600912 7.86945¢
— 007
1073 | 0.999960001 | 0.999960009 8.02119e
— 009
107% | 0.999996000 | 0.999996000 8.04294e
- 011
10~7 | 0.999999600 | 0.999999600 8.27621e
- 011
1078 | 0.999999960 | 0.999999961 5.03265¢
- 010

The numerical results in Tables 1 to 3 demonstrate the
accuracy, convergence, and stability properties of the
NFDIBBDF method:

For all test problems, as the step size h decreases, the
numerical solution approaches the theoretical (exact)
solution, thereby validating the convergence of the
method.

The absolute error consistently decreases with smaller
step sizes in all problems, particularly evident in Problem
1, indicating that the method is consistent with high-order
accuracy.

For Problems 2 and 3, the method achieves negligible or
zero error, reflecting the method’s strong stability
properties, even for stiff systems.

The uniform behavior across different types of problems
confirms that the method is both zero-stable and efficient
for solving stiff initial value problems.

Overall, the proposed method performs robustly and
reliably for stiff systems, and the observed numerical
behavior supports the theoretical claims made in the
formulation and stability analysis sections.

CONCLUSION

This research presented a novel Fixed Coefficient
Diagonally Implicit Block Backward Differentiation
Formula (NFDIBBDF) for the numerical solution of stiff
initial value problems. The method order of accuracy is
derived to be of order five. The method was rigorously
analyzed and shown to satisfy the sufficient and necessary
conditions for convergence, namely: Consistency and
Zero stability.

Numerical experiments on a set of benchmark stiff
problems revealed that the method provides highly
accurate approximations and maintains stability across
stiff initial value problems.

In summary, the NFDIBBDF method is an efficient and
reliable numerical scheme for solving stiff ordinary
differential equations. It is suitable for practical
applications in scientific and engineering problems where
stiff systems are encountered.
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