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ABSTRACT

The Industrial Internet of Things (110T) has become vital to the operation of
critical infrastructures; however, its widespread adoption is hindered by security
vulnerabilities that expose IloT systems to increasingly sophisticated
cyberattacks. Existing intrusion detection systems (IDSs) for 1loT primarily
focus on detection accuracy while offering limited interpretability, thereby
reducing their practical trustworthiness and deployment in real-world industrial
environments This research presents an explainable ensemble deep learning-
based intrusion detection system (IDS) for IloT networks, combining
Convolutional Neural Networks (CNNSs), Recurrent Neural Networks (RNNSs)
with Long Short-Term Memory (LSTM) units, and Autoencoders. The proposed
ensemble integrates spatial feature extraction, temporal dependency modeling,
and reconstruction-based learning through a unified training and decision-fusion
mechanism The research is aimed at resolving the two-fold challenges of
detecting more accurate results and giving clear interpretation of the model,
which is vital for cybersecurity in real-world applications. This research
employed the ToN-loT dataset comprising of various attack scenarios in 1loT
environments, the introduced system showed better performance in both binary
and multi-class intrusion detection tasks. The binary model classification
showed an accuracy of 98.5%, precision of 98.2%, recall of 97.9%, F1-score of
98.0%, and an AUC-ROC value of 0.992. In multi-class classification model,
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INTRODUCTION

The Industrial Internet of Things (110T) is considered a
transformative model in modern industrial systems,
enabling the interconnectedness of sensors, actuators,
machines, and communication networks to aid intelligent
computerisation, instantaneous  monitoring, and
analytics-based decision making (Xu, Xu, & Li, 2018).
IloT technologies are progressively accepted across
sectors such as manufacturing, energy, healthcare,
transportation, and smart infrastructure, where they
enable predictive maintenance, optimal process, and
operational effectiveness in the wider framework of
Industry 4.0 (Lu, 2017; Lasi et al., 2014).

While 1loT improves system intellect and output, its
persistent connectivity, it as well presents substantial
cybersecurity risks that threaten system reliability and
safety.

The diverse and extremely circulated nature of IloT
environments significantly rises the attack surface,
increasing the vulnerability of such systems to more cyber
threats (Sicari et al., 2015). 10T networks always contain
limited-resource devices, legacy industrial control
systems, and various communication procedures that
were not built originally with security as a main factor
(Stouffer, Falco, & Scarfone, 2011).

143

How to cite this article: Idris Y. S., Obunadike G.N. & Yusuf S. (2026). An Explainable Ensemble Deep Learning

Approach for Intrusion Detection in Industrial Internet of Things. Journal of Basics and Applied Sciences Research, 4(1),
143-151. https://dx.doi.org/10.4314/jobasr.v4i1.16



mailto:yusufsafana23@gmail.com
https://dx.doi.org/10.4314/jobasr.v4i1.18
https://dx.doi.org/10.4314/jobasr.v4i1.16

An Explainable Ensemble Deep Learning...

Thus, 10T infrastructures are vulnerable to cyberattacks
such as service disruption attacks, malicious code
injection, data-locking malware, impersonation attacks,
and data exfiltration. Production downtime, economic
losses, compromised data integrity, and severe risks to
human safety and critical infrastructure continuity are
usually caused by these attacks in safety-critical
applications, (Humayed et al., 2017).

Intrusion Detection Systems (IDSs) provide a central part
in safeguarding 1loT environments by observing network
traffic and system behavior to recognise malicious
activities (Mitchell & Chen, 2014). Traditional IDS
methods such as signature/anomaly-based methods, have
been extensively employed in conventional networks.
Though, their efficiencies in 10T environments are
restricted owing to excessive false-positives, limited
scalability, and restricted ability to detect zero-day and
evolving threats (Sommer & Paxson, 2010). Moreover,
the complexity and heterogeneity of 1loT traffic makes
rule-based and shallow learning models increasingly
inadequate for adaptive and accurate intrusion detection
(Ferrag et al., 2020).

These challenges can be addressed by employing
machine learning and deep learning methods to improve
intrusion recognition performance in IloT systems
(Buczak & Guven, 2016). Deep learning models such as
Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), Long Short-Term Memory
(LSTM) networks, and autoencoders have shown robust
proficiencies in learning complex spatial and temporal
patterns from large-scale network traffic data (Kim et al.,
2016; Yin et al., 2017). These models have demonstrated
better performance in classifying both known and
unknown attacks. However, deep learning-based 1DSs
mostly function as black-box models, giving inadequate
insight into their internal decision-making processes, this
increases fears concerning trust, accountability, and
deployment in industrial environments (Guidotti et al.,
2018).

To further ensure improvement in accuracy and
robustness detection, ensemble deep learning methods
have been introduced, using several models to mitigate
individual weaknesses and improve generalization (Zhou,
2012). Ensemble approaches have shown enhanced
performance in handling various intrusion forms in multi-
layered environments. Nevertheless, the expanded
structural complexity of ensemble techniques aggravates
interpretation problems, making it hard for analysts’
scrutiny and system operators to comprehend and
authenticate IDS outputs (Molnar, 2020). Limited
explainability restricts the practical adoption of high-
performing IDS solutions especially in lloT
environments, where transparency and reliability are
vital.

Explainable Artificial Intelligence (XAl) in recent times
gained prominence as a technique of addressing the
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interpretation problems related to complex machine
learning techniques (Arrieta et al., 2020). XAl techniques
such as Shapley Additive Explanations (SHAP) and
Local Interpretable Model-Agnostic Explanations
(LIME) offer human-understandable explanations by
computing feature contributions and providing local
explanatory insights into model predictions (Ribeiro,
Singh, & Guestrin, 2016; Lundberg & Lee, 2017).
Merging XAl into intrusion detection frameworks
improves transparency, user trust, and aids informed
decision-making in cybersecurity operations. Despite
these benefits, the use of explainable ensemble deep
learning approaches specifically designed for IloT
intrusion detection have received limited attention in
existing literature (Ferrag et al., 2021).

This study makes the following key contributions to the
field of IloT cybersecurity: (i) it proposes a novel
explainable ensemble deep learning—based intrusion
detection framework tailored for IloT environments,
integrating CNNs, RNNs with LSTM units, and
autoencoders to effectively capture spatial and temporal
attack patterns; (ii) it incorporates Explainable Artificial
Intelligence techniques, specifically SHAP and LIME, to
enhance transparency and interpretability of intrusion
detection decisions; (iii) it conducts extensive
experimental evaluation on the ToN-loT dataset for both
binary and multi-class classification tasks, demonstrating
high detection accuracy and robustness; and (iv) it
provides actionable insights that support the practical
deployment of trustworthy and interpretable IDS
solutions in real-world 10T systems.

Inspired by these research gaps, an explainable ensemble
deep learning-based intrusion detection framework for
IloT environments is proposed in this study. The
framework employs multiple deep learning architectures
to model various intrusion patterns while integrating XAl
systems to guarantee transparency and interpretability.
Adopting the ToN-loT dataset, which imitates realistic
lloT traffic and attack scenarios (Moustafa et al., 2020),
the study is aimed to realize more accurate detection for
both binary and multi-class classification outputs while
offering meaningful explanations for model predictive
outcomes. Overall, the research aims to develop a
trustworthy and deployable intrusion detection solutions
for securing next-generation Il1oT systems by addressing
performance, robustness, and explainability
simultaneously.

MATERIALS AND METHODS

Research Design

This study employs a quantitative experimental research
design to model and assess an explainable ensemble deep
learning—based intrusion detection system (IDS) for
Industrial Internet of Things (l110T) environments. The
methodology combines supervised and unsupervised
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deep learning techniques with Explainable Artificial
Intelligence (XAI) systems to obtain a more accurate
detection accuracy while guaranteeing transparency and
interpretability of model decisions. The framework
comprises of data acquisition and preprocessing,
ensemble model construction, training and optimization,
performance evaluation, and explainability analysis.
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Overview of the Proposed Framework

Figure 1 illustrates the proposed methodology
framework, highlighting the sequential flow from data
preprocessing to explainability-driven evaluation.
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Figure 1: Proposed Methodology Framework

Data Description

The experiments were performed using the ToN-loT
dataset, a publicly available benchmark dataset designed
to reflect realistic 10T environments.

Let

D = {(x;, YNy 1)
denote the dataset, where x; € R denotes the feature
vector of the i-th instance and y; represents the
corresponding class label.

The dataset comprises of multiple data sources, involving
network traffic, telemetry data, and system logs, covering
both benign activities and various cyberattack classes
such as denial-of-service (DoS), man-in-the-middle
(MITM), ransomware, and injection attacks. Its diversity
and fine-grained labeling make it appropriate for
assessing both binary (normal vs. attack) and multi-class
intrusion detection tasks

Data Preprocessing

To guarantee data quality and enhance model
generalization, several preprocessing stages are
employed:

1. Data Cleaning: This stage removes duplicate
records, missing values, and irrelevant attributes
in order to reduce noise and inconsistencies.

2. Feature Scaling: In this situation, a min—max
normalization approach is used to convert
numerical features into a similar range,
facilitating convergence for model training.
Each feature is normalized as:

X ~Xmin
X, = —T 2
norm . —Xmin ( )

where x.,;, represents the minimum value and x .
represents the maximum value of the feature x.

3. Feature Selection: In this step, Recursive
Feature Elimination (RFE) is employed so that
the most informative features are retained while
dimensionality — of the  features and
computational overhead are minimized.

4. Data Partitioning: This stage partitions the
dataset into training (80%), validation (10%),
and testing (10%) subsets to allow robust
training, hyperparameter tuning, and unbiased
evaluation.

Ensemble Deep Learning Architecture

An ensemble deep learning framework which integrates
complementary learning approaches to model various
intrusion patterns was proposed and employed in this
study:

Convolutional Neural Networks (CNNSs)

CNNs used traffic features to model spatial and structural
patterns from network. The output of the CNNs is
obtained as:

ylil = x[i+j—1]-wlj] @)
where w is the convolution kernel of size k.

The Rectified Linear Unit (ReLU) activation function is
applied:

f(z) = max(0, 2).

Recurrent Neural Networks with Long Short-Term
Memory (LSTM)
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LSTM is used to model temporal dependencies and
sequential behavior in 110T traffic flows. The LSTM gates
are defined as:

Forget gate:

fr = O(Wf [he—g,xe ] + bf) 4
Input gate:

ip =a(W; - [hey,x] + by) )
Candidate cell state:

C, = tanh(W, - [h,_q, %] + b() @)
Updated cell state:

Ctzft'c_t—1+it'ct 8)
Output gate and hidden state:

0y = oW, - [he—y, %] + b,),  he =0

tanh(C,) 9)
Autoencoders
Autoencoders uses reconstruction error for unsupervised
detecting anomaly by learning normal traffic
representations and identifying deviations. The
reconstruction loss is given as:

Lreconstruction =llx - x ”% (10)
where x is the original input and £ is the reconstructed

output.

The components of the model are trained independently
using aggregated weighted averaging or majority
voting to generate the final intrusion decision.

Pensemble = ngzl w; - Py (11)
This ensemble approach improves robustness, reduces
false positives, and improves generalization across attack
types.

Model Training and Optimization

The gradient-based optimization algorithms proposed by
Adam and RMSprop was used to train the model and is
represented as

041 =06 —1-Vo/(6,)
Where:

6, is the parameter at step t, n is the learning rate, J(6)
is the loss function.

Grid search and validation-based tuning were used for
hyperparameters optimization.

In order to resolve class imbalance intrinsic in intrusion
datasets, the Synthetic Minority Oversampling Technique
(SMOTE) was used during training. Regularization
strategies, including dropout and early stopping, were
also used to avoid overfitting and facilitate model
stability.

(12)

Reproducibility and Implementation Details

To ensure reproducibility and facilitate independent
validation of the proposed framework, all experiments
were performed in a controlled computational
environment. The Python wusing deep learning
architectures developed in TensorFlow/Keras and
supporting libraries including NumPy, Pandas, and
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Scikit-learn were adopted to implement the models. The
workstation equipped with an Intel Core i7 processor, 32
GB RAM, and an NVIDIA GPU with CUDA support to
facilitate deep learning computations was used to train the
models and evaluate their performances. The experiments
were implemented on a Windows/Linux operating
system. Training time varied across models, with
ensemble training completed within a few hours
depending on hyperparameter configurations and dataset
partitions. Random seeds were fixed during data splitting
and model initialization to ensure consistent and
reproducible results across experimental runs.
Explainability Integration

The two widely combined adopted XAl frameworks used
in order to handle the black-box nature of deep learning
models are:

SHapley Additive exPlanations (SHAP)

SHAP computes global and local feature importance,
offering perceptions into how individual features effect
model predictions.

Local
(LIME)
LIME provides instance-level explanations, allowing
thorough interpretation of specific intrusion detection
outcomes.

These explainability tools improve transparency, support
trust in the IDS decisions, and help cybersecurity experts
to find out the rationale behind detected intrusions.

Interpretable Model-Agnostic Explanations

Performance Evaluation Metrics
The efficiency of the proposed IDS is evaluated using
standard classification performance metrics:

Accuracy:
TP+TN

Accuracy = ———— (13)
o TP+TN+FP+FN
Precision:
Precision = 14)
TP+FP

Recall:

Recall = —= (15)
TP+FN

F1-Score:

Fl=12. Prec-is-ion-Recall (16)
Precision+Recall

Performances were evaluated for both binary and multi-
class classification tasks to broadly distinguish capability
under diverse intrusion scenarios.

RESULTS AND DISCUSSION

Experimental Setup and Evaluation Overview

The proposed explainable ensemble deep learning—based
intrusion detection system (IDS) was assessed with the
ToN-loT dataset, containing various attack scenarios
illustrative of Industrial Internet of Things (lloT)
environments. The dataset was split into training,
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validation, and testing subsets using 80:10:10 partition.
Model accuracy and precision were evaluated for both
binary classification (normal vs. malicious traffic) and
multi-class classification (specific attack categories).
The model classification performance was assessed using
standard metrics, including accuracy, precision, recall,
Fl-score, and Area Under the Receiver Operating
Characteristic Curve (AUC-ROC), to warrant a robust
and comparative evaluation of detection capability.

Intrusion Detection Performance

Table 1 summarizes the performance of the proposed
ensemble model for both binary and multi-class
classification tasks.

Table 1. Performance metrics of the proposed IDS
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Binary Classification Results

For binary intrusion recognition, the proposed ensemble
model attained an accuracy of 98.5%, demonstrating
excellent ability in distinguishing benign from malicious
traffic. The high precision (98.2%0) indicates a low false-
positive rate, which is critical in 10T environments where
undesirable alerts can disrupt industrial operations.
Similarly, the recall of 97.9% proves the model’s
efficiency in predicting actual attack instances.

The F1-score of 98.0% shows a balanced trade-off
between precision and recall, while the AUC-ROC value
of 0.992 shows near-optimal discriminatory power across
changing decision thresholds. These results reveal that
the ensemble approach efficiently models both normal

Metric Binary Multi-class and anomalous traffic patterns in 10T networks.
Classification Classification
Accuracy | 98.5% 94.2% Figure 1 illustrates the Receiver Operating Characteristic
Precision | 98.2% 93.5% (ROC) curve for the binary classification task,
Recall 97.9% 94.1% highlighting the trade-off between the true positive rate
Fl-score | 98.0% 93.8% and false positive rate.
AUC- 0.992 0.987
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Figure 1: AUC-ROC Curve for Binary Classification

Figure 1 shows the performance of the model in
classifying benign and malicious traffic. The area under

the curve (AUC) of 0.992 shows a strong level of
discrimination ability, where a value of 1 denotes perfect
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classification, and a value of 0.5 denotes random
guessing.

Multi-class Classification Results

The model detects precise attack forms such as Denial-of-
Service (DoS), Man-in-the-Middle (MITM), and
ransomware in the multi-class classification task, the
ensemble model attained an accuracy of 94.2%. Though
slightly lesser than binary classification performance, this
result remains good given the increased complexity of
distinguishing among multiple attack categories.

DoS
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Precision and recall values of 93.5% and 94.1%,
correspondingly, show robust detection across various
intrusion classes. The F1-score of 93.8% further
validates the model’s reliability in addressing class
imbalance and overlapping attack characteristics.
Confusion matrix analysis shows that most

misclassifications happen among attack classes with
similar traffic signatures, which is expected in realistic
10T scenarios.

Ransomware

Figure 2. Multi-Class Classification Confusion Matrix
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Overall, the results of the ensemble framework

successfully generalizes across various attack types while
preserving high detection accuracy.

Explainability and Transparency Analysis

In addition to detection performance, interpretability is
another important for deploying IDS solutions in
industrial environments. The proposed framework
combines SHAP and LIME to improve transparency and
trust.

SHAP-Based Global Explainability

SHAP analysis was performed to measure feature
contributions to model predictions. The SHAP summary
plots show that features such as packet size, flow
duration, and protocol type steadily have the strongest
effect on both binary and multi-class predictions. These
results align with domain knowledge in network security,
signifying that the model learns semantically meaningful
representations.
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Figure 3: SHAP Summary Plot for Binary Classification

The consistency of significant features across tasks shows
that the ensemble model depends on stable and
meaningful traffic characteristics rather than spurious
correlations.

LIME-Based Local Explanations

LIME was employed to make instance-level clarifications
for individual predictions. For example, analysis of a
detected DoS attack displays that abnormal packet sizes
and unusually long flow durations were the dominant
factors determining the classification. Such localized
explanations allow cybersecurity experts to comprehend
why a specific traffic instance was highlighted, assisting
timely and informed operational decision-making.

The experimental findings validate that the proposed
explainable ensemble deep learning framework attains
extremely good, state-of-the-art performance in lloT
environments while preserving interpretability. The
integration of CNNs, LSTMs, and autoencoders permits
the model to estimate both spatial and temporal traffic
characteristics, contributing to high detection accuracy
and robustness.

In relation to conventional machine learning and single
deep learning models described in the literature review,
the ensemble method decreases false positives and
enhances generalization, especially in complex multi-
class situations. Moreover, incorporating SHAP and
LIME efficiently resolves the limitation of black-box of
deep learning models by offering both global and local
explanations.

These results indicate the appropriateness of the proposed
IDS for real-world 10T deployment, where accuracy,
reliability, and explainability are equally central. Yet, the
computational difficulty of ensemble techniques may
pose limitations for real-time deployment in resource-
restricted environments, signifying the need for
optimization and lightweight applications in future.

CONCLUSION

This study offered an explainable ensemble framework
deep learning models for intrusion recognition in
Industrial Internet of Things (IloT) environments,
resolving the serious need for both high detection
performance and interpretation. By combining
Convolutional Neural Networks (CNNs), Long Short-
Term Memory (LSTM) networks, and Autoencoders, the
proposed framework efficiently models both spatial and
temporal characteristics of 110T traffic, yielding to robust
and generalized intrusion recognition across various
attack situations.

Experimental assessment on the ToN-loT dataset
confirmed steadily solid performance, attaining 98.5%
accuracy in binary classification and 94.2% accuracy in
multi-class classification, with constantly high precision,
recall, F1-score, and AUC-ROC values. These findings
confirm the efficiency of ensemble learning in improving
detection reliability while reducing false alarms in
complex lloT environments.
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The incorporation of Explainable Artificial Intelligence
(XAIl) methods—precisely SHAP and LIME—offered
both global and instance-level explanations of model
decisions in addition to their extraordinary performance.
This interpretability allows cybersecurity experts to
appreciate the key features determining intrusion
detection, thus enhancing trust, accountability, and
practical application of the system in real-world industrial
scenarios.

This study is restricted by its assessment on a single
benchmark dataset, which may not model all real-world
lloT traffic situations. Moreover, the computational
difficulty of the ensemble framework may limit real-time
deployment in resource-restricted environments, and the
use of post-hoc XAl approaches offers estimated rather
than actual interpretability.

Overall, the results show that explainable deep learning—
based intrusion detection classifications can meaningfully
enhance the security of 10T infrastructures by integrating
predictive accuracy with transparency. The proposed
framework characterizes a good step toward the
development of dependable, explainable, and deployable
IDS solutions that is capable of reducing sophisticated
cyber threats in modern industrial networks. Future
research should put more emphasis on real-time
deployment, computational effectiveness, and validation
across additional 1loT datasets and operational
environments.
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