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ABSTRACT 

This research explores the transient flow formation in concentric porous annuli 

filled with porous material having variable porosity. The study focuses on the 

fluid flow between two horizontal concentric cylinders, assuming the fluid is 

viscous and incompressible. To solve the governing partial differential equation, 

the Laplace transform technique is applied, transforming it into an ordinary 

differential equation in the Laplace domain. Exact solutions are obtained in the 

Laplace domain, and then inverted to the time-dependent domain using the 

Riemann-sum approximation method. The accuracy of the Riemann-sum 

approximation method is validated by comparing the numerical values obtained 

with those of the exact solution for steady-state flow and transient solution. The 

results are presented graphically, illustrating the variations of velocity and skin 

friction with respect to the Darcy number and suction/injection parameter. The 

study reveals that suction accelerates the flow, while injection retards it. The 

Darcy number, which represents the permeability of the porous medium, 

significantly affects the flow characteristics. The skin friction, which is a 

measure of the shear stress at the surface, is also influenced by the 

suction/injection parameter. The findings of this study have implications for 

various engineering applications, such as groundwater flow, oil reservoirs, and 

chemical engineering processes. Understanding the transient flow formation in 

porous annuli can help optimize the design and operation of these systems. The 

use of the Laplace transform technique and Riemann-sum approximation 

method provides an efficient and accurate solution to the problem. The graphical 

representation of the results allows for a clear understanding of the flow 

characteristics and the effects of various parameters. The list of symbols, 

notation and meaning of parameters can be found in appendix A and B attached 

in section below. 

 
 

INTRODUCTION 

The study of fluid flow in an annulus has garnered 

significant attention since the pioneering work of 

(Rothfus et al. 1950), due to its extensive applications in 

engineering. While fluid flow in annuli has been explored 

in both laminar and turbulent regimes, the transitional 

flow regime, particularly for non-Newtonian fluids, 

remains understudied. Annular flow has practical 

implications in various fields, including oil and gas wells, 

gas-cooled nuclear reactors, chemical engineering, 

petroleum engineering, biomedical engineering, and food 

processing (Kim 2013). 

 

 

 

 
 

 

 

 

 In drilling and production operations, annular flow plays 

a crucial role, especially in deviated and horizontal wells 

(Ebrahim et al., 2013). 

The investigation of transport phenomena in porous 

materials has become increasingly important in 

engineering and environmental sciences. Porous media 

models have been applied to simulate complex situations, 

such as flow through packed and fluidized beds. 

Researchers have made significant contributions to 

understanding flow in porous media, including the effects 

of permeability and magnetic fields, 
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 (Verma and Singh, 2015). Studies have also examined 

flow in annuli with porous walls. (Berman, 1958) have 

considered the steady-state laminar flow of an 

incompressible fluid in an annulus with porous walls. 

They discovered that the cross-flow (radial component of 

the flow) is produced by injecting fluid at one wall and 

removing it at the other, at equal rates. (Deo and 

Srivastava, 2013) studied the fully developed flow of an 

incompressible, electrically conducting, viscous fluid 

through a porous medium with variable permeability 

under a transverse magnetic field. 

Other notable studies include analytical solutions for flow 

in channels partially filled with porous media (Kuznetsov 

1996) and three-dimensional solutions for flow through 

heterogeneous porous media (Vadasz 1993). 

Additionally, researchers have investigated steady-state 

laminar flow of incompressible elastic viscous liquids in 

annuli with coaxial porous walls rotating about a common 

axis (Mishra and Roy 1967). These studies demonstrate 

the complexity and diversity of fluid flow in porous 

media and annuli, highlighting the need for continued 

research in this area. 

The study of fluid flow in annular regions filled with 

porous media has been explored by various researchers. 

(Verma and Datta 2012) investigated the fully developed 

laminar flow of a viscous incompressible fluid in an 

annular region with variable permeability. Similarly, 

(Verma and Singh 2014) studied the laminar flow of a 

viscous incompressible fluid in an annular region with 

variable permeability and found that permeability 

variation significantly affects the flow. Other studies have 

examined magnetohydrodynamics (MHD) flow in annuli, 

such as (Jha and Apere 2013), who investigated MHD 

transient Couette flow in an annulus formed by two 

concentric porous cylinders. (Khalil et al. 2008) presented 

an analytical solution for steady-state fully developed 

one-dimensional flow in a concentric annulus with a 

moving core. (Jha and Apere 2012) also investigated 

unsteady MHD free convective flow between two 

concentric vertical cylinders. (Yale et. al., 2025) studied 

transverses magnetic field’s impact on mixed convection 

flow of an Exothermic fluid over a porous material – field 

channel. (Kandasamy and Nadiminti 2015) studied the 

entrance region flow of Herschel-Bulkley fluid in 

concentric annuli with a rotating inner wall. Majority of 

real-world issues we face, particularly in the physical, 

social, and life sciences, may be described by using 

differential equations, (Sagir at. al., 2023). 

Additionally, researchers have explored flow in porous 

media under various conditions, such as (Pantokratoras 

and Fang 2010), who investigated fully developed flow in 

a fluid-saturated porous medium channel with an 

electrically conducting fluid. (Avramenko et al. 2015) 

presented results on the response of an incompressible 

fluid in a circular micro pipe and a parallel plate micro 

channel to a sudden pressure drop. 

The present work focuses on transient flow formation in 

concentric porous annuli filled with porous material 

having variable porosity, which appears to be a novel 

contribution to the literature. The study discusses the 

effects of suction/injection parameter, time, and Darcy 

number on velocity and skin friction, using a semi-

analytical method involving Laplace transformation and 

Riemann-sum approximation. 

 

MATERIALS AND METHODS 

 

In this problem, we considered the motion of a viscous, 

incompressible fluid in the region bounded by the porous 

wall of two concentric cylinders of infinite length, the z
axis is assumed to be on the axis of the porous cylinders 

in the horizontal direction, and r axis is on the radial 

direction. The fluid exist in the region 1 2R r R   

between the two porous cylinders, where 1R  and 2R are 

the radii of the inner and outer cylinders, respectively. 

Since the cylinders are of infinite length and the flow is 

fully developed, all physical variables are functions of r
and t only. Fig.1 gives the schematic diagram of the 

problem. 

The mathematical model governing the present physical 

situation is given as   

2

0 1 2 2 2

1 1
,

u u u u u u
v R eff u

t r r r r r r r k




          
+ + = + − −               

     

          (1) 

Where  

2

0

1

r
k k

R

 
=  

 
   

 

 

 

 

 

 

 

Fig.1. Schematic diagram of the problem. 
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The initial and boundary conditions for the problem are: 

0u = , 1 2R r R   and 0t  , 

1 1u R =  at 1r R = , 0t  , 

2 2u R =  at 2r R = , 0t  . 

With the following dimensionless quantities 

2

1

t
t

R


= , 

eff



= , 

1

r
r

R


= ,  

1 1

u
u

R


= ,  2

1

R

R
 = , 

2

1





=   And

0 1v R
S


= , 

0

2

1

k
Da

R
=  

Equation ( )1  can be written in dimensionless form as: 

( )
2

2 2

1 1
0

u u u u
S S

t r r r r Da
  

    
= + − − + + =     

       ( )2
 

( )
2

2

2 2

1u u u u
S

t r r r r
  

  
= + − −

  
                          ( )3

 

Where:   

 

2 1
S

Da
 = + +  

Subject to the following dimensionless initial and 

boundary conditions: 

0 :t    0u =  For all 0 r                             ( )4  

0 :t   1u =  at 1r =                                            ( )5  

0 :t    u =  at r =                                                    ( )6  

The solution of Eq. (3) can be obtained using the Laplace 

transformation (LP) with respect to t  define as  

( ) ( )
0

, , ,stu r s u r t e dt



−=    0s                                ( )7  

Where s  is the Laplace parameter, taking LP of Eq. ( )3

we have 

2 2

2 2

1
1 0

d u S du u s
u

dr r dr r



  

 
+ − − − = 

 
              ( )8  

With the following boundary condition in the Laplace 

domain   

1
u

s
=  at 1r =                                                                          ( )9  

u
s


=  at r =                                                                    ( )10

 

Eq. ( )8  which is linear partial differential equation 

(LPDE) can be as 

2
S

hu u r =                                                                                 ( )11  

to the following homogeneous Bessel equation (HBE) 

2
2

2

1
0h h hd u du v S

r G
dr r dr r 

 
+ − + = 

 
                      ( )12

 

The solution of Eq. ( )12  is  

( ) ( )1 2h G Gu C I rH C K rH= +                          ( )13
 

Where: 

 GI  Is the Gth order modified Bessel function of the first 

kind. 

GK  Is the Gth order modified Bessel function of the 

second kind.  

1
2 221

4

S
G



 

  
= +  

     

s
H


=  

Substituting Eq. ( )13 into Eq. ( )11  we have 
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( ) ( ) 2
1 2

S

G Gu C I rH C K rH r = +                         ( )14
 

Using the boundary condition ( )9 and ( )10 the constant 

1C and 2C are obtained as shown below. 

( ) ( )

( ) ( ) ( ) ( )

2

1

S

G G

G G G G

K H K H

C
s I H K H I H K H

  

 

− −
  =

−  
, 

( ) ( )

( ) ( ) ( ) ( )

2

2

S

G G

G G G G

I H I H

C
s I H K H I H K H

  

 

− 
− 

 =
−  

 

Eq. ( )14  is to be inverted to determine the velocity in 

the time domain.  We use the numerical procedure used 

in (Jha and Apere 2010) which is based on the Riemann-

sum approximation. Any function in the Laplace domain 

𝑠 can be inverted to the time-dependent domain using the 

following equation: 

( ) ( ) ( )
1

1
, , Re , 1

2

t N
k

k

e ik
u r t u r u r

t t

 
 

=

  
= + + −  

  
 ( )15  

Where Re  is the real part of the imaginary number

1i = − , N  is the number of terms used in the 

Riemann-sum approximation, and   is the real part of the 

Bromwich contour that is used in inverting Laplace 

transforms. The accuracy of the Riemann-sum 

approximation approach depends largely on the value of 

𝜀 and the truncation error dictated by𝑁. For faster 

convergence, the value of   must be selected so that the 

Bromwich contour encloses all the branch points.  Hence, 

for faster convergence, the best value of t  that satisfied 

the result is 4.7 as in the work of  (Tzou. 1997). 

2.1 Skin Friction  

The skin friction (SF)   (between fluid layers) defined 

by 
u

r
r r

  
 

  
 is obtained by diff Eq. ( )15  with respect 

to r  

( )1 1

1

1
( , ) Re , 1

2

t N
k

i

k

u e ik
r u r u r

r t t

 
  

=

     
= = + + −        

 (16) 

Where: 

( ) ( )

 

2
1 1 1 2 1

1
2

1 2( ) ( )
2

s

G G

s

G G

u C I rH C K rH Hr

s
r C I rH C K rH







+ +

−

= − +  

+
       (17) 

And 

1GI +  Is the (𝐺 + 1)th order modified Bessel function of 

the first kind. 

1GK +  Is the (𝐺 + 1)th order modified Bessel function of 

the second kind. 

The SF at the outer surface of the inner cylinder and that 

at the inner surface of the outer cylinder can then be 

obtained by substituting 𝑟 = 1 and 𝑟 = 𝜆 respectively in 

Eq. (17) as follows. 

( ) ( ) ( )

 

1 1 1 2 11

1 2( ) ( )
2

G Gr

G G

u C I H C K H H

s
C I H C K H



+ +=
= − +  

+          (18) 

( ) ( ) ( )

 

2
1 1 1 2 1

1
2

1 2( ) ( )
2

S

G Gr

S

G G

u C I H C K H H

s
C I H C K H







  

  


+ +=

−

= − +  

+
(19) 

 

2.2 Steady State 

For the steady-state velocity distribution su . The 

expression is obtained using the following ODE 

2 2

2 2

1
1 0s s sd u du uS

dr r dr r



 

 
+ − − = 

 
                         

(20)
 

Using the following transformation variable: 

2
S

s su u r =                                                                                   
(21)

 

Eq. ( )20  became HBE as  

2
2

2 2

1
0s s sd u du u

M
dr r dr r

+ − =                                             
(22)
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Where: 

 

 

Eq. (22) is the standard Euler’s equation, and its solution 

can be written as  

3 4

M M

su C r C r−= +                                                              
(23) 

Substituting Eq. ( )23
 
in ( )21  we have the su to be 

2 2
3 4

S SM M

su C r C r 
+ −

= +                                                
(24)

 

Where the constant 3C and 4C  are obtained using the 

boundary condition ( )5 and ( )6  as shown below 

2

3
2 2

S M

S SM M
C



 

 

 

−

+ −

−
=

−
 

2

4
2 2

S M

S SM M
C



 

 

 

+

+ −

−
=

−
 

2.3 Skin Friction for the Steady State Velocity   

The dimensionless SF for the steady state velocity su

which is given as 
s

s

d u
r

rdr
  =  

 
 is obtained as a 

result of diff Eq. (24) with respect to 𝑟. 

s =
1 1

2 2
3 41 1

2 2

S S
A A

sud S S
r C A r C A r

dr r
 

 

+ − − −     
= + − + − −    

    
 

               (25) 

The steady state SF at the outer surface of the inner 

cylinder ( )1r =  and that at the inner surface of the outer 

cylinder ( )r =  can then be obtained from Eq. ( )25

respectively as follows. 

( ) 3 41 1 1
2 2

s

S S
r C M C M

 

   
= = + − + − −   

     (26)
 

( )
1 1

2 2
3 41 1

2 2

S S
A A

s

S S
r C M C M    

 

+ − − −   
= = + − + − −   

                    

(27)

 

 

RESULTS AND DISCUSSION 

In order to get a physical insight into the problem, we 

design a MATLAB program to compute and generate the 

graphs for the velocity and the SF. 

 
Fig 2: velocity profiles for different values of Da , when

2, 1.0, 0.5S = = = , 1.5, 0.02t = =  

 

Fig 3: velocity profile for different values of   when 

2 2
2

24

S
M



 
= +
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2, 0.1,Da = = 1.5, 0.02, 0.5t S = = =

 

Fig 4: Velocity profile for different values of , when 

0.5S = and 2, 1.5, 0.02, 0.1t Da = = = =
 
 

 

Fig 5: Velocity profile for different values of time t, for 

0.5S =  and 0.1, 1.5, 1.5Da  = = =
 

 
Fig 6: Velocity profile for different values of S , 

0.02t =  and 0.1, 1.5, 1.5Da  = = =
 

 
Fig 7: Velocity profile for different values of S , 

0.02t =  and 0.1, 1.5, 1.5Da  = = =
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Fig 8: SF on the outer surface of the inner cylinder 1r =
for different values of  , when 

0.1, 2, 1.5Da l = = =
 

 
Fig 9: SF on the inner surface of the outer cylinder 2r =
for different values of  , when 

 

 

Fig 10: SF on 1r = for different values of S , when 

0.1, 2, 1.5Da l = = =
 

 

Fig 11: SF on 1r = for different values of S , when 

 
 

Fig 12: SF on 2r = for different values of S , when 

0.1, 2, 1.5Da l = = =  

 

Fig 13: SF on 2r = for different values of S , when 

0.1, 2, 1.5Da l = = =  

 

0.1, 2, 1.5Da l = = =

0.1, 2, 1.5Da l = = =
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In Fig.2 velocity profile for different values of Da  are 

shown when 2, 1.0, 0.02,t = = = and the ratio of 

viscosity 1.5 = .Which is a clear case of fluid flow 

when permeability of medium within the annular region 

are infinite, the figure reveals that as Da  increases, fluid 

velocity increases because increase in Da  means 

increase in permeability of the medium. A similar 

behavior is also seen for the velocity
 
in Fig.3 where the 

effect of  is been observed on the flow when 

2, 0.1, 0.02.Da t = = =  and the ratio of viscosity

1.5 = , the figure shows that as   increases the 

velocity also increases as the increase in   means 

increase in the temperature.
 
Fig.4 represents a variation 

of velocity with ratio of viscosity parameter   for fixed 

values of 1.0, 0.1Da = =  and 0.02,t =  it has been 

shown that as   increases then the fluid velocity also 

increases because increase in   means resistance 

increase in the flow so it has an increasing effect on the 

velocity. Similar behavior has been seen in Fig.5 with 

different values of t  and the fixed values of 

0.1, 1.5, 1.0Da  = = =  where the velocity 

increases with increase in time t .
 

Figs.6 and 7 Shows the profile of the velocity u plotted 

against r  for different values of S , it was discovered 

from the figures that, an increase in the suction/injection 

parameters S has a decreasing effect on the velocity 

whereas the velocity increases as a result of the decrease 

in the suction/injection parameter .S  Figs. 8 and 9 

present the variation of the Skin friction at the outer 

surface of the inner cylinder and that of the inner surface 

of the outer cylinder respectively, for different values of 

 and fixed values of 0.1, 2, 1.Da l = = =  It is 

observed that, as the radius of viscosity   increases the 

SF for both outer surface of the inner cylinder and the 

inner surface of the outer cylinder decreases and it has a 

strong effect on the flow. In Figs. 10 and 11 variation of 

the SF at the inner surface of the outer cylinder is being 

plotted against time t for fixed values of

0.1, 2, 1.0Da l = = = the effect of the 

suction/injection parameter S  on the Skin friction has 

been observed, whereas S increase the SF decrease. Figs. 

12 and 13 shows the behavior of the SF at the inner 

surface of the outer cylinder for different values of the 

suction/injection parameter .S  The figure revealed that, 

as suction/injection parameter S  increases the SF 

decreases, whereas S decreases the SF increases, which 

is really expected as injection (positive values of S ) have 

a decreasing effect on the flow while suction (Negative 

values of S ) have an increasing effect on the flow.
  

 

Table 1 

Numerical Values of the velocity obtained using the 

Riemann sum approximation method and those obtained 

exactly (for the steady state) at the center of the annulus

( )1.5r = . 

t
 Da

 ( )velocity u
 

Riemann Sum
 

( )Steady State ss
 

0.2 0.001 

0.01 

0.1 

0.0011 

0.0678 

0.1177 

0.0012 

0.2149 

1.0524 

0.4 0.001 

0.01 

0.1 

0.0012 

0.1643 

0.4028 

0.0012 

0.2149 

1.0524 

2.0 0.001 

0.01 

0.1 

0.0012 

0.2150 

1.0525 

0.0012 

0.2149 

1.0524 

 

The behavior of SF was observed to be similar to that of 

fluid velocity. To validate the accuracy of the Riemann-

sum approximation method, a comparison was made with 

analytical results for the steady-state case, as presented in 

Table 1. The results showed excellent agreement between 

the two methods at large values of time, confirming the 

accuracy and reliability of the Riemann-sum 

approximation method employed in this study.
  

CONCLUSION 

The Transient flow formation in concentric porous annuli 

filled with porous material having variable porosity and 

formed by two infinitely horizontal concentric cylinders 

has been investigated. The governing equation has been 

solved for the velocity and the SF. Riemann sum 

approximation method has been employed to get the 

steady state expression for the velocity and the SF. 

Graphical results for the velocity and the SF showing the 

effect of various controlling parameters are presented and 

discussed. It is how ever discovered that the velocity 

increase with increase in the various controlling 

parameters at all time. The SF  is seen to increase with 

increase in the suction/injection parameter S when 1r =  

at the outer surface of the inner cylinder. However the SF 

  has increases with suction (Negative values of S ) and 

decreases with injection (positive values of S ) at the 

inner surface of the outer cylinder when r =  
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Appendix A 

List of Symbols 

1R     Radius of the inner cylinder 

2R    Radius of the outer cylinder 
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Da   Darcy number 

mI   mth order modified Bessel function of the first kind 

mK    mth order modified Bessel function of the Second 

Kind 

r     Dimensional radial Coordinate 

R    Non-dimensional radial coordinate  

t     Time in non-dimensional form 

t    Time in dimensional form 

u     Fluid velocity in non-dimensional form 

u    Fluid velocity in dimensional form 

S    Suction/Injection Parameter 

Appendix B 

Greek Symbols  

     Ratio of Viscosity 

     Ratio of outer radius and inner radius  

     Kinematic Viscosity of the fluid 

     Dimensionless Temperature 

eff  Effective Kinematic Viscosity of the Porous 

Medium 
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