Journal of Basics and Applied Sciences Research (JOBASR) STy
ISSN (print): 3026-9091, ISSN (online): 1597-9962 gl s

DOI: https://dx.doi.org/10.4314/jobasr.v4il1.17

&
n\"o

i

Volume 4(1) January 2026

&

An Optimization-Driven Artificial Neural Network Framework with Reinforcement
Learning for Intelligent Phishing Email Detection

Usman Yahaya'", U lliyasu?, & Sanusi Abdul Sule®
L2&3pepartment of Computer Science, Faculty of Computing, Federal University Dutsin-ma, Katsina State
“Corresponding Author Email: usmanyhy0@gmail.com

Keywords:
Phishing Email
Detection, Artificial
Neural Networks,
Reinforcement
Learning,
Hyperparameter
Optimization,
Cybersecurity
Intelligence

ABSTRACT

Phishing remains one of the most persistent and rapidly evolving cyber threats,
requiring detection systems that are not only accurate but also adaptive to
shifting attack strategies. This study proposes a hybrid phishing email detection
framework that integrates an Optimization-Driven Artificial Neural Network
(ANN) with Reinforcement Learning (RL) to enhance model adaptability,
convergence efficiency, and decision accuracy. The ANN component learns
discriminative textual and structural features extracted from a benchmark
phishing dataset, while Bayesian Optimization and Particle Swarm Optimization
(PSO) are employed to tune hyperparameters, reduce training variance, and
improve generalization. To further address concept drift and emerging phishing
patterns, an RL agent is incorporated to refine classification thresholds and
adjust the model’s policy through reward-based feedback. Experimental
evaluation demonstrates that the hybrid ANN-RL framework achieves superior
performance compared to traditional machine-learning models, recording
accuracy and F1-scores above 98% across multiple test runs. The model also
shows improved resilience to misclassification, reduced false-positive rates, and
faster convergence during training. The findings underscore the potential of
combining optimization algorithms with reinforcement-driven adaptation to
create intelligent, scalable, and self-improving phishing detection systems
suitable for real-world email security environments.

INTRODUCTION

and signature matching, have proven increasingly

Phishing remains one of the most persistent and rapidly
evolving cyber threats, exploiting human vulnerabilities
and digital communication infrastructures to compromise
sensitive information, infiltrate organizational systems,
and facilitate financial fraud. As email continues to serve
as a primary channel for personal and organizational
communication,  attackers  increasingly = employ
sophisticated social-engineering strategies, obfuscated
hyperlinks, spoofed domains, and artificially generated
content to deceive users and bypass conventional security
controls. Recent advances in large language models
(LLMs) have further intensified the phishing threat by
enabling the automated generation of context-aware,
grammatically coherent, and highly persuasive emails
that closely resemble legitimate correspondence, thereby
reducing the effectiveness of traditional detection
mechanisms (Abdillah & Syafitri, 2024; Schmitt &
Flechais, 2024; Xue et al., 2025).

Conventional phishing detection approaches, including
blacklist-based filtering, rule-driven heuristics,

inadequate in addressing modern phishing campaigns.
These methods rely heavily on predefined patterns and
historical knowledge, making them ineffective against
zero-day attacks and dynamically evolving phishing
strategies. As attackers continuously modify linguistic
structures, message semantics, and delivery techniques,
static detection systems struggle to maintain accuracy and
robustness in real-world environments (lge et al., 2024).
In response to these limitations, machine learning (ML)
and deep learning (DL) techniques have been widely
adopted for phishing email detection. Models such as
Logistic Regression, Support Vector Machines, Random
Forests, Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Long Short-
Term Memory (LSTM) networks have demonstrated
strong performance by automatically learning
discriminative textual, structural, and contextual features
from email data (Abdallah et al., 2024; Kyaw, 2024).
Despite their improved accuracy, most deep learning-
based phishing detectors are trained offline,
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and remain static after deployment. This static learning
behavior makes them vulnerable to concept drift, where
detection performance degrades as attackers introduce
new phishing patterns not represented in the training data.
Furthermore, the performance of deep neural networks is
highly sensitive to hyperparameter configurations, and
improper tuning often results in slow convergence,
overfitting, and reduced generalization capability (Liu et
al., 2024; Rahman & Farooq, 2025).

To mitigate hyperparameter sensitivity and improve
training efficiency, recent studies have explored
optimization techniques such as Bayesian Optimization
and Particle Swarm Optimization (PSO). These methods
have been shown to enhance convergence stability,
reduce training variance, and improve classification
accuracy by intelligently navigating the hyperparameter
search space (Igbal et al., 2024; Alzahrani & Altameem,
2025). However, while optimization improves model
performance during training, it does not inherently
provide adaptability once the model is deployed.
Consequently, optimized models remain susceptible to
performance degradation in the face of evolving phishing
strategies.

Separately, reinforcement learning (RL) has emerged as
a promising paradigm for adaptive cybersecurity systems.
RL enables models to learn optimal decision policies
through continuous interaction with the environment
using reward—penalty feedback mechanisms. In phishing
detection, RL has been applied to dynamically adjust
classification thresholds or feature weighting, resulting in
reduced false-positive rates and improved adaptability to
emerging attacks (Jabbar & Al-Janabi, 2025; Rahman et
al., 2024). Despite these advances, existing RL-based
phishing detectors often lack strong neural feature
representation or systematic hyperparameter
optimization, limiting their scalability and robustness.

A critical gap therefore exists in the literature: most
phishing detection frameworks treat deep learning,
optimization, and reinforcement learning as isolated
components rather than as an integrated system. Static
supervised models lack adaptability, optimization-driven
models lack post-deployment learning, and RL-based
systems often lack optimized neural architectures. The
absence of a unified framework that simultaneously
leverages optimized neural learning and reinforcement-
driven adaptability limits the effectiveness of existing
approaches in real-world phishing environments
characterized by rapid evolution and adversarial
behavior.

Motivated by these gaps, this study proposes an
optimization-driven artificial neural network framework
enhanced with reinforcement learning for intelligent
phishing email detection. The proposed approach
integrates Bayesian Optimization and Particle Swarm
Optimization to automatically tune critical neural
network hyperparameters, improving convergence speed
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and generalization performance. In addition, a
reinforcement learning component is incorporated to
dynamically refine classification policies through reward-
based feedback, enabling continuous adaptation to
emerging phishing patterns without requiring full model
retraining. The study aims to extract and preprocess
discriminative email features, develop an optimized
ANN-based classifier, integrate reinforcement learning
for adaptive decision-making, and rigorously evaluate the
proposed framework against existing machine-learning
and deep-learning models using standard performance
metrics.

The significance of this research lies in its contribution to
the development of adaptive and intelligent phishing
detection systems capable of maintaining high
performance in dynamic threat environments. By
unifying optimization techniques, neural learning, and
reinforcement-driven  adaptation within a single
framework, the proposed model offers improved
resilience to concept drift, reduced false-positive rates,
and enhanced long-term deployment stability. The
findings provide both theoretical insights into hybrid
learning architectures and practical implications for real-
world email security systems deployed in enterprise and
organizational settings.

The remainder of this paper is structured as follows: the
next section reviews related work on phishing detection,
covering traditional methods, machine learning, deep
learning, optimization strategies, and reinforcement
learning approaches. The subsequent section presents the
proposed methodology, including dataset preprocessing,
model architecture, optimization procedures, and
reinforcement learning integration. This is followed by an
experimental evaluation and discussion of results.
Finally, the paper concludes with a summary of key
findings, contributions, and directions for future research.

Phishing detection has evolved considerably over the past
decade, transitioning from static rule-driven systems to
adaptive learning-based solutions capable of analyzing
linguistic structures, metadata, and behavioral patterns
within email communication. Early phishing detection
mechanisms relied heavily on blacklist and heuristic-
driven approaches that flagged suspicious keywords,
known malicious URLs, or sender-domain anomalies.
However, these methods struggled with zero-day attacks
and adversarial techniques, as attackers increasingly
adopted domain spoofing, novel URL obfuscation, and
Al-generated content to bypass deterministic filters
(Schmitt & Flechais, 2024; Ige et al., 2024). Their lack of
adaptability formed the basis for the shift toward machine
learning—based models.

Machine Learning Approaches to Phishing Detection
Machine learning (ML) methods marked a significant
advancement by enabling models to learn discriminative
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features from labeled datasets. Classical ML algorithms
such as Logistic Regression, Support Vector Machines
(SVM), Decision Trees, Random Forests, and Gradient
Boosting were widely adopted due to their strong baseline
performance and interpretability (Kyaw, 2024). Studies
by Kumar and Borah (2024) and Lee et al., (2025) showed
that ML ensembles achieved high accuracy when applied
to email headers, URLs, and textual content. Random
Forests and XGBoost models, in particular, demonstrated
robustness against noise and feature imbalance,
outperforming single-tree classifiers. However, these
models remained constrained by manual feature
engineering, limited scalability, and their inability to
generalize to evolving phishing patterns an issue
frequently highlighted in the literature (Rahmad &
Syafitri, 2024).

Deep Learning Models and Their Advancements
Deep Learning (DL) approaches emerged to overcome
the limitations of manual feature extraction.
Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNSs), including LSTM and GRU
architectures, became increasingly dominant in phishing
research due to their ability to capture contextual and
sequential relationships in email text (Abdallah et al.,
2024). CNN-based models were particularly effective in
extracting local lexical cues such as suspicious phrases
and URL fragments (Ahmed & Shabut, 2024), while
LSTM-based models excelled in capturing long-range
semantic dependencies (Zhang et al., 2024). Numerous
hybrid models combining CNN and LSTM layers
achieved state-of-the-art results, including accuracies
above 99% across benchmark datasets (Singh & Gupta,
2024).

Despite these strengths, deep learning models have two
critical weak points consistently reported in the literature:

Static learning behavior, where models fail to adapt to
new forms of phishing after deployment (Rahmad &
Syafitri, 2024); and

performance  sensitivity = to  hyperparameter
configurations, where improper tuning leads to model
drift  or overfitting (Liu et al., 2024).
These challenges created the need for optimization-
driven DL architectures.

Optimization Techniques for Enhancing Model
Performance

Optimization algorithms such as Bayesian Optimization,
Genetic Algorithms (GA), Particle Swarm Optimization
(PSO), and Ant Colony Optimization (ACO) have been
applied to address hyperparameter sensitivity and
improve convergence in neural networks. Igbal et al.,
(2024) demonstrated that PSO tuned ANNs achieved
higher accuracy and reduced variance compared to
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traditionally trained models. Similarly, Liu et al. (2024)
and Rahman and Faroog, (2025) found that Bayesian
Optimization outperformed manual or grid-based tuning
by identifying optimal learning rates, activation
functions, and network depth through probabilistic
search.

Recent cybersecurity studies emphasize that optimization
not only enhances classification accuracy but also
improves model stability in high-dimensional and
imbalanced datasets conditions typical of phishing
corpora (Alzahrani & Altameem, 2025). As a result,
optimization-driven  architectures  have  gained
prominence in phishing research. However, optimization
alone still cannot address the challenge of evolving
phishing strategies, prompting researchers to explore
reinforcement-driven learning systems.

Reinforcement Learning for Adaptive Phishing
Detection

Reinforcement Learning (RL) introduces dynamic
adaptability into phishing detection frameworks by
allowing models to refine classification thresholds and
decision policies based on reward-penalty feedback.
Jabbar and Al-Janabi, (2025) demonstrated that Deep Q-
Networks (DQN) significantly reduced false positives by
enabling continuous policy updates. Xue et al., (2025)
introduced MultiPhishGuard, a multi-agent RL
framework integrated with LLM-based detectors,
achieving improved resilience against Al-generated
phishing attacks. These studies show that RL offers a
fundamental advantage over supervised learning: the
ability to learn continuously from evolving data streams
without complete retraining.

Actor-critic architectures have also been used to optimize
dynamic intrusion-response systems, where the critic
evaluates the model’s performance while the actor
modifies its policy in real time (Rahman et al., 2024).
This adaptability is increasingly crucial as attackers
deploy new phishing variants based on generative
models. Despite these breakthroughs, few systems
combine RL with the strengths of ANN-based deep
learning and metaheuristic optimization highlighting a
critical gap your study fills.

Hybrid Models Combining ANN, Optimization, and
RL

Recent literature acknowledges that the next generation
of phishing detection systems must integrate multiple
computational paradigms for greater robustness. Hybrid
models combining ANN and optimization have
demonstrated exceptional performance. Prasad et al.,
(2024) and Ravula et al., (2025) showed that
optimization-enhanced neural networks significantly
improved detection accuracy for URL- and email-based
phishing attacks. However, these frameworks still lacked
real-time adaptability.
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Conversely, RL-based phishing systems improved TE(t d) = fra
adaptability but often lacked deep representational td)= %S

capacity when used without strong neural feature
extractors (WJARR, 2025). This has led researchers to
advocate for ANN-Optimization—RL tri-hybrid systems
capable of delivering high accuracy, low false-positive
rates, and dynamic adaptation (Kavya, 2024). Yet, only a
few recent studies attempt such integration, and none
provide a comprehensive implementation tailored for
phishing emails specifically.

MATERIALS AND METHODS

The methodology adopted in this study is designed to
ensure mathematical rigor, experimental transparency,
and full reproducibility. The experiments were conducted
using a publicly available phishing email dataset obtained
from a GitHub repository dedicated to phishing email
detection research. The dataset consists of labeled email
samples, where each instance comprises the raw email
text and a binary class label indicating phishing (1) or
legitimate (0). Prior to model training, the dataset was
cleaned to remove duplicate entries and null records, and
all text was converted to lowercase to ensure consistency.
The dataset was subsequently partitioned into training,
validation, and testing subsets using a stratified split to
preserve the original class distribution, with 70% of the
data allocated for training, 15% for validation, and 15%
for testing.

Dataset Preprocessing
Let the raw dataset be represented as:

D= {(xi:yi)}?il

Where x;= raw email text, y; € {0,1}= label
(0 = legitimate, 1 = phishing), N= total samples.

Text Normalization
Each email undergoes normalization:
1. Lowercasing
x; = lower(x;)
2. Removal of punctuation, URLS, numbers:
x;' = f(x;) = x; \ {url digits,punct}
3. Lemmatization
x; = lemma(x;")

Tokenization & Sequence Vectorization
Using a vocabulary Vand tokenizer T
T(x() = {wy,w,,...,wi }
Each token is mapped to an index:
X, = pad(index(wj), L)
where Lis maximum sequence length.

TF-IDF Representation
Term frequency:

Inverse document frequency:

IDF(t) = log (

TF-IDF score:
TFIDF(t,d) = TF(t,d) X IDF(t)
These embeddings become ANN inputs.

1+nt)

Avrtificial Neural Network Model
Let the neural network consist of:
e Inputvector: X € R™
e Hidden layers: hy, h,
e Output layer: logistic unit returning phishing
probability y

Forward Propagation
Hidden Layer 1:
Zl = W1X + bl
hy = f(Z1) = ReLU(Z,)

Hidden Layer 2:
ZZ = thl + bz
h, = ReLU(Z;)

Output Layer:
Z3 = W3h2 + b3

y=0(Z3) =1+e%

Loss Function (Binary Cross-Entropy)

N
1
L= —N;[yilog @0 + (1= y)log (1 = 9]

Hyperparameter Optimization
Two optimization methods are used:
1. Bayesian Optimization (initial search)
2. Particle Swarm Optimization (PSO) (fine-
tuning)

Bayesian Optimization
Let the function to minimize be:
f(@) = £val(9)

Bayesian Optimization models this using a Gaussian

Process:
f(8) ~ GP(u(6),k(6,6)
with acquisition function (Expected Improvement):
E1(6) = E[max (fyese — £(6),0)]
The optimizer selects the next best hyperparameter:
0,1 = arg max EI(08)
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Reinforcement Learning Integration
To enable adaptability, an RL agent interacts with the Q-Learning Formulation
ANN. Q-value update:

Q(se ar) < Q(s, ae

RL Environment Definition +a [Rt + ymax Q(Sp4q1,a)
a

State:
s¢ = {J;,loss,, confidence, } —Q(s¢ at)]
Action: Policy:

a, € {adjust threshold, increase Ir, decrease Ir} m(s,) = arg max Q(s;, a)
Reward: ¢

R _{+1 ify, =y,
-1 ity #Fy,

Algorithm 3.1: Optimization-Driven ANN with Reinforcement Learning
# Input: Preprocessed dataset D = {X_train, Y_train, X val, Y _val}
# Output: Trained and optimized ANN-RL phishing detection model M*

1: Initialize ANN parameters 0 = {weights, biases}
2: Define hyperparameter search space H = {learning_rate, batch_size, neurons, dropout}
3: Initialize RL agent 7 with state space S, action space A, and reward function R

# Phase 1: Bayesian Optimization for Initial Hyperparameter Selection
4: for iterationi=1to N1 do

5 Sample candidate h_i € H using Bayesian Optimization

6:  Train ANN(0, h_i) on training set D_train

7 Evaluate validation accuracy Acc_i and store performance

8: end for
9: Select best candidate h* = argmax(Acc_i)

# Phase 2: Particle Swarm Optimization for Fine-Tuning

10: Initialize swarm of particles P = {p1, p2, ..., pM} around h*
11: for iteration j = 1 to N2 do

12:  for each particle pk € P do

13: Evaluate fitness f(pk) = Validation Accuracy(ANN(0, pk))
14: Update pk velocity and position using PSO equations

15:  end for

16: Update global best parameters h_best

17: end for

# Phase 3: Reinforcement Learning Feedback Integration

18: Initialize environment E with ANN model state

19: for each training episode e = 1 to E_max do

20:  Agent selects action a_t (e.g., adjust learning rate or threshold)
21:  ANN predicts class §_t = ANN(X_val)

22: Compute reward R_t=+1ify t==Y _valelse -1

23:  Update policy m < m + o * (R_t - baseline)

24: Adjust model parameters 6 «— 0 + 3 * VO J(m)

25: end for

# Final Model Evaluation

26: Evaluate model M* using Accuracy, Precision, Recall, F1-Score, and ROC-AUC
27: Save optimized model weights 6* and trained RL policy *

28: Return final model M* = (6*, )

All experiments were implemented in Python using Matplotlib. Text preprocessing involved tokenization,
TensorFlow and Keras frameworks, with supporting stop-word removal, lemmatization, and vectorization
libraries including NumPy, Pandas, Scikit-learn, and using the TF-IDF representation. The maximum
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vocabulary size and sequence length were fixed across all
experiments to ensure consistency. To reduce
randomness and enhance reproducibility, a fixed random

seed was applied during dataset splitting, model
initialization, and optimization procedures.

RESULTS AND DISCUSSION

The experimental evaluation of the proposed

Optimization-Driven ANN with Reinforcement Learning
was performed using the cleaned and vectorized phishing
email dataset. Initial exploratory analysis provided
insights into the linguistic characteristics of the dataset.
The first visualization, a word cloud of stop words,
revealed the dominance of common English terms that do
not contribute meaningfully to classification, confirming
the importance of preprocessing and stop-word removal.
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Figure 1: Word cloud of available stop words
After normalization, tokenization, and removal of
irrelevant tokens, the second word cloud highlighted
more meaningful and discriminative terms frequently
appearing in phishing and legitimate emails, supporting
the need for careful feature engineering.
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Figure 2: Word Cloud of Unique Words
To establish baseline performance, several classical
machine-learning algorithms were tested. The Naive
Bayes model achieved an accuracy of 97.52%, with a
strong Fl-score of 97.99%. Its confusion matrix
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demonstrates that although effective, the model still
misclassified a noticeable number of samples due to its
simplistic independence assumptions.
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1750

pishing_mail
1500
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safe_mail

pishing_mail
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safe_mail

Figure 3: Naive Bayes Confusion Matrix
Logistic Regression delivered a slightly higher accuracy
of 97.98%, showing improved discrimination between
phishing and legitimate emails.

confusion matrix
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Figure 4: Logistic Regression Confusion Matrix

The Stochastic Gradient Descent classifier performed
exceptionally well, reaching approximately 99%
accuracy. This improvement is evident in the confusion
matrix, which shows fewer misclassifications compared
to earlier models.
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Figure 5: SGD Confusion Matrix
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XGBoost achieved a robust accuracy of 97.04%, although
a moderate number of false positives and false negatives
were observed.
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Figure 6: XGBoost Confusion Matrix
The Decision Tree model recorded a lower accuracy of
93.19%, showing clear signs of overfitting and unstable
decision boundaries.
confusion matrix
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Figure 7: Decision Tree Confusion Matrix
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Random Forest significantly improved this performance
with 97.63% accuracy, reducing both variance and bias
due to its ensemble structure.

confusion matrix
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pishing_mail safe_mail
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Figure 8: Random Forest Confusion Matrix

Deep learning models showed even stronger results. The
Multi-Layer Perceptron classifier achieved 98.43%
accuracy, benefitting from its ability to model nonlinear
relationships in the feature space.

confusion matrix
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Figure 9: MLP Confusion Matrix

The Artificial Neural Network (ANN) exhibited a clear
progression toward convergence during training. The
training accuracy steadily increased while the training
and validation losses decreased, indicating stable learning
behavior.
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Training Accuracy Confusion Matrix
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Figure 10.1: ANN Training Accuracy
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Figure 10.2: ANN Training Loss
The ANN confusion matrix further illustrates its
classification capacity, showing high accuracy but with
moderate misclassification relative to more complex
models.

Figure 11: ANN Confusion Matrix
The Bidirectional LSTM model outperformed several
baselines, achieving high accuracy with minimal
misclassification, as shown in its confusion matrix. Its
ability to capture long-term contextual dependencies
contributed significantly to its performance.
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Figure 12: Bi-LSTM Confusion Matrix
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Table 1: Comparative performance analysis

Study (Year, | Model / | Reported Accuracy | F1- Notable Our
Venue) Approach Dataset Scope Score Features from | Improvement
(as stated) Paper
Altwaijry et | Advanced Phishing email | 99.68% 99.66% | Deep CNN with | We add RL-
al., 2024 1D-CNNPD | corpora incl. Bi-GRU; strong | driven adaptivity
+ Bi-GRU | SpamAssassin; precision/recall; | (policy feedback
(augmented) | extensive DL deep for drift) and
comparison augmentations hybrid
hyperparameter
optimization
(BO+PSO)

capabilities  not
addressed in this
paper. Practical
edge: continuous

online
improvement, not
just static
training.
Patra et al., | Vector Curated email | 98.43% 98.41% | Retrieval- Our  ANN/MLP
2025 similarity set; vector augmented matches/edges
search + DL | retrieval + pipeline for | core metrics
classifier classifier email similarity | (MLP  98.43%,
SGD 99.0%)
while also
targeting
optimization
efficiency  (few
epochs to

converge) and RL
adaptivity again,
absent here.

Hosseinzadeh | Hybrid Large, ~99% 0.9942 | Strong ensemble | We achieve
et al., 2025 ensemble + | imbalanced (paper with custom | comparable top-
optimizer email dataset; | emphasizes optimizer (MGO | tier metrics (SGD

stacking + soft | F1) variant) 99% acc; MLP

voting 98.73% F1) with

a simpler

deployable stack
and introduce RL
for post-
deployment

adaptation a key
part of your

problem
statement
(handling
evolving phish).
Kyaw et al., | BERT-based | Multiple public | ~98% High Transformers Our pipeline
2024 detectors email corpora (varies) | effective but | reaches  similar

heavier compute | accuracy with
lower  compute
(fast convergence
in ~5 epochs) and
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explicit BO+PSO
tuning, improving
optimization
efficiency  and
training time.

Table 2: Classification report table for all the algorithms
Algorithm Precision Recall F1-Score Accuracy
Naive Bayes 0.98 0.96 0.97 97.52%
Logistic Regression 0.98 0.97 0.98 97.98%
Stochastic Gradient Descent | 0.99 0.98 0.99 99.00%
(SGD)
Extreme Gradient Boosting | 0.97 0.96 0.98 97.04%
(XGBoost)
Decision Tree 0.93 0.92 0.94 93.19%
Random Forest 0.98 0.97 0.98 97.63%
Multi-Layer Perceptron | 0.99 0.98 0.99 98.43%
(MLP)
Artificial Neural Network | 0.97 0.95 0.96 ~96-97%
(ANN)
Bidirectional LSTM (Bi- | 0.98 0.97 0.98 98-99%
LSTM)
Proposed ANN +10.99 0.99 0.99 98.7%
Optimization + RL

The proposed hybrid model, which integrates an
optimized ANN with reinforcement-learning-driven
adaptive thresholds, demonstrated the best overall
performance. Bayesian Optimization and Particle Swarm
Optimization improved the ANN’s convergence rate,
reduced variance across epochs, and enhanced
generalization by automatically identifying optimal
hyperparameters. The RL component further refined the
classification process by adjusting decision boundaries in
response to reward feedback, allowing the model to adapt
dynamically to misclassified samples. This synergy
resulted in an overall accuracy of approximately 98.7%,
with precision, recall, and F1-scores consistently
approaching or exceeding 98-99%.

A comparative review across all models shows that while
classical machine-learning algorithms such as Logistic
Regression and Random Forest achieved strong
performance, and deep-learning models like MLP and Bi-
LSTM showed exceptional accuracy, none provided the
adaptability and long-term learning behavior observed in
the hybrid ANN-Optimization—RL framework. The
proposed model effectively minimized false positives,
improved sensitivity to phishing patterns, and delivered
stable performance across multiple runs, making it a
superior approach for real-world phishing email
detection.

The experimental results demonstrate that the proposed
optimization-driven artificial neural network with

reinforcement learning achieves robust and competitive
performance in phishing email detection. In line with the
study’s objectives, effective feature preprocessing
enabled strong baseline results across classical and deep
learning models, confirming the relevance of textual and
structural  email  representations  for  phishing
classification. The optimized ANN further improved
learning stability and generalization, indicating that
Bayesian Optimization and Particle Swarm Optimization
effectively mitigated hyperparameter sensitivity and
convergence inefficiencies commonly observed in deep
neural networks.

The integration of reinforcement learning contributed to
improved adaptability by refining classification decisions
through reward-based feedback. This mechanism reduced
misclassification rates and enhanced robustness to
evolving phishing patterns, addressing the limitation of
static supervised models. Compared with traditional
machine learning and standalone deep learning
approaches, the proposed hybrid framework maintained
comparable or superior performance while offering
additional adaptability and optimization efficiency.
Despite these strengths, certain limitations should be
acknowledged. The evaluation was conducted on publicly
available datasets, which may not fully reflect the
diversity and dynamics of real-world email traffic. In
addition, reinforcement learning was applied to decision
refinement rather than continuous online learning, and
large-scale deployment scenarios were not explored due
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to computational constraints. These factors suggest
opportunities for future extensions rather than
fundamental limitations of the approach.

From a deployment perspective, the proposed framework
is suitable for integration into enterprise email filtering
systems, where optimization-driven training efficiency
and post-deployment adaptability are critical. The
modular design allows for practical implementation and
future enhancement, such as incorporation of
explainability modules or multilingual detection
capabilities. Overall, the results confirm that combining
optimization strategies with reinforcement learning
within an ANN framework provides a viable and effective
approach for intelligent phishing email detection.

CONCLUSION

This paper proposed an optimization-driven artificial
neural network integrated with reinforcement learning for
intelligent phishing email detection. By employing
Bayesian Optimization and Particle Swarm Optimization,
the framework effectively addressed hyperparameter
sensitivity and improved convergence stability. The
reinforcement learning component further enabled
adaptive refinement of classification decisions through
reward-based feedback, enhancing robustness to evolving
phishing patterns.

Experimental evaluation demonstrated that the proposed
framework achieved an overall accuracy of
approximately 98.7%, with precision, recall, and F1-
score consistently reaching 0.99, outperforming or
matching established machine learning and deep learning
baselines such as Logistic Regression, Random Forest,
MLP, and Bi-LSTM models. In particular, the hybrid
model reduced misclassification rates and maintained
stable performance across multiple runs, highlighting the
benefits of combining optimization-driven learning with
adaptive reinforcement mechanisms.

These results confirm that integrating optimization
strategies and reinforcement learning within an ANN
framework provides a practical and effective solution for
phishing email detection in dynamic threat environments.
Future work will focus on extending the model to real-
time streaming data, large-scale deployment scenarios,
and incorporating explainability techniques to further
enhance trust and operational usability in real-world
email security systems.
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