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ABSTRACT 

This study develops a dynamic mathematical equation that explicitly describes 

the motion of an infinitesimal mass with variable mass changes in the circular 

restricted three-body problem under the influence of perturbation factors such as 

radiation pressure due to the first oblate-radiating primary, albedo from the 

second oblate primary, oblateness, and a disc. The study looked at the impact of 

changing mass, radiation, albedo, oblateness, and disc characteristics on the 

existence and position of equilibrium points. The equation's dimensions were 

analyzed using Jean's law. We determine an adequate approximation for the 

locations of equilibrium points. Furthermore, various graphical investigations 

are provided to demonstrate the influence of parameters on point location. We 

discovered that these perturbations influence the positions of these equilibrium 

points. This discovery has numerous applications, particularly in the dynamical 

behaviour of tiny things like cosmic dust and grains. 

 

INTRODUCTION 

Many scientists investigated the restricted three body 

problem by considering many perturbations such as 

varied forms of the primary, solar radiation pressure, 

resonance, mass fluctuation, coriolis and centrifugal 

forces, the Yarkovsky effect, Poynting-Robertson drags, 

the Albedo effect, etc. (Szebehely, 1967; El-Shaboury 

and Mustafa, 2013; Abouelmagd and El-Shaboury, 

2012). The three-body problem (N = 3) has been 

thoroughly explored throughout the last three centuries. 

A few closed form solutions have been found under 

particular assumptions. Unlike the two-body issue, the 

three-body problem lacks a simple generic solution that 

can be written down to describe the motion over time for 

any arbitrary initial conditions.  
 

The purpose of this study is to look into the effects of 

albedo, dust disk, and variable mass on the location of the 

equilibrium points in the circular restricted three-body 

problem. The study of the circular restricted three-body 

problem has generated numerous novel ideas (for 

example, Poincare sections) and influenced other fields of 

mathematics and mechanics, such as topology. It also 

improves knowledge and understanding of the current 

mathematical methodologies in use. Now the search is on 

for planets orbiting distant stars, and we return to a 

centuries-old problem: determining where these extra-

solar planets could exist. 
 

 

 

 

 

 As a result, further theoretical research is required in 

order to broaden our understanding of the potential 

solutions available to orbit designers. 

Radwan and Nihad (2021) assessed the altered positions 

and the linear stability of the triangular points within the 

framework of the elliptic restricted three-body problem, 

treating the two primaries as triaxial structures. The 

positions of these points were discovered to be influenced 

by the triaxiality coefficients of the primaries and the 

eccentricity of their orbits. Gyegwa, et al (2025) 

investigate the effect zonal hamonics on the motion of a 

satellite by applying a generalized R3BP to the EQ pegasi 

binary system and using Lyapunov stability theorem; the 

collinear equilibrium points remain unstable. Abdullah et 

al (2021) investigated the dynamical evolution of a 

variable mass that is infinitesimal, influenced by 

Newtonian and Yukawa potentials in the circular 

restricted three-body system, assuming that the 

infinitesimal body changes its mass according to Jeans 

law. Five equilibrium points similar to those in the 

classical restricted three-body problem have been 

discovered. However, Yukawa parameters have minimal 

impact on the model, while variation parameters 

significantly influence the positioning of equilibrium 

points.  

From literature, it is noted that certain authors examined 

a scenario where two primary bodies are oblate spheroids 

surrounded by a dust disc in space with mass; 
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the larger oblate primary acts as a radiating source, while 

the second oblate primary exhibits an albedo effect, 

though variable mass was overlooked. Although some 

authors examined the influence of albedo on the 

movement of an infinitesimal body within the circular 

restricted three-body problem by varying all masses, they 

overlooked a disk of dust in space surrounding the 

masses. In this study, we performed research on a 

perturbed circular restricted three-body problem with 

variable mass under the conditions that (i) both primaries 

are oblate spheroids surrounded by a dust disc in space 

with mass, (ii) the larger oblate primary acts as a radiating 

body, (iii) the smaller oblate primary exhibits an albedo 

effect, and (iv) the infinitesimal body has a variable mass. 

We apply Jeans transformation law to derive the motion 

equation of the infinitesimal primary, thereby building 

upon the research of Abdullah, et al (2017), Akere-

Jaiyeola, et al (2019), and Radwan and Nihad (2021). 

 

MATERIALS AND METHODS 

For variable-mass systems, Newton's second law of 

motion cannot be directly implemented since it strictly 

applies to systems with constant mass (Plastino and 

Muzio, 1992). To analyse bodies with time-varying mass, 

we must modify Newton's second law by incorporating 

an additional term that accounts for the momentum 

transfer associated with mass entering or exiting the 

system. This reformulation yields the general equation of 

motion for variable-mass system and in the framework of 

the loss of mass being taken non-isotropic, the equations 

of motion for the infinitesimal body in the inertial frame 

in the case that the escaping or incoming mass occurs 

from 𝑛 points has the form: 
 

𝑚3
𝑑2𝑟

𝑑𝑡2
= 𝑚3

𝜕2𝑟

𝜕𝑡2
+ 2𝑚3𝜔⃗⃗⃗ × 𝑟⃗̇ + 𝑚3𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟) =

−
𝐺𝑚3𝑚1

𝜌1
3 (𝑟 − 𝜌⃗1) − 

𝐺𝑚3𝑚2

𝜌2
3 (𝑟 − 𝜌⃗2) − 𝑚̇3∑ 𝑢⃗⃗𝑖

𝑛
𝑖=1  (1)  

 

The last term in equation (1), will vanish in two cases: 

when the value of the sum equals zero or 

3rvi





= . Consequently, the loss of mass is 

isotropic in the two cases.  

Set 1m  as the first oblate primary, 2m the second oblate 

primary, and rF and aF are the radiation pressure force, 

mass reduction factor q , and albedo AQ  then;  














−=

1

1
g

r

F

F
q  and 













−=

2

1
g

a
A

F

F
Q ,                            (2) 

where
1gF  and 

2gF  are gravitational forces of the 

respective primaries. Let 1A  and 2A  be the oblateness 

coefficients of first and second primaries, which are 

respectively defined (McCuskey, 1963; Abouelmagd and 

Sharaf, 2013) as: 

2

2

1

2

1

1
5R

RR
A

pe −
= , and 

2

2

2

2

2

2
5R

RR
A

pe −
= ,                    (3) 

Where eiR  and piR  for 2,1=i  are equatorial and 

polar radii of the primaries and R is the separation 

between both the primaries. 

The gravitational force exerted due to disc of the mass 

dM  on the infinitesimal mass defines a potential, which 

is expressed (Miyamoto and Nagai, 1975; Kushvah, 

2008) as: 

( )
22

0,
Tr

M
r d

+
= where

22 yxr +=    and 

( )** baT +=      (4) 

measures the density profile of the disc. dM is the total 

mass of the disc, r is the radial distance of the 

infinitesimal body, while cr  is that in the classical case, 

T  is the sum of flatness parameter 
*a  and core 

parameter 
*b . 

The forces acting on m  due to 1m  and 2m  are qFg1  

and Ag QF 2  respectively and having the coordinates 

( )0,0,R  and ( )( )0,0,1 R−−  respectively too and 

( )0,, yx be that of infinitesimal mass in the −xy plane, 

by the definition of the centre of mass, 

R
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The equations of motion of the infinitesimal mass of variable mass can be written as: 

𝑟⃗̈ + 2𝜔⃗⃗⃗ × 𝑟⃗̇ + 𝑛
𝑚̇

𝑚
𝑟⃗̇ = −

𝐺𝑚1𝑞(1+
𝑅2𝐴1

2𝜌1
2 )

𝜌1
3 (𝑟 − 𝜌⃗1) −

𝐺𝑚2𝑄𝐴(1+
𝑅2𝐴2

2𝜌2
2 )

𝜌2
3 (𝑟 − 𝜌⃗2) − 𝜔⃗⃗⃗ × (𝜔⃗⃗⃗ × 𝑟) −

𝑀𝑑𝑟

𝑚(𝑟2+𝑇2)
3
2

          (7) 

where ( ) ,0,0=


 and    

( ) 222

1 yRx +−=   ,              ( )( ) 222

2 1 yRx +−+=   

If the rotation frames rotate with the angular velocity , the relation between the inertial and rotating coordinates is 

governed by the x –coordinate of 

( )yx
m

m
nr

m

m
n −= 





                                                                                                               (8) 

and the y –coordinate of 

( )xy
m

m
nr

m

m
n += 





                                                                                                               (9) 

Then equations (7) can be expressed as: 

𝑟⃗̈ − 2𝜔(𝑦̇, −𝑥̇) + 𝑛
𝑚̇

𝑚
(𝑥̇ − 𝜔𝑦, 𝑦̇ + 𝜔𝑥) = −

𝐺𝑚1𝑞(1+
𝑅2𝐴1

2𝜌1
2 )

𝜌1
3 (𝑟 − 𝜌⃗1) −

𝐺𝑚2𝑄𝐴(1+
𝑅2𝐴2

2𝜌2
2 )

𝜌2
3 (𝑟 − 𝜌⃗2) −

𝑀𝑑𝑟

𝑚(𝑟2+𝑇2)
3
2

+ 𝜔2𝑟       

 

     (10) 

 

Here, the second term on the left-hand side and last term on the right-hand side of equation (10) are the Coriolis 

acceleration and the centrifugal acceleration respectively. The components of equation (10) reduce to 

𝑥̈ − 2𝜔𝑦̇ + 𝑛
𝑚̇

𝑚
(𝑥̇ − 𝜔𝑦) = −

𝐺𝑚1𝑞(1+
𝑅2𝐴1

2𝜌1
2 )

𝜌1
3 (𝑥 − 𝜇𝑅) −

𝐺𝑚2𝑄𝐴(1+
𝑅2𝐴2

2𝜌2
2 )

𝜌2
3 (𝑥 + (1 − 𝜇)𝑅) −

𝑀𝑑𝑥

𝑚(𝑟2+𝑇2)
3
2

+ 𝜔2𝑥    (11) 

 

𝑦̈ + 2𝜔𝑥̇ + 𝑛
𝑚̇

𝑚
(𝑦̇ + 𝜔𝑥) = −

𝐺𝑚1𝑞(1+
𝑅2𝐴1

2𝜌1
2 )

𝜌1
3 𝑦 −

𝐺𝑚2𝑄𝐴(1+
𝑅2𝐴2

2𝜌2
2 )

𝜌2
3 𝑦 −

𝑀𝑑𝑦

𝑚(𝑟2+𝑇2)
3
2

+ 𝜔2𝑦         (12) 

Equations (11) and (12) can be written in compact form as: 

( )
x

U
yx

m

m
nyx




=−+−  


 2             (13) 

 

( )
y

U
xy

m

m
nxy




=+++  


 2             (14) 

And 

( ) ( )
22

2

2

2

2

2

2

1

2

1

1

2

1

22
2 22

1
2

1

2
,

Trm

M

AR
QGm

AR
qGm

yxyxU d

A

+
+











+

+










+

++=







                (15) 

(13) and (14) is the sum of the gravitational and centrifugal potential and belt.  

Applying Jeans’ space-time transformation law 

With  kqq tyRyxRx −−− === ,, , 

0m

m
=        (16) 

The mass of the third body at time 0=t  is 0m . Where 1=s , 0=k ,
2

1
=q . 

Therefore, 
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====−=−= −
−−

122

1

2

1

,,,,, 


RUddtyRyxRx
m

m

dt

d 
     (17) 

From (17), the velocity and acceleration components becomes; 

( ) 



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
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
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
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−

xxxRx 22
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

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−
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1
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Using the Jeans transformation; (11) and (12) becomes 
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Dimensionless parameters 
1  and 

2 are expressed as following: 

( ) 1

2

1

2
2

1 r
R

yx
R





 =





 +−=            (24) 
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Since 
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=    (28) and we arrive at the following equations. 
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     (29) 

𝑑2𝑦

𝑑𝑡2
+ 2𝜔

𝑑𝑥

𝑑𝑡
− 𝜎(𝑛 − 1)

𝑑𝑦

𝑑𝑡
− 𝜎𝜔(𝑛 − 1)𝑥 =

𝜕𝛺

𝜕𝑦
= −

𝑞(√𝜂)
3
(1+

𝜂𝐴1

2𝑟1
2)

𝑟1
3 (1 − 𝜇)𝑦 −

𝑄𝐴(√𝜂)
3
(1+

𝜂𝐴2

2𝑟2
2)

𝑟2
3 𝜇𝑦 −

𝑀𝑑𝑦

(𝑟2+𝑇2)
3
2

+

𝜔2𝑦 +
𝜎2(2𝑛−1)

4
𝑦                             (30) 

Equations (29) and (30) can be rewritten in a compact form as 

( ) ( )
x

ynxnyx



=−+−−− 112          (31)      ( ) ( )

y
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


=−−−−+ 112         (32) 
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2
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𝜎2(2𝑛−1)

8
) ((1 − 𝜇)𝑟1

2 + 𝜇𝑟2
2 − 𝜂𝜇(1 − 𝜇)) + (√𝜂)

3
(
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𝜂𝐴1

2𝑟1
2)
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1
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    (33) 

Since 

( ) ( ) 222

2

2

1 11 yxrr +=−−+−                                       (34) 

The perturbed mean   is given as: 

( )
( )2

3
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2

2

3
1
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c

cd
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+++=             (35) 

Then, we have 
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( )2

3
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2 2

2

3
1

Tr

rM
AA

c

cd

+

+++=             (36) 

These can be rewritten for ( 1=n ) in the form 

x
yx




=−  2     (37)     

y
xy




=+  2       (38) 
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And, Ω(𝑥, 𝑦) = (
𝜔2

2
+

𝜎2

8
) ((1 − 𝜇)𝑟1

2 + 𝜇𝑟2
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Equations (37) and (38) are different from the classical equations by the extra terms x
4

2
 and y

4

2
 due to the 

variation in the mass of the third body. 

Locations of Equilibrium (Libration) Points 

In the synodic reference system, there exist five equilibrium points; called Lagrange or libration points ( )5,...1=iLi

, which can be computed by imposing velocity  yx ,  and acceleration  yx  ,  to be null in the equations of motion 

(35) and (36). 

This is, 
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The second equation (43), is verified in two cases: 

1. If 0=y ; 

2. If 0y  and  
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The first condition corresponds to the collinear equilibrium points 21, LL and 3L , the second to the triangular 

equilibrium points 4L  and 5L .  

Collinear Equilibrium Points 

Let us introduce the variable u  as 

( ) −+= 1xu , Then we have 
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 ,          (44)                      

Where ( )us sgn0 = and ( )−= us sgn1 . 

We can distinguish among different combinations of 0s  and 1s  as a function of the position of the collinear point, by 

identifying three intervals on the x - axis, namely, 

( ) ( )1,1,: 103 −−=ssL if x , 

( ) ( )1,1,: 101 −=ssL if ( ) −− 1x , 

( ) ( )1,1,: 102 =ssL if ( ) −− 1x . 

Using series expansion; each of these three equations admits one real solution and two pair of conjugate complex 

solutions and thus we have three collinear equilibrium points as: 

( ) uxL +−== 111                                (45)  ( ) uxL +−== 122   (46) 

( ) uxL +−== 133                               (47) 

Location of triangular equilibrium points 

The triangular points 4L and 5L , also belong to the xy  plane and are given by the solution of equations 

0,0 == yyx                              (48).  Note that from (37), we have 

𝜕Ω

𝜕𝑥
= (𝑥 − √𝜂µ)𝑓(𝑟1) + (𝑥 + √𝜂(1 − µ)𝑔(𝑟2) (49),   and 
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( )( )

( ) ( )
2

2
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1 ,,
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,
r

y
r

yr

y
r

yr

x
r

xr

x
r

x
=




=



−+
=



−
=



 
 

Thus equations (48) will satisfy if ( ) ( )21 0 rgrf == , so that at equilibria points let 2211 , drdr == and 

( ) ( )bayx ,, = , that is 

167 



 
Analysis of Equilibrium Points of … Audu & Abdulrazaq JOBASR2025 3(5): 161-172 

 

   

( )
( )

( )

( )

( )( )

























−+










+

+−










+−

−
















+

−+=
















1
2

3
1

2

3
11

4
0

3

2

2

2

2

3

1

2

1

1

3

2

3
22

2
2

a
d

d

A
Q

a
d

d

A
q

a

Tr

M

A

d
                                (50) 

( )
( )

( )



















































+

+










+−

−
















+

−+=
3

2

2

2

2

3

1

2

1

1

3

2

3
22

2
2

2

3
1

2

3
11

4
0

d

d

A
Q

d

d

A
q

Tr

M
b

A

d










             (51) 

The triangular points are the solutions of equations (10) and (11) when 0b . 

this is, 
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and, 
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Now, if the bigger primary is neither oblate nor radiating, the smaller primary is neither oblate nor albedo, the 

infinitesimal body has no variable mass and there is no potential from a belt, then

( ) 1,1,1,0,0,02,1,1 ========  Adi QqMiA .Consequently, equations (50) and (51) 

reduces to 

13

1 =d and 13

2 =d 121 == dd             (54) 

Now, if we assume that the primaries are oblate, with the larger primary being a radiating body and the smaller one 

having albedo effects, while the infinitesimal body possesses variable mass and is influenced by an external belt 

potential, then  ( )2,1=id i  will take the form, 

( )2,1,1,1 =+= id iii              (55) 

we obtain the triangular equilibrium points ( )baL ,4  and ( )baL −,5  as: 
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                                (56) 

Substituting the assumption (55), a  and b  into equations (50) and (51) we obtain 
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The coordinates of triangular equilibrium points a  and b , by virtue of the two triangles they form with the line joining 

the primaries and are denoted by ( )baL ,5,4 .  

 

RESULTS AND DISCUSSION 

A mathematical equation describing the movement of 

infinitesimal masses with variable masses orbiting oblate 

primaries, one emitting radiation and the other producing 

an albedo effect, was created and tested. The purpose of 

this study was to assess the impact of disturbances on the 

positions of the libration points. We evaluated the 

presence and position of the equilibrium points when the 

perturbation parameters change. Maple 2015 version was 

used for the numerical simulations of mathematical 

models and are done with a variety of parameter settings. 

The effects of the involved parameters on the position of 

the equilibrium points are that the locations of the 

collinear points with respect to mass parameter   from 

0 to 0.5 for different values of  and dM , this shows 

that the collinear point L1 approaches the primaries as the 

variable mass parameter increases. However, at lower 

values of the mass parameter, L1 shifts away from the 

primaries, while for values above 0.4, it moves closer to 

them. 

 
Figure 1: Graph Showing the Variation of Location 

of L1 versus μ. 

 
Figure 2: Graph Showing the Variation of Location 

of L1 versus μ. 

L2 come nearer to the more massive primary with the 

increase in variable mass parameter and L3 moves away 

from the primaries with the increase in variable mass 

parameter. It is noted that the collinear point L1 move 

away from the primaries with the increase in disc 

parameter values while at smaller values of disc 

parameter, the location moves away from the primaries, 

but moves towards the primaries for the values of   

above 0.4. It is seen that L2 move away from the more 

massive primary with the increase in disc parameter 

values. L3 moves closer to the primaries with the increase 

in disc parameter values.  
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Figure 3: Graph Showing the Variation of Location 

of L2 versus μ. 

 
 

Figure 4: Graph Showing the Variation of Location 

of L3 versus μ. 

 
Figure 5: Graph Showing the Variation of Location 

of L2 versus μ. 

 

 
Figure 6: Graph Showing the Variation of Location 

of L3 versus μ. 

The variation of triangular points 
5,4Lr  against the mass 

ratio   from 0 to 0.5 for different values of . It is clear 

from the figure that the locations begin to decrease slowly 

as mass ratio increases from 0 to 0.5. We also observe that 

the variation in the locations 
5,4Lr  increases as variable 

mass parameter value increases. The variation of 
5,4Lr  

against the mass ratio   from 0 to 0.5 for different 

values of q . It is clear from the figure that the locations 

begin to decrease sharply as mass ratio increases from 0 

to 0.5. We also observe that the variation in the locations 

5,4Lr  decreases as radiation pressure values increases. 

The variation of 
5,4Lr  against the mass ratio   from 0 

to 0.5 for different values of AQ . It is clear from the 

figure that the locations begin to decrease sharply as mass 

ratio increases from 0 to 0.5. We also observe that the 

variation in the locations 
5,4Lr  increases as albedo 

parameter values increases. The variation of 
5,4Lr  against 

the mass ratio   from 0 to 0.5 for different values of

dM . It is clear from the figure that the locations begin 

to decrease slowly as mass ratio increases from 0 to 0.5. 

We also observe that the variation in the locations 
5,4Lr  

increases as disc parameter value increases. 
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Figure 7: The location of 5,4L with different values of 

variable mass parameter  . 

 

 

Figure 8: The location of 5,4L with different values of 

radiation pressure q . 

 

 

Figure 9: The location of 5,4L with different values of 

albedo coefficient AQ . 

 

CONCLUSION 

The circular restricted three-body problem is investigated 

in the setting of an infinitesimal body with changeable 

mass variations based on Jeans' law. The equation of 

motion is obtained when mass loss is not isotropic. We 

investigated the existence of both collinear and triangular 

points under the effect of perturbations in the form of 

radiation caused by an oblate-radiating first primary, the 

albedo of an oblate second primary, the oblateness of both 

primaries, the presence of a disc, and variable mass. In 

addition, a suitable estimate for the positions of collinear 

and triangular equilibrium points is found. Some 

graphical examinations into the parametric impacts of the 

variable mass on the placement of both collinear and 

triangular points are conducted. We found that the 

locations of these equilibrium points shifted from the 

original point because of these perturbations. 
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