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ABSTRACT

This study develops a dynamic mathematical equation that explicitly describes
the motion of an infinitesimal mass with variable mass changes in the circular
restricted three-body problem under the influence of perturbation factors such as
radiation pressure due to the first oblate-radiating primary, albedo from the
second oblate primary, oblateness, and a disc. The study looked at the impact of
changing mass, radiation, albedo, oblateness, and disc characteristics on the
existence and position of equilibrium points. The equation's dimensions were
analyzed using Jean's law. We determine an adequate approximation for the
locations of equilibrium points. Furthermore, various graphical investigations
are provided to demonstrate the influence of parameters on point location. We
discovered that these perturbations influence the positions of these equilibrium
points. This discovery has numerous applications, particularly in the dynamical

Variable mass

behaviour of tiny things like cosmic dust and grains.

INTRODUCTION

Many scientists investigated the restricted three body
problem by considering many perturbations such as
varied forms of the primary, solar radiation pressure,
resonance, mass fluctuation, coriolis and centrifugal
forces, the Yarkovsky effect, Poynting-Robertson drags,
the Albedo effect, etc. (Szebehely, 1967; El-Shaboury
and Mustafa, 2013; Abouelmagd and El-Shaboury,
2012). The three-body problem (N = 3) has been
thoroughly explored throughout the last three centuries.
A few closed form solutions have been found under
particular assumptions. Unlike the two-body issue, the
three-body problem lacks a simple generic solution that
can be written down to describe the motion over time for
any arbitrary initial conditions.

The purpose of this study is to look into the effects of
albedo, dust disk, and variable mass on the location of the
equilibrium points in the circular restricted three-body
problem. The study of the circular restricted three-body
problem has generated numerous novel ideas (for
example, Poincare sections) and influenced other fields of
mathematics and mechanics, such as topology. It also
improves knowledge and understanding of the current
mathematical methodologies in use. Now the search is on
for planets orbiting distant stars, and we return to a
centuries-old problem: determining where these extra-
solar planets could exist.

As a result, further theoretical research is required in
order to broaden our understanding of the potential
solutions available to orbit designers.
Radwan and Nihad (2021) assessed the altered positions
and the linear stability of the triangular points within the
framework of the elliptic restricted three-body problem,
treating the two primaries as triaxial structures. The
positions of these points were discovered to be influenced
by the triaxiality coefficients of the primaries and the
eccentricity of their orbits. Gyegwa, et al (2025)
investigate the effect zonal hamonics on the motion of a
satellite by applying a generalized R3BP to the EQ pegasi
binary system and using Lyapunov stability theorem; the
collinear equilibrium points remain unstable. Abdullah et
al (2021) investigated the dynamical evolution of a
variable mass that is infinitesimal, influenced by
Newtonian and Yukawa potentials in the circular
restricted three-body system, assuming that the
infinitesimal body changes its mass according to Jeans
law. Five equilibrium points similar to those in the
classical restricted three-body problem have been
discovered. However, Yukawa parameters have minimal
impact on the model, while variation parameters
significantly influence the positioning of equilibrium
points.

From literature, it is noted that certain authors examined
a scenario where two primary bodies are oblate spheroids
surrounded by a dust disc in space with mass;
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the larger oblate primary acts as a radiating source, while
the second oblate primary exhibits an albedo effect,
though variable mass was overlooked. Although some
authors examined the influence of albedo on the
movement of an infinitesimal body within the circular
restricted three-body problem by varying all masses, they
overlooked a disk of dust in space surrounding the
masses. In this study, we performed research on a
perturbed circular restricted three-body problem with
variable mass under the conditions that (i) both primaries
are oblate spheroids surrounded by a dust disc in space
with mass, (ii) the larger oblate primary acts as a radiating
body, (iii) the smaller oblate primary exhibits an albedo
effect, and (iv) the infinitesimal body has a variable mass.
We apply Jeans transformation law to derive the motion
equation of the infinitesimal primary, thereby building
upon the research of Abdullah, et al (2017), Akere-
Jaiyeola, et al (2019), and Radwan and Nihad (2021).

MATERIALS AND METHODS
For variable-mass systems, Newton's second law of
motion cannot be directly implemented since it strictly
applies to systems with constant mass (Plastino and
Muzio, 1992). To analyse bodies with time-varying mass,
we must modify Newton's second law by incorporating
an additional term that accounts for the momentum
transfer associated with mass entering or exiting the
system. This reformulation yields the general equation of
motion for variable-mass system and in the framework of
the loss of mass being taken non-isotropic, the equations
of motion for the infinitesimal body in the inertial frame
in the case that the escaping or incoming mass occurs
from n points has the form:
927 o2 N o s
6?+2m3a)><r+m3a)><(a)xr) =
— I = py) — TR (F - By) — iy T Ty
P1 P2

m dz?—m
SBarz — '3

1)

The last term in equation (1), will vanish in two cases:

when the value of the sum equals zero or
7, — F; . Consequently, the loss of mass is
isotropic in the two cases.

Set M, as the first oblate primary, M, the second oblate
primary, and F, and Fa are the radiation pressure force,

mass reduction factor (|, and albedo Q, then;
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F F
q= 1—F—r and Q, =|1-="1,

gl FgZ
where Fgl and ng are gravitational forces of the

()

respective primaries. Let A, and A, be the oblateness

coefficients of first and second primaries, which are

respectively defined (McCuskey, 1963; Abouelmagd and

Sharaf, 2013) as:

Re21 - REl Rezz - R§2

A= —F7pz and A, = T Ep2
SR SR

Where Rei and Rpi for i =1,2 are equatorial and

: 3)

polar radii of the primaries and R is the separation
between both the primaries.
The gravitational force exerted due to disc of the mass

M d on the infinitesimal mass defines a potential, which
is expressed (Miyamoto and Nagai, 1975; Kushvah,

2008) as:

M
¢(r,0)=ﬁd_r2wherer = x> +y’ and
T = (a* + b*) 4)

measures the density profile of the disc. M d is the total
mass of the disc, ris the radial distance of the
infinitesimal body, while I is that in the classical case,
T is the sum of flatness parameter a’ and core
parameter b

The forces acting on M due to M, and M, are F,q

and ngQA respectively and having the coordinates
(,uR,O, O) and (— (1—,u)R,O, O) respectively too and

(X, y,O)be that of infinitesimal mass in the XY —plane,
by the definition of the centre of mass,

m m m
m, +m, m, +m, m, +m,
. m2
Mass ratio {f = ———— (6)
m, +m,
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The equations of motion of the infinitesimal mass of variable mass can be written as:

S R PN Gm1q<1+ Al) GmZQA(1+ 2 AZ) M7

7'“'+25><7"+n—7"=—7(r p)—ipz(r p)— @ X (@ X7)——F— @)
m P p m(r2+T2)2

where @ = (O, 0, a)) and

2 2 2 2 2 2
pi=(x—@RS+y* . pf=(x+{-pR) +y
If the rotation frames rotate with the angular velocity @ , the relation between the inertial and rotating coordinates is
governed by the X—coordinate of

n%F—n%(x wy) (8)
and the Y —coordinate of
n%?—n—(y+a)x) 9)
Then equations (7) can be expressed as:
24, 24,
F =200, —%) + 2 (i — wy,y + wx) = —w(f—ﬁl) —w@—ﬁz) - My o
1 2 m(r2+72)2
(10)

Here, the second term on the left-hand side and last term on the right-hand side of equation (10) are the Coriolis
acceleration and the centrifugal acceleration respectively. The components of equation (10) reduce to

A1 Az
. Gmyq| 1+ Gm,Qp| 1+
- 20y +nZ(x—wy) = — M(x uR) — M(x+(1— WR) — —H4X 4 w2x  (11)
m & P? m(r2+T2)2
R%Aq R%4A,
. Gmqq| 1+——= GmyQ4| 1+
ji+2a)5c+nm(y+a)x)=_ <32”%)y_ (3 295)},_ May s+ 0’y (12)
m Pi P2 m(r2+T2)2
Equations (11) and (12) can be written in compact form as:
X — 2a)y+n—(x a)y)—ﬂ (13)
. .M. ouU
§+20% +n—(y + ox) = — (14)
m
And
RZA R?A,
Gmq| 1+ Gm,Q,| 1+——~
U(xy)="2 @ +y?)+ 20 ), 200 ), My (15)
P1 P2 mVr® +T?°
(13) and (14) is the sum of the gravitational and centrifugal potential and belt.
Applying Jeans’ space-time transformation law
_ g _ m
with x=Rn™9x', y=Rp %y, t=np"r np=— (16)
m

The mass of the third body at time t =0 is M,. Where S=1,k =0,q = ; .

Therefore,
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1 1

d m - -
d—7t7=—a77, —=-0, x=Rp 22X, y=Rp?y, dt=dr, U=R*%'Q 17
m
From (17), the velocity and acceleration components becomes;
1
1 DY 1 3 1
: 2 dnp 2dnp .. 1 - (o 1
X=Rnp 2X"+RxX’ — =1 RX'+RX'| —=n 2 |- =Rp 2| X'+=0oX 18
n T (ZUJ(M)U( Zaj (18)
1 2 1 3 1
y=Ry 2y +Ry 297 gy Ryl -1y 7 (o) =Ry {Wlay'j 9
dnp dt 2 2
1 1
X=Rn 2()’("+0')'('+ZO'2X’j (20)
.o _1 Xy . 1 2 ’
y=Rn ?y'+oy +Zay (21)

Using the Jeans transformation; (11) and (12) becomes

R d2x’+o-%+lo-zx’ —Zwi(dy'+loy'j—no-i(dxr+lox’j+
Jn L dt? dt 4 Jpldt 2 Jpldt 2

R?2 ’
R 7 0 Gmlq(H 2pélj R ( )
n ARV __ 1 N Xr_ _ (22)
i’ TR o A
Jn
2
GmZQA(1+F;AZ‘2j . M, R x' .
p ! !
2 —(x (@ ,u)\/;)— T o x
P> \/; (r!2+-|-!2)2 n
2.\, ' i '
Rd Z Gdy +=o%y |+2 i(dx +lax’j—nai(dy 1oy’j—
Jn L dt dt 4 pldt 2 Jpldt 2
2 2 2
R Gmlq(1+ R A}j GmZQA(lJr R Az‘zj
’ aQ 1 R ' 2 R '
Now——x' =—1 : —Yy'- 3 y (23)
\/; R oy P1 \/; P2 \/E
n
! R !
Mg —vy
\/; 2 '

— gt =Yy
(GRS ]

Dimensionless parameters o, and p,are expressed as following:

1

R l 2 12 2 R

p =—[X—ﬂ\/5 +y ) =—T, (24)
C | ) Jn
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1
R((., 2 o) R
P =ﬁ((x +(1—y)\/;) +y2) :EQ (25)
1 1
2 2
rlz((xl_ﬂ\/;) +y’2j2’ rzz((xl+(1_ﬂ)\/;) +y’2)2
Noticing that
Gm m Gm m
L= L _—1-u (26)  and —L = 2 _ = 27
o°R>  m +m, ®°R> m +m,
Since
0w’ =G % (28) and we arrive at the following equations.
3
dx_, dy w W) (1+’27f;] Y- a1y7)
20— —o(n-1)=—+oo(n-1)y = — = - (1 u X — un )-
dt? dt X r}
; "y (29)
QA(\/;) 1+ 9y 2 2
2r; M, X ,. o?(2n-1)
> y(x+(1—y)\/;)——3+a) X+—,
2 (r2 +T? )5
. W’ (1423 oa(ym)’(1+22
%+2a)2—f—a(n— 1)%—0(0(71— 1)x =Z—;2= —an(—32r1>(1—u)y— o Tg 2r2>uy—( M";y)§+
1 2 r24T2)2
w?y + @ (30)
Equations (29) and (30) can be rewritten in a compact form as
. : : 0Q
% — 20y — o(n — 1) + cw(n —1)y = 2—9 @) Y+20k-o(n-1)y-ow(n-1)x = 5 @
X
and
2 g2 a-w(1+222)  Qan(1+222
Qx,y) = (% + %) (A =prE+pr —nul —w) + (ﬁf (q ’ ( Zrl) + Au( 2r2>> FRLL
1 T2 (r2+72)2
(33)
Since
(L= p)r? + put} —nul=p) = X2 +y? (34)
The perturbed mean @ is given as:
o= (A a) et @
2 (rc2 +T 2)5
Then, we have
3 2M 1
w* :1+§(A1+A2)+—dcﬁ (36)
(rf +T 2)2
These can be rewritten for (N = 1) in the form
oQ . . 0Q
X— 2wy = == 37 Y+2m%k=— 38
Wy == 37) oy (38)
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w? | o2 3 q(l—u)(1+%) QA;L(1+%> -
And,  0(xy) = (5 +%5) (A= wrf +urf —mu@ =) + () R
(39)
3
q(l—y)[1+ ’iAzlj
1 —
8(2 ) 02 3 r13 (X \/;:u)—l— de
= x+—x—(\/ﬁ) _ : @)
OX 4 3nA, (rz +T2)5
Qua 1+ 2r}
2 x+ - )
2
and
3 3rA
: 3 q(l—u)(1+ 277?1} QA;{1+ 2’1;} -
—=a)2y+—y—(\/ﬁ) 3 —Ly+ = Ly | (41)
' 2 (r?+T2)

O o
Equations (37) and (38) are different from the classical equations by the extra termsT X and T Y due to the

variation in the mass of the third body.
Locations of Equilibrium (Libration) Points

In the synodic reference system, there exist five equilibrium points; called Lagrange or libration points Li (i = 1,---5)
, Which can be computed by imposing velocity {x, y} and acceleration {%, {/} to be null in the equations of motion

(35) and (36).
This is,
3
q(l—u)(1+ zAzi]
2 ) r3 : (X—\/;,u)+ Y
0=w2x+"7x—(\/ﬁ) : S L. (“2)
ot oo
r23 2 (X+\/Z(1_lu))
3 3
) 3 Q(l—u)(l+ ZA}j QAA{H ZAZZJ y
0= a)2+o-__(\/5) 3 -+ 3 : - : 3 [Y (43)
4 i 2 (r2+72)

The second equation (43), is verified in two cases:

1.
2.

If y=0;
If y =0 and
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q(l—u{1+37721] QAu{1+ 3 22]
o 3 2r. 2r. M

2 ( ) 1 2 d _O
@ +T_ N/ 3 + 3 — = |=

" "2 (r2+T2)

The first condition corresponds to the collinear equilibrium points L, L,and L3, the second to the triangular

equilibrium points L, and L.

Collinear Equilibrium Points
Let us introduce the variable U as

u= X+\/;(1—,u), Then we have

w2+GT_Ls (=~ w)- (| = =0, (44)

Where Sy = Sgn(u)and S, = sgn(u - \/5)

We can distinguish among different combinations of S, and S, as a function of the position of the collinear point, by
identifying three intervals on the X - axis, namely,

Ly (So’sl):(_li_l)if X<\/E,U,
L (50’51):(_1,1)” Jnu<x<=n-p),
L0 (s5,8,)=LYir x>—nL-4).

Using series expansion; each of these three equations admits one real solution and two pair of conjugate complex
solutions and thus we have three collinear equilibrium points as:

L, =x, =+n7(uz-1)+u (45) L, =x, =n(z-1)+u (@)

L, :X3:\/;(/J_1)+u (47)
Location of triangular equilibrium points
The triangular points L4 and L5, also belong to the XY plane and are given by the solution of equations

Q,=0 :Qy’ y=#0 (48). Note that from (37), we have
Z—f: = (x =) f () + (x + 01 = W g(ry) (49), and
ﬁ(r)_(x‘—\/;“) E(r)_(“\/;(l—#)) Oy, 9=y
xon At r e VA TR VA

1 P 1 A

Thus equations (48) will satisfy if f(r,)=0=g(r,), so that at equilibria points let r, =d,, r, =d,and
(x,y)=(a,b), that is
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- ) 1+ 3’7A;l
2d; ( )
ol M 3 d? ANTIHT
0= 0+ Z Mol () : &)
( +T ) QAA{1+ ZTGAZQJ
ER n(- 1))
2
2 M ; q(l_”)[“ 2@} QA’{“ 2?22]
0=b w2+0———d3 —(\/ﬁ) 4 — (51)
(rz +T2)§ d; d,
The triangular points are the solutions of equations (10) and (11) whenb # 0.
this is,
(J;;) o1+ 3nA,
, o M, 2d;
Jn-u) | 0* +=- - |- ; =0 (52)
4 GZ+T2F d
and,
Q12
, o M, 2d;
\/;/,l @ +T_ 3 | d3 =0 (53)
(rZ +T2)E 2

Now, if the bigger primary is neither oblate nor radiating, the smaller primary is neither oblate nor albedo, the
infinitesimal body has no variable mass and there is no potential from a belt, then

w=1 A (i = 1,2) =0, M, =0, 0=0, g=1 Q, =1, 7 =1.Consequently, equations (50) and (51)
reduces to

d} =landd; =1= d,=d, =1 (54)
Now, if we assume that the primaries are oblate, with the larger primary being a radiating body and the smaller one
having albedo effects, while the infinitesimal body possesses variable mass and is influenced by an external belt

potential, then d; (i =1 2) will take the form,
d =1+, |[o]<<l (i=12) (55)
we obtain the triangular equilibrium points L, (a, b) and L (a,— b) as

as ;(mu 9+ 5)]

L AR N () (W CR)

Substituting the assumption (55), & and b into equations (50) and (51) we obtain

(56)

I+
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4 -5\ (12-257+8n? 3 1
2] s e L
1
S =——
1 377\/; Md(zrc_g')_E l (57)
(rC2+T2)5
4 -5) 3 12— 257 + 8n? 1
#J‘z’*‘ A e
1
5. =—— 58
2 377\/; Md(zrc_g-)_§p2 8)
(rCZ+T2)5 4

The coordinates of triangular equilibrium points @ andb , by virtue of the two triangles they form with the line joining

the primaries and are denoted by L4,5(a, T b).

RESULTS AND DISCUSSION

A mathematical equation describing the movement of
infinitesimal masses with variable masses orbiting oblate
primaries, one emitting radiation and the other producing
an albedo effect, was created and tested. The purpose of
this study was to assess the impact of disturbances on the
positions of the libration points. We evaluated the
presence and position of the equilibrium points when the
perturbation parameters change. Maple 2015 version was
used for the numerical simulations of mathematical
models and are done with a variety of parameter settings.
The effects of the involved parameters on the position of
the equilibrium points are that the locations of the
collinear points with respect to mass parameter £ from

0 to 0.5 for different values of o and M, this shows

that the collinear point L1 approaches the primaries as the
variable mass parameter increases. However, at lower
values of the mass parameter, L1 shifts away from the
primaries, while for values above 0.4, it moves closer to
them.

u

0.1 03 0.4 0.5

-027

-028

-029

-0.30

G=03""""G=05|

Figure 1: Graph Showing the Variation of Location
of L1 versus p.

|—o=0

0.1 03 04 0.5

—0285
-0290
-0295

1 0300

-0.305

-0310

Figure 2: Graph Showing the Variation of Location
of L1 versus p.
L2 come nearer to the more massive primary with the
increase in variable mass parameter and L3 moves away
from the primaries with the increase in variable mass
parameter. It is noted that the collinear point L1 move
away from the primaries with the increase in disc
parameter values while at smaller values of disc
parameter, the location moves away from the primaries,
but moves towards the primaries for the values of

above 0.4. It is seen that L2 move away from the more
massive primary with the increase in disc parameter
values. L3 moves closer to the primaries with the increase
in disc parameter values.

M,=0 M, =005« =] M, =0.1 |
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Figure 3: Graph Showing the Variation of Location
of L2 versus p.
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Figure 4: Graph Showing the Variation of Location
of L3 versus p.
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Figure 5: Graph Showing the Variation of Location
of L2 versus p.
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Figure 6: Graph Showing the Variation of Location

of L3 versus p.
The variation of triangular points I’,_4 ; against the mass

ratio & from 0 to 0.5 for different values of o . It is clear

from the figure that the locations begin to decrease slowly
as mass ratio increases from 0 to 0.5. We also observe that

the variation in the locations I _ increases as variable

mass parameter value increases. The variation of FL45

against the mass ratio @ from 0 to 0.5 for different
values of ( . It is clear from the figure that the locations

begin to decrease sharply as mass ratio increases from 0
to 0.5. We also observe that the variation in the locations

I, decreases as radiation pressure values increases.
The variation of I’|_4 . against the mass ratio £/ from 0

to 0.5 for different values of Q,. It is clear from the

figure that the locations begin to decrease sharply as mass
ratio increases from 0 to 0.5. We also observe that the

variation in the locations I’L45 increases as albedo

parameter values increases. The variation of rL“ against
the mass ratio & from 0 to 0.5 for different values of

M q - It is clear from the figure that the locations begin
to decrease slowly as mass ratio increases from 0 to 0.5.
We also observe that the variation in the locations r,_4 .

increases as disc parameter value increases.
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Figure 7: The location of L, 5 with different values of

variable mass parameter o .
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Figure 8: The location of L, ; with different values of
radiation pressure (.
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Figure 9: The location of L, with different values of

albedo coefficient Q.

CONCLUSION

The circular restricted three-body problem is investigated
in the setting of an infinitesimal body with changeable
mass variations based on Jeans' law. The equation of
motion is obtained when mass loss is not isotropic. We
investigated the existence of both collinear and triangular
points under the effect of perturbations in the form of
radiation caused by an oblate-radiating first primary, the
albedo of an oblate second primary, the oblateness of both
primaries, the presence of a disc, and variable mass. In
addition, a suitable estimate for the positions of collinear
and triangular equilibrium points is found. Some
graphical examinations into the parametric impacts of the
variable mass on the placement of both collinear and
triangular points are conducted. We found that the
locations of these equilibrium points shifted from the
original point because of these perturbations.
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