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ABSTRACT

This paper investigates the derivations of the time-dependent equations of
motion of a test particle in the frame of the R3BP with variable masses and zonal
harmonics. The motion and mass variations of the primaries are described by the
Gylden-Mestschersky problem (GMP) and the unified Mestschersky law
(UML), respectively, with further assumptions that the oblateness of the bigger

Keywords: primary varies with zonal harmonics coefficients up to J4 terms. The non-
Gylden-Mestschersky autonomous equations of the test mass in a reference frame rotating are derived
problem; using the Hamiltonian method. These equations are DE with variable
RTBP; coefficients and are defined by the oblateness of the bigger body with zonal
Variable Masses; harmonics coefficients up to Ja, the angular velocity of revolution and the masses
Oblateness: of the primaries. This study will in no doubt expand the knowledge base of

celestial mechanics and will allow for more extensions with applications to space
missions.

Zonal Harmonics; J4

INTRODUCTION

The restricted three-body problem (RTBP) is a model
description which studies motion of a third body of
infinitesimal mass in the gravitational environment of
two main bodies called primaries. The more massive
body is called the bigger or first primary while the less
massive one is called the smaller or secondary body.
The motion and gravitational force of the infinitesimal
body do not affect the primaries (Szebehely 1967). The
RTBP has had major applications in various scientific
fields, such as in celestial mechanics, chaos theory,
molecular physics, astrodynamics, astrophysics and
galactic dynamics (Singh and Leke 2014).

The RTBP are governed by non-integrable differential
equations, hence equilibrium solutions are needed to
get insights into the dynamical predictions of the
infinitesimal mass. These solutions are obtained when
the velocity and acceleration components are zero, and
are referred to as the equilibrium or libration or
Lagrangian points. For the classical RTBP there exists
three collinear and two triangular points. The collinear
points are located on the line joining the primaries
while the triangular points form two equilateral
triangles with the primaries (Szebehely 1967). The
collinear points are unstable while the triangular points
are conditionally stable (Szebehely 1967).

In recent years focus has been drawn to the study of
the RTBP under different characterizations of the main
bodies and the infinitesimal mass. Some of such
characterizations include radiation pressure of one or
both primaries, oblateness or triaxiality of one or both
primaries (see Singh and Ishwar 1999, AbdulRaheem
and Singh 2006, Singh and Leke 2014), inclusion of a
disk in the configuration of the RTBP (Singh and
Taura 2015, Leke and Singh 2023). Others have
considered effects of zonal harmonics (Bury and
McMahon 2020, Gyegwe et al 2025), while some have
discussed mass variation effects (see Singh and Leke
2010, 2012, 2013; Leke and Mmaju 2023, Leke and
Orum 2024, Leke et al 2024& 2025).

The classical RTBP traditionally presumes that the
masses of the primary bodies remain constant. However,
observations of stellar absorption phenomena prompted
researchers to extend the RTBP to include variable mass
systems. The formulation of the RTBP with variable
masses is significant in both astronomical and
engineering applications. For instance, in analyzing the
motion of spacecraft near comets or asteroids undergoing
mass loss due to surface outgassing, studying binary star
systems experiencing mass transfer, and examining the
Earth—-Moon system during episodes of lunar mass
discharge.
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Incorporating mass variation into the RTBP has led to
new insights: Bekov (1988) identified additional
equilibrium points, referred to as coplanar equilibrium
points, while Singh and Leke (2010) investigated the
stability of the photogravitational RTBP with variable
masses. Other scientists that have carried out researches
on the R3BP with variable masses under different
classifications includes Leke and Singh (2023),
Ibraimova et al (2023), Leke and Orum (2024), Gao et al
(2024), and Leke et al. (2024, 2025).

Motivated by the extensive applications of the RTBP
with variable masses, this study aims to formulate and
analyze the equations of motion of the RTBP
incorporating both variable masses and the oblateness of
the smaller primary, expressed through zonal harmonic
terms up to Js. The variations in the masses of the
primaries and the oblateness of the bigger primary are
assumed to evolve with time according to the unified
Mestschersky law (UML). The inclusion of zonal
harmonic effects in the variable-mass RTBP framework
enhances the model’s realism by providing a more precise
representation of the actual dynamical behavior of
celestial bodies, thereby improving the accuracy of
predictive analyses. For instance, the model proposed by
Bekov (1988) may not adequately capture the motion of
a test particle within the gravitational field of irregularly
shaped bodies such as asteroids. Similarly, the treatment
of oblateness up to the Js term by Abouelmagd (2012)
may not have fully revealed the complete set of
equilibrium points or their stability characteristics.
Hence, it is both timely and appropriate to examine the
dynamical behavior of the RTBP with variable masses
and time-dependent oblateness of the larger primary,
incorporating zonal harmonic coefficients up to the Ja
term. The natural starting point for such an investigation
is the derivation of the governing dynamical equations.
Hence, our main contribution in the present work is to
derive the equations of motion of the RTBP under
effect of varying masses and zonal harmonics in the
oblateness of the bigger primary. Consequently, we
shall consider the influence of even zonal harmonic
parameters up to J4 for the bigger primary.

This paper is structured as follows: the introduction is
provided in current Section. The dynamical equation of
two bodies with variable masses (Gylden-Mestschersky
Problem (GMP), Gylden 1884, Mestschersky 1902) is
presented in Section 2, while the potential energy of the
infinitesimal body is presented in Section 3. The
equations of motion of the time-dependent system are
derived in Section 4. Section 5, gives the results, while
the discussion and conclusion are given in Section 6.
These derivations are extension of the dynamical
equations of Abouelmagd (2012) with the consideration
that the masses of the primaries and zonal harmonics in
the oblateness of the bigger primary change with time.
Also, it could also be viewed as an extension of the work
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of Singh and Leke (2012) by considering oblateness of
the bigger primary with zonal harmonic coefficient to Ja
terms in the absence of perturbations in the Coriolis and
centrifugal forces. Additionally, it could be seen as an
extension of the work done by Bekov (1988) by
introducing the oblateness of the bigger primary with
zonal harmonic of J.and Ja terms.

MATERIALS AND METHODS

2.1 Equation of Motion of Two- Body with Variable
Masses (GMP)

We start the process of our derivations of the dynamical
equations with the two-body problem (2BP), which is the
initial point for virtually all reference books in the
expanse of astrodynamics. The fundamental set up
illustrates the motion of two point-masses under mutual

gravitational attraction, and is given by
dV’ U F
dt rer
where\}lj is the velocity, g is the gravitational constant

@)

G multiplied by the sum of the masses, and Fis the
distance between the bodies and connects the angular
velocity @ and constant of the area integral C by the
relation:

r’e=C @
Now, the 2BP with variable masses, which is similar to
the classical 2BP with constant masses, is given by the
equation

G(m,+m,)r

3 ®)

Equation (1) is identical to equation (3) with the
difference that in equation (3), the total of the masses is a
certain function of time. This equation is called the
Gylden-Mestschersky problem (GMP).

Mestschersky (1902), transformed the GMP (3) to (1) by
introducing new variables and time using a conversion.
These equations that converts to constant system of
equations was later referred to as the Mestschersky (1902)
transformation (MT) and is expressed as

¥=

x = &R(t),y = nR(t),z = {R(t),dt/dt = R*(t)

n = piR(), 7 = prpR(E) (0 =1,2) (4)

where R(t) = \Jat® + 28t + y; E,n, & 1 are  the

newly introduced variables and 0, is constant.

Further, Mestschersky (1952) devised a law which was
later referred to as the unified Mestschersky law (UML).
This law asserts that the masses and their sum vary in the
same proportion in such a way that
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{)=——, u(t)= (L) = 5
,U() R(t) ,u1() R(t) fuz() R(t) ()

where
(t)=Gmy(0), 1, (t) = Gmy 1), elt) = 44 0) + o (0). g
and [, are constants.

ru=xC° (6)
is the particular integral of the GMP wherexis a
constant.

3 The Potential Energy of the Infinitesimal Body

In free space the gravitational potential external to a body
which is oblate with its mass apportioned symmetrically
around its equator, can be expanded in terms of Legendre
polynomials in the pattern (Abouelmagd 2012, Bury and
McMahon 2020)

- k
V(r)= —@{1—;(% J.P, cos@} @
=1

where, G refers to the gravitational constant, R is the
radius and r is the distance from the body to the test

particle, while Jx is the kth zonal harmonic term, and & is
the angle between the body’s symmetry axis and the
vector to a test particle. The terms P, COS@ are the
Legendre polynomials, given by

1 d*

R.(x)= ZK—MW (X2 —1)k (8)

Since the present study is concerned with planar
problem, assuming the equatorial plane of both
primaries coincide with the plane of motion, then with

6 =90°, Equation (7) becomes
J,R* 3J,R* 5J.R®
V(r)=-SM |, 20 2 ¢ } ©)
r
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the potential energy of the infinitesimal body, under the
influence of varying oblateness of the bigger primary

with zonal harmonics up to J , term has the form

U =—Gm{ﬂ+&+ mlAl(t)_smlAZ(t):| 10)

3 3
n 2 8r,

Where 1, = /(x=x ' +y2 +2% (i=12)

A(t)=J,RZand A, (t)=J,R} (12)
A (i =1,2)are the time-dependent oblateness up to J.,

(11)

and J,, respectively, of the bigger primary while R is
the time-dependent mean radii of the bigger primary. I

and I, are the distances of the infinitesimal mass from the
bigger and smaller primaries, respectively.

4 Equations of Motion of the Infinitesimal Mass
To deduce the dynamical equations of the RTBP of our
formulation, we consider a synodic frame of reference

Oxyz , with 0 as the origin. We letM, and M, be the
masses of the massive bodies and M, be the mass of the
dust grain. We have taken the line joining M, and M, as
the X—axis. The coordinates of M, and m, are
(%,0,0) and (X,, 0, 0) respectively, and that of the dust

grain is(X, Y, Z) . Here we suppose that the masses of the

bodies vary with respect to time with the consideration
that the bigger body is an oblate spheroid with zonal

harmonics terms up to Ja. The radius vector from M, to

m, is I, while that between M, and M,is I,, and the
distance between the bodies is . Also, let @ be the

2 4 6
2r 8r 16r angular velocity as illustrated in Figure 1
my(x,y,2)
,(%,,0,0) X
i
r
A
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Fig. 1 Description of the RTBP

We consider same formulation by Abouelmagd (2012)
with the assumptions that the masses and oblateness of
the bigger primary change according to the unified
Mestschersky law (UML)

Now, the kinetic energy of the infinitesimal mass in the

rotating frame of reference OXyz is given by

T =%m3(>'(2 +y? +z'2j+

(13)
My ( Xy — y>'<)+%m3 (x2 + yz)a)2
Now let P,, P, and P, be the generalized
components of momentum then,
oT . oT
Py=——7"=My| X-—@y |, p,=—=
O X oy
(14)
. or .
m, (Y +ax), p, =—=m,Z
0z
This implies
X =&+a)y, y =&—a)x,
3 3 (15)
1=e
m3

Substituting equations of system (14) in (13) and
simplifying, we at once have

1
T=—""A(p2+p2+p’
2m3(px py +P;)

Now, the Hamiltonian H is given by

H :%m{xz +.y2+z'2]—

(16)

17)

1 2(2 2

—m,o° (X" +y°)+U

2 3 ( y )

Using system (15) in equation (17), we get

H = ——(p2+ p2 + p2)+ wlyp, —xp, )+U
2m,

(18)

Now, from the Hamiltonian canonical equations, we have

b =~(-on,)- 5

" ooox !

. ou
Py =—op, ——,

oy
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o - Y

’ oz
Since the primaries move within the frameworks of the
GMP with their masses changing with time as defined by
the UML then P,, Py, P,and the angular velocity @

will all depend on time. So, we differentiate system (14)
w.r.t time and compare with equations (19), to get

(19)

m (X—é)y—d)y)za)p _ Y
: Yooox ]
m3(y+é>X—d)x)=—a)px—@, (20)
oy
" oU
mZ=——
OX
Substituting equations of system (14) in (20), we get
o .. . oU
m3(x—a)y—a)y):a)m3(y+a)x)—§
m3(y—cb>'<—cbx):—a)m3(>'<—a)y)—% (1)
" ouU
myZ =———
0z

If we differentiate equation (10) w.rtX,yand Z,
respectively, and substitute in (21) while multiplying the

1
results throughout by —, we get
M

X=2wy+wzx+@y——M(t;X1)
1

ﬂz(x_xz) 3 MAi(t)(X_Xl)
r; 2 r’

15 1A (0(x%)

8 r/

Y =—20X+ 0"y — X —

my Yy 3mA)y

ron o2 K
15 mA )y
8 r/
(22)
g 2z 3mA(D)Z 15 mA(1)2
rf r23 2 r15 8 r17
Where
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2 :(x—x1)2+y2+22, I2 :(x—x2)2+y2+z2

0 I
o’ (t)= {3+2r5A1 8r7A2} (23)

K | I

RESULTS AND DISCUSSION

Equations (22) model the motion of an infinitesimal body
within the gravitational field of two larger primary
bodies. The model is set in a rotating coordinate system
centered on the system's center of mass and accounts for
the changing mass and oblateness (up to the J4 zonal
harmonic) of the larger primary body over time. These
factors introduce additional terms not found in the earlier
equations of Bekov (1988) and Singh and Leke (2010-
2013).

The systems differ from those of Singh and Leke (2012)

due to zonal harmonics terms up to J, in the oblateness
of the bigger primary. If the zonal harmonics in the
oblateness of the bigger primary up to J , are ignored,
we have A, =0 , and the autonomized systems reduce
to

X =20y + 0’ X+ @y —
m(X=%)  #(x=%)
3 3

L $

3 A (0)(x=x)

2 r’

J=—20X+ 0"y —OX—

my Yy 3mA(t)y (24)
oo o2 r
g Mz 7 3mA(Y)z
roon 2
where
pof, ., 3

which is the time-dependent dynamical equations of
Singh and Leke (2012) in the absence of small
perturbations in the Coriolis and centrifugal forces.

If further, we ignore the oblateness up to J,, we have

A, =0 and equations reduce to
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X =20y + 0" X+ dy -
M(X_Xi) _ﬂz(x_xz)

3 3

rl r-2
§=—20%+ay—ox—ta _HY (26)
n I
g _tht _fhl
A
where
t

o’ (t)= _Zf?’) @7)

Which are the equations of motion of the classical RTBP
with variable masses of Gelf’gat (1973) and Bekov
(1988).

The descriptions of the equations of motion of an
infinitesimal mass in the gravitational environment of two
massive bodies whose masses change with time and the
bigger primary is an oblate spheroid whose oblate shape
also varies with time with zonal harmonics up to Js term
are obtained in this work. The equation of motion of the
primaries is defined by the Gylden-Mestschersky
problem (GMP), while the variations in the mass and
oblateness of the bigger primary are described by UML.
The oblate shape of the bigger primary varies with time
due to its changing radius which is the coefficients of the
zonal harmonics up to Js term. The equations of motion
of the time varying dynamical system were derived using
the Hamiltonian method. These equations are different
from those of Gelf’gat (1973), Bekov (1988), Luk’yanov
(1989), Singh and Leke (2010,2012), Gao et al (2024),
Leke et al (2024&2025) due to the inclusion of the
deforming shape of the bigger primary from a sphere to a

oblate spheroids up to J4 terms in the zonal harmonics

coefficients. They are also different from those of
Abouelmagd (2012) due to the variation in the masses and
oblateness of the bigger primary. All previous studies of
Singh and Leke (2010, 2012), Luk’yanov (1989) and
Bekov (1988) be recovered from our equations.

The non-autonomous differential equations of the test
particle in a rotating frame of reference are derived using
the Hamiltonian method and these equations are
described by the masses of the primaries, oblateness of
the bigger primary and the angular velocity of revolution
of the primaries. The RTBP is an active and stimulating
research area that has been receiving attentions because
of its applications to dynamics of small bodies in the solar
and stellar systems and also because of its applications to
satellite dynamics.
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CONCLUSION

Hence, this paper contributes to knowledge by opening
new problem involving mass variations and zonal
harmonics which have remained open

The derivations of the dynamical equations will pave way
for more explorations of the dynamical predictions of the
test particle in the gravitational field of a binary system
having the more massive body as an oblate spheroid
under zonal harmonics coefficients up to Js. This will in
no doubt expand the knowledge base of celestial
mechanics and space missions.
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