
 

 

 

 

 

 

 

 
 

Non-autonomous Equations of Restricted Three-Body Problem with Variable Masses  

and Zonal Harmonics up to J4    

 

Joel John Taura1*, Oni Leke2 & Jagadish Singh3 
 

1Department of Mathematics and Statistics, Federal University of Kashere, Gombe-State, Nigeria 
2Department of Mathematics, College of Physical Science, Joseph Sarwuan Tarka, University, P.M.B. 2373, 

Makurdi, Benue-State Nigeria 
3Department of Mathematics, Faculty of Science, Ahmadu Bello University, Zaria, Kaduna-State, Nigeria 
*Corresponding Author Email: abdurrashidnasir@gmail.com  
 

 

 
 

 

 

 

    

  

     Keywords:  

     Gylden-Mestschersky  

     problem;  

     RTBP;  

     Variable Masses;  

     Oblateness;  

     Zonal Harmonics; J4 

 

ABSTRACT 

This paper investigates the derivations of the time-dependent equations of 

motion of a test particle in the frame of the R3BP with variable masses and zonal 

harmonics. The motion and mass variations of the primaries are described by the 

Gylden-Mestschersky problem (GMP) and the unified Mestschersky law 

(UML), respectively, with further assumptions that the oblateness of the bigger 

primary varies with zonal harmonics coefficients up to J4 terms. The non-

autonomous equations of the test mass in a reference frame rotating are derived 

using the Hamiltonian method. These equations are DE with variable 

coefficients and are defined by the oblateness of the bigger body with zonal 

harmonics coefficients up to J4, the angular velocity of revolution and the masses 

of the primaries. This study will in no doubt expand the knowledge base of 

celestial mechanics and will allow for more extensions with applications to space 

missions. 
 

INTRODUCTION 

The restricted three-body problem (RTBP) is a model 

description which studies motion of a third body of 

infinitesimal mass in the gravitational environment of 

two main bodies called primaries. The more massive 

body is called the bigger or first primary while the less 

massive one is called the smaller or secondary body. 

The motion and gravitational force of the infinitesimal 

body do not affect the primaries (Szebehely 1967). The 

RTBP has had major applications in various scientific 

fields, such as in celestial mechanics, chaos theory, 

molecular physics, astrodynamics, astrophysics and 

galactic dynamics (Singh and Leke 2014).  

The RTBP are governed by non-integrable differential 

equations, hence equilibrium solutions are needed to 

get insights into the dynamical predictions of the 

infinitesimal mass. These solutions are obtained when 

the velocity and acceleration components are zero, and 

are referred to as the equilibrium or libration or 

Lagrangian points. For the classical RTBP there exists 

three collinear and two triangular points. The collinear 

points are located on the line joining the primaries 

while the triangular points form two equilateral 

triangles with the primaries (Szebehely 1967). The 

collinear points are unstable while the triangular points 

are conditionally stable (Szebehely 1967).   

 

 

 

 

In recent years focus has been drawn to the study of 

the RTBP under different characterizations of the main 

bodies and the infinitesimal mass. Some of such 

characterizations include radiation pressure of one or 

both primaries, oblateness or triaxiality of one or both 

primaries (see Singh and Ishwar 1999, AbdulRaheem 

and Singh 2006, Singh and Leke 2014), inclusion of a 

disk in the configuration of the RTBP (Singh and 

Taura 2015, Leke and Singh 2023). Others have 

considered effects of zonal harmonics (Bury and 

McMahon 2020, Gyegwe et al 2025), while some have 

discussed mass variation effects (see Singh and Leke 

2010, 2012, 2013; Leke and Mmaju 2023, Leke and 

Orum 2024, Leke et al 2024& 2025). 

  The classical RTBP traditionally presumes that the 

masses of the primary bodies remain constant. However, 

observations of stellar absorption phenomena prompted 

researchers to extend the RTBP to include variable mass 

systems. The formulation of the RTBP with variable 

masses is significant in both astronomical and 

engineering applications. For instance, in analyzing the 

motion of spacecraft near comets or asteroids undergoing 

mass loss due to surface outgassing, studying binary star 

systems experiencing mass transfer, and examining the 

Earth–Moon system during episodes of lunar mass 

discharge.  
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Incorporating mass variation into the RTBP has led to 

new insights: Bekov (1988) identified additional 

equilibrium points, referred to as coplanar equilibrium 

points, while Singh and Leke (2010) investigated the 

stability of the photogravitational RTBP with variable 

masses. Other scientists that have carried out researches 

on the R3BP with variable masses under different 

classifications includes Leke and Singh (2023), 

Ibraimova et al (2023), Leke and Orum (2024), Gao et al 

(2024), and Leke et al. (2024, 2025). 

  Motivated by the extensive applications of the RTBP 

with variable masses, this study aims to formulate and 

analyze the equations of motion of the RTBP 

incorporating both variable masses and the oblateness of 

the smaller primary, expressed through zonal harmonic 

terms up to J4. The variations in the masses of the 

primaries and the oblateness of the bigger primary are 

assumed to evolve with time according to the unified 

Mestschersky law (UML). The inclusion of zonal 

harmonic effects in the variable-mass RTBP framework 

enhances the model’s realism by providing a more precise 

representation of the actual dynamical behavior of 

celestial bodies, thereby improving the accuracy of 

predictive analyses. For instance, the model proposed by 

Bekov (1988) may not adequately capture the motion of 

a test particle within the gravitational field of irregularly 

shaped bodies such as asteroids. Similarly, the treatment 

of oblateness up to the J4 term by Abouelmagd (2012) 

may not have fully revealed the complete set of 

equilibrium points or their stability characteristics. 

Hence, it is both timely and appropriate to examine the 

dynamical behavior of the RTBP with variable masses 

and time-dependent oblateness of the larger primary, 

incorporating zonal harmonic coefficients up to the J4 

term. The natural starting point for such an investigation 

is the derivation of the governing dynamical equations. 

Hence, our main contribution in the present work is to 

derive the equations of motion of the RTBP under 

effect of varying masses and zonal harmonics in the 

oblateness of the bigger primary. Consequently, we 

shall consider the influence of even zonal harmonic 

parameters up to J4 for the bigger primary. 

This paper is structured as follows: the introduction is 

provided in current Section. The dynamical equation of 

two bodies with variable masses (Gylden-Mestschersky 

Problem (GMP), Gylden 1884, Mestschersky 1902) is 

presented in Section 2, while the potential energy of the 

infinitesimal body is presented in Section 3. The 

equations of motion of the time-dependent system are 

derived in Section 4. Section 5, gives the results, while 

the discussion and conclusion are given in Section 6. 

These derivations are extension of the dynamical 

equations of Abouelmagd (2012) with the consideration 

that the masses of the primaries and zonal harmonics in 

the oblateness of the bigger primary change with time. 

Also, it could also be viewed as an extension of the work 

of Singh and Leke (2012) by considering oblateness of 

the bigger primary with zonal harmonic coefficient to J4 

terms in the absence of perturbations in the Coriolis and 

centrifugal forces. Additionally, it could be seen as an 

extension of the work done by Bekov (1988) by 

introducing the oblateness of the bigger primary with 

zonal harmonic of J2and J4 terms. 

 

MATERIALS AND METHODS 

2.1 Equation of Motion of Two- Body with Variable 

Masses (GMP) 

We start the process of our derivations of the dynamical 

equations with the two-body problem (2BP), which is the 

initial point for virtually all reference books in the 

expanse of astrodynamics. The fundamental set up 

illustrates the motion of two point-masses under mutual 

gravitational attraction, and is given by  

r

r

rdt

vd


2


−=

                                                                               

(1) 

where v


 is the velocity,  is the gravitational constant

G multiplied by the sum of the masses, and r


is the 

distance between the bodies and connects the angular 

velocity  and constant of the area integral C by the 

relation: 

Cr =
.

2                                                                                            (2) 

Now, the 2BP with variable masses, which is similar to 

the classical 2BP with constant masses, is given by the 

equation 

1 2

3

G(m )
r = -

m r

r

+
                              (3) 

Equation (1) is identical to equation (3) with the 

difference that in equation (3), the total of the masses is a 

certain function of time. This equation is called the 

Gylden-Mestschersky problem (GMP). 

Mestschersky (1902), transformed the GMP (3) to (1) by 

introducing new variables and time using a conversion. 

These equations that converts to constant system of 

equations was later referred to as the Mestschersky (1902) 

transformation (MT) and is expressed as 

 

𝑥 = 𝜉𝑅(𝑡), 𝑦 = 𝜂𝑅(𝑡), 𝑧 = 𝜁𝑅(𝑡), 𝑑𝑡/𝑑𝜏 = 𝑅2(𝑡) 

                 𝑟𝑖 = 𝜌𝑖𝑅(𝑡), 𝑟 = 𝜌12𝑅(𝑡)  (𝑖 = 1,2)
              

(4) 

 

where  ,,,;2)( 2 ++= tttR  are the 

newly introduced variables and 12 is constant. 

Further, Mestschersky (1952) devised a law which was 

later referred to as the unified Mestschersky law (UML). 

This law asserts that the masses and their sum vary in the 

same proportion in such a way that  

171 



 
Non-autonomous Equations of Restricted … Joel et al. 

 

 

JOBASR2025 3(6): 170-176 

 

   

( ) ( ) ( )
)(

,
)(

,
)(

20
2

10
1

0

tR
t

tR
t

tR
t








 ===

 

(5)

 
where

( ) ( ) ( ) 10212211 ),()(),(),(  ttttGmttGmt +===   

and 20   are constants. 

2Cr  =
                        

(6) 

is the particular integral of the GMP where is a 

constant. 

 

3 The Potential Energy of the Infinitesimal Body  

In free space the gravitational potential external to a body 

which is oblate with its mass apportioned symmetrically 

around its equator, can be expanded in terms of Legendre 

polynomials in the pattern (Abouelmagd 2012, Bury and 

McMahon 2020) 

( )



















−−= 



=1

cos1
k

kk

k

PJ
r

R

r

GM
rV 

         

(7)

 

where, 𝐺 refers to the gravitational constant, R is the 

radius and r is the distance from the body to the test 

particle, while Jk is the kth zonal harmonic term, and  is 

the angle between the body’s symmetry axis and the 

vector to a test particle. The terms coskP  are the 

Legendre polynomials, given by 

( )
( )

( )k
k

k

kk x
dx

d

k
xP 1

!2

1 2 −=

     

                                  (8) 

Since the present study is concerned with planar 

problem, assuming the equatorial plane of both 

primaries coincide with the plane of motion, then with
090= , Equation (7) becomes 
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the potential energy of the infinitesimal body, under the 

influence of varying oblateness of the bigger primary 

with zonal harmonics up to 4J term has the form 
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10) 

Where  ( ) 222
zyxxr ii ++−=  ( )2,1=i              

       (11) 

( ) 2

121 RJtA = and ( ) 4

142 RJtA =                                      (12) 

( )2,1=iAi are the time-dependent oblateness up to 2J

and 4J , respectively, of the bigger primary while 1R is 

the time-dependent mean radii of the bigger primary. 

and are the distances of the infinitesimal mass from the 

bigger and smaller primaries, respectively.
 
 

 

4 Equations of Motion of the Infinitesimal Mass 

To deduce the dynamical equations of the RTBP of our 

formulation, we consider a synodic frame of reference

0xyz , with 0 as the origin. We let 1m   and 2m  be the 

masses of the massive bodies and 3m  be the mass of the 

dust grain. We have taken the line joining  and  as 

the x − axis. The coordinates of  and  are 

and respectively, and that of the dust 

grain is ( ), ,x y z . Here we suppose that the masses of the 

bodies vary with respect to time with the consideration 

that the bigger body is an oblate spheroid with zonal 

harmonics terms up to J4. The radius vector from 3m  to 

is while that between 3m  and is , and the 

distance between the bodies is r . Also, let   be the 

angular velocity as illustrated in Figure 1 
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Fig. 1 Description of the RTBP 

We consider same formulation by Abouelmagd (2012) 

with the assumptions that the masses and oblateness of 

the bigger primary change according to the unified 

Mestschersky law (UML)  

Now, the kinetic energy of the infinitesimal mass in the 

rotating frame of reference  is given by 

  

( ) ( )

.
2 2 2

3

2 2 2

3 3

1

2

1

2

T m x y z

m xy yx m x y 

 
= + + + 

 

− + +                         

(13)

 

Now let yx pp ,   and zp  be the generalized 

components of momentum then, 

( )

.

3. .

3 3.

,

,

x y

z

T T
p m x y p

x y

T
m y x p m z
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This implies  

3 3

3

, ,    

  

yx

z

pp
x y y x

m m

p
z

m

 = + = −

=                                     

(15) 

Substituting equations of system (14) in (13) and 

simplifying, we at once have  

)(
2

1 222

3

zyx ppp
m

T ++=

                                               

(16) 

Now, the Hamiltonian H is given by  

( )

.
2 2 2

3

2 2 2

3

1

2

1

2

H m x y z

m x y U

 
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 

+ +                                        

    (17) 

Using system (15) in equation (17), we get 

( ) Uxpypppp
m

H yxzyx +−+++= )(
2

1 222

3                                                                         

    

(18) 

Now, from the Hamiltonian canonical equations, we have 

( ) ,x y

U
p p

x



= − − −


 

,y y

U
p p

y



= − −


 

z

U
p

z


= −

                                                             

    (19) 

Since the primaries move within the frameworks of the 

GMP with their masses changing with time as defined by 

the UML then zyx ppp ,, and the angular velocity   

will all depend on time. So, we differentiate system (14) 

w.r.t time and compare with equations (19), to get 

( )
.

3 ,y
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x
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− − = −
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3

U
m z

x


=−
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Substituting equations of system (14) in (20), we get 

( ) ( )
.

3 3
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x
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.

3

U
m z

z


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If we differentiate equation (10) w.r.t yx, and z , 

respectively, and substitute in (21) while multiplying the 

results throughout by ,
1

3m
we get  
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(22) 

( ) ( )1 1 1 21 2

3 3 5 7

1 2 1 1

3 15

2 8
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Where  

0xyz
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RESULTS AND DISCUSSION 

Equations (22) model the motion of an infinitesimal body 

within the gravitational field of two larger primary 

bodies. The model is set in a rotating coordinate system 

centered on the system's center of mass and accounts for 

the changing mass and oblateness (up to the J4 zonal 

harmonic) of the larger primary body over time. These 

factors introduce additional terms not found in the earlier 

equations of Bekov (1988) and Singh and Leke (2010-

2013). 

The systems differ from those of Singh and Leke (2012) 

due to zonal harmonics terms up to 4J  in the oblateness 

of the bigger primary. If the zonal harmonics in the 

oblateness of the bigger primary up to 4J are ignored, 

we have 02 =A  , and the autonomized systems reduce 

to 
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which is the time-dependent dynamical equations of 

Singh and Leke (2012) in the absence of small 

perturbations in the Coriolis and centrifugal forces. 

 If further, we ignore the oblateness up to 2J , we have 

01 =A  and equations reduce to  
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2x y x y
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2 1 2

3 3
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2
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 
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z z
z

r r

 
= − −  

 

where      
   

 

( )
( )

3

2

r

t
t




 =                                                                             (27)   

Which are the equations of motion of the classical RTBP 

with variable masses of Gelf’gat (1973) and Bekov 

(1988). 

 

The descriptions of the equations of motion of an 

infinitesimal mass in the gravitational environment of two 

massive bodies whose masses change with time and the 

bigger primary is an oblate spheroid whose oblate shape 

also varies with time with zonal harmonics up to J4 term 

are obtained in this work. The equation of motion of the 

primaries is defined by the Gylden-Mestschersky 

problem (GMP), while the variations in the mass and 

oblateness of the bigger primary are described by UML. 

The oblate shape of the bigger primary varies with time 

due to its changing radius which is the coefficients of the 

zonal harmonics up to J4 term. The equations of motion 

of the time varying dynamical system were derived using 

the Hamiltonian method. These equations are different 

from those of Gelf’gat (1973), Bekov (1988), Luk’yanov 

(1989), Singh and Leke (2010,2012), Gao et al (2024),  

Leke et al (2024&2025) due to the inclusion of the 

deforming shape of the bigger primary from a sphere to a 

oblate spheroids up to 4J   terms in the zonal harmonics 

coefficients. They are also different from those of 

Abouelmagd (2012) due to the variation in the masses and 

oblateness of the bigger primary. All previous studies of 

Singh and Leke (2010, 2012), Luk’yanov (1989) and 

Bekov (1988) be recovered from our equations. 

The non-autonomous differential equations of the test 

particle in a rotating frame of reference are derived using 

the Hamiltonian method and these equations are 

described by the masses of the primaries, oblateness of 

the bigger primary and the angular velocity of revolution 

of the primaries. The RTBP is an active and stimulating 

research area that has been receiving attentions because 

of its applications to dynamics of small bodies in the solar 

and stellar systems and also because of its applications to 

satellite dynamics. 
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CONCLUSION 

Hence, this paper contributes to knowledge by opening 

new problem involving mass variations and zonal 

harmonics which have remained open 

The derivations of the dynamical equations will pave way 

for more explorations of the dynamical predictions of the 

test particle in the gravitational field of a binary system 

having the more massive body as an oblate spheroid 

under zonal harmonics coefficients up to J4. This will in 

no doubt expand the knowledge base of celestial 

mechanics and space missions.   
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