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ABSTRACT 

This paper begins with a mathematical analysis of multisets as a formal 

apparatus for computation: we give precise definitions, describe multiset algebra 

(union, intersection, difference, complementation and additive union), present 

the vector interpretation of multisets and Parikh-style mappings, and examine 

properties of multiset rewriting systems. Building on that analysis, we show how 
multisets can be used to encode integers (positive and negative) in a membrane 

system in a uniform way. Negative values being represented by an appropriate 

placement of multiplicities across membrane systems with only two membranes, 

and how algebraic properties are used in the correct design of rewriting rules. 

Using this multiset foundation, we construct P systems for integer arithmetic 

(addition, subtraction, multiplication and division) that preserve membrane 

structure (i.e., without dissolution) and operate under nested weak, strong and 

dependency priority relations. Worked examples illustrate how the multiset 

analyses are used in rule priorities and how priorities control the flow of 

computation to guarantee correctness and termination across all the cases 

presented. 

 
 

INTRODUCTION 

Membrane computing, introduced by Gheorghe Păun in 

1998, is a branch of natural computing inspired by the 

structure and functioning of living cells. Its core model, 

the P system, captures distributed and parallel 

computation by means of membranes, objects, and 

evolution rules. Over the years, P systems have found 

applications in formal language theory, biology, 

optimization, and computational complexity. A central 

feature of P systems is that molecules are handled as 
objects of multisets. From a mathematical point of view, 

the use of multisets gives P systems their algebraic 

flexibility. The state of a membrane region can be 

interpreted not merely as a set, but as an algebraic 

structure in which objects occur with multiplicities. This 

makes multisets suited to encode numerical data and to 

perform arithmetic operations in a rigorous manner. Most 

existing works on arithmetic with P systems have been 

restricted to the use of positive integers, with objects 

representing quantities and rules realizing operations 

such as addition or multiplication in a straightforward 
way (Paun, 2000; Ciobanu & Angeles, 2006). 

 

 

 

 

 

 

 

 

Alhazov et al. (2006) explores the use of P systems for 

encoding numbers and carrying out arithmetic operations, 

highlighting how membrane computing can simulate 

fundamental mathematical processes. It presents different 

strategies for representing integers within membranes and 

design rules that enable addition, subtraction, 

multiplication, and division to be performed in a 

distributed and parallel manner. Atanasiu (2001) extends 

this by proposing models that encode operands in base 

two and use membrane structures where objects represent 
bits that are controlled by evolution rules in parallel. It 

shows that these computations can achieve a lower 

complexity than conventional hardware implementations. 

Yang et al. (2015) further advances the field by presenting 

methods for the automatic design of P systems for 

arithmetic, reducing manual construction errors while 

preserving the inherent parallelism and distributed 

computation features. 

 

Guo et al. (2013) expands arithmetic in P systems to 

fractions by encoding numerators and denominators as 
separate objects, allowing parallel manipulation for 

addition, subtraction, multiplication,  
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and division of rational numbers. Zeng et al. (2012) 

demonstrate arithmetic in spiking neural P systems, 

encoding numbers as spike trains and using neuron-

inspired spiking rules to leverage temporal dynamics 

alongside parallel computation. Guo and Chen (2008) and 
Guo and Zhang (2008) investigate arithmetic operations 

in general and single-membrane P systems, respectively, 

showing that even minimal membrane structures can 

perform addition, subtraction, multiplication, and 

division efficiently. 

 

From a theoretical perspective, Freund and Păun (2003) 

formalizes deterministic P systems, specifying conditions 

for unique successor configurations and eliminating 

nondeterministic ambiguity, while Ibarra (2005) analyzes 

the distinction between deterministic and 

nondeterministic P systems and their implications for 
computational efficiency and predictability. 

 

To achieve a more realistic mathematical representation 

of integers, it is necessary to incorporate both positive and 

negative values within the same framework. Negative 

integers arise naturally in real life reasonings, and without 

them, arithmetic remains incomplete. Multisets provide a 

natural and uniform way to represent both positive and 

negative values by distributing multiplicities of objects 

across distinct membranes, one can encode positive and 

negative values effectively. 
 

In this paper, we develop a membrane-preserving P 

system that realizes the four basic integer operations, viz, 

addition, subtraction, multiplication, and division. Unlike 

approaches relying on dissolution or structural changes, 

our system employs nested strong rule prioritization and 

dependency-based rule application, ensuring 

deterministic and controlled computation. The inclusion 

of negative integers is handled seamlessly through 

multiset-dedicated membrane encoding, while priority 

mechanisms govern the flow of computation across 

different cases. 
 

The main contribution of this work lies in successfully 

showing that positive and negative integers can be 

modelled using multiset representations in a single 

membrane structure, P systems can serve as a robust 

mathematical model for the structure of the integers under 

basic operations. This strengthens the algebraic 

foundations of membrane computing and demonstrates 

the expressive capacity of P systems as models of 

symbolic computation. Examples are provided to 

illustrate the functioning of the system and to highlight 
the role of rule priority in directing computations. Peter et 

al. (2025) and Peter (2025) are some articles on the 

application of multiset by the authors. 

 

To develop a uniform multiset-based encoding of positive 

and negative integers within a membrane system, using 

object multiplicities and membrane placement to 

represent sign and magnitude without increasing the 

membrane degree or relying on membrane dissolution. 
 

To construct deterministic, membrane-preserving P 

systems for the four basic arithmetic operations—

addition, subtraction, multiplication, and division—on 

integers, and to present the corresponding computation 

algorithms through detailed configurations, tables, and 

illustrative diagrams that demonstrate rule application 

under mixed weak, strong, and dependency priorities. 

 

To validate the correctness, determinism, and termination 

of the proposed arithmetic P systems, by analyzing the 

interaction of rule priorities and examining step-by-step 
illustrative examples that cover all sign combinations of 

integer operands. 

 

 

JUSTIFICATION OF THE MODEL 

 

Two notable applications of membrane computing, 

namely static sorting and circuit simulations were studied 

in Păun and Thierrin (2001). Number sorting has long 

been a central problem in computer science, and 

membrane computing provides an alternative way of 
simulating Boolean circuits. This naturally motivates the 

need to model P systems for the basic binary operations 

that underlie such computations. 

 

A distinctive feature of P systems, which provides an 

edge over traditional digital computing, is their 

parallelism. Objects that match the left-hand side of a rule 

are applied to all the occurrences of such an object 

(subject to the imposed priority relation), and all 

membranes in the system operate simultaneously. 

 

So far, research on arithmetic operations in P systems has 
focused mainly on the strong rule priority relation, likely 

due to its ability to capture aspects such as energy 

accounting and resource constraints. In contrast, the weak 

rule priority relation has not been given serious attention, 

despite its potential advantages. Păun (2000) concluded 

thus: 

 

“Of course also, the weak interpretation of the priority is 

of interest: a rule is always used when objects exist which 

were not used by a rule of a higher priority.” 

 
This observation provides a strong motivation for 

exploring weak rule priority as well. In fact, the weak 

interpretation achieves greater maximality of parallelism 

compared to the strong interpretation. The reason is that 

in a weak priority system, rules of lower priority do not 
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have to wait for a subsequent iteration if there are objects 

on which they can act. On the other hand, in a strong 

priority system, both the rules of lower priority and the 

objects they would act upon may be forced to wait until 

the next step. 
 

Also of interest in this paper is the newly introduced 

dependency rule priority. It enforces that a rule is only 

applied if the rules it depends on have already been 

applied during a current iteration or transition. This is 

introduced in order to avoid premature rule applications 

which could distort the computation and lead to invalid 

results. Moreover, since the system is designed to 

preserve membranes, correctness cannot rely on 

dissolution. The dependency priority relation 

compensates for this restriction by guaranteeing that only 

valid sequences of dependent rules are applied. This 
makes the computation both stable and faithful to the 

model being constructed. 

 

MATERIALS AND METHODS 

RULE PRIORITIZATION 

 

In membrane systems, priority relations are introduced to 

regulate the application of rules whenever multiple 

options are available. Weak and strong priority relations 

were employed. Weak priority allows a lower-priority 

rule to be applied provided no higher-priority rule is 
applicable in the same transition. Strong priority ensures 

that, whenever a higher-priority rule is applicable, all 

rules of lower priority are completely blocked, regardless 

of whether they could also be applied. Ciobanu and Păun 

(2013) explicitly defines strong priority and weak priority 

in P systems, explains their formal semantics, and gives 

examples contrasting them. Păun (2002) is one of the 

foundational sources of priority relations. 

 

While these two methods of rule priority are sufficient in 

simple settings, they become limited where the 

applicability of one rule naturally depends on the prior 
application of another rule. To address this, the present 

paper introduces the notion of a dependency rule priority 

relation. Under dependency priority, the applicability of a 

rule is conditioned not only by its relative rank but also 

by whether another rule has already been triggered in the 

computation. This reflects situations where one 

transformation has no mathematical or computational 

meaning unless it is preceded by another. The inclusion 

of dependency priority thus significantly strengthens the 

control of the system. 

 
This refinement also goes beyond the method used in 

Peter and Singh (2017) and is justified by the need to 

capture the extended algebraic structure considered in the 

present work. In this work, the weak rule relation is 

denoted by >𝑤, the strong rule relation is denoted by >𝑠 

while the dependency rule relation is denoted by >𝑑 . 

 

  
SOME APPLICATIONS OF P SYSTEMS TO 

ARITHMETIC OPERATIONS ON INTEGERS  

In this section, we design a variant of P systems for 

arithmetic operations on integers that incorporates 
dependency rule priority. Unlike the earlier model based 

solely on weak and strong rule priorities, the present 

approach enforces an dependency relation among rules 

called the dependency priority. This ensures that certain 

rules are applied only after those they depend on have 

been executed, thereby guaranteeing determinism 

throughout the computation. 

The study of arithmetic operations within the framework 

of P systems has been a continuing line of research. For 

example, Yang et al. (2015) proposed arithmetic P 

systems based on arithmetic formula tables, where the 

four fundamental operations—addition, subtraction, 

multiplication, and division are realized by distributing 

digits into hierarchical membrane structures. Their 

approach demonstrates that P systems can serve as 
algorithmic devices for numerical computation, although 

with models that emphasize digit-wise encoding rather 

than multiset-based representations.  

Yang et al. (2015) introduced Arithmetic P Systems based 
on arithmetic formula tables, where each decimal digit is 

placed in a separate membrane and rules mirror standard 

human calculation methods such as carrying and 

borrowing. Their approach reduces membrane 

complexity and provides a clear, table-driven way of 

handling addition, subtraction, multiplication, and 

division, though it is restricted to positive integers. This 

work is relevant to extensions like the present study, 

which expands arithmetic P systems to include negative 

integers, as their digit-wise encoding and formula-based 

rules can serve as a foundation for incorporating sign-

handling mechanisms and broader integer arithmetic.  

Other models have explored the role of priorities in 

achieving arithmetic tasks. Recent work has applied 

priority-based mechanisms to P systems that handle 
rational computations, such as fraction simplification, 

showing how deterministic results can be ensured through 

controlled rule application (e.g., rule priorities that 

enforce reductions before other transformations are 

executed) (see Nan et al. (2023)). Similarly, arithmetic P 

systems constructed on the basis of the symmetric ternary 

system have highlighted how careful design of rule 

priorities can support consistent execution of arithmetic 

operations (Nan et al. (2024)). These contributions 
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highlights the importance of prioritization in aligning rule 

application. 

Building upon these existing approaches, the present 

work introduces dependency rule priority as a refinement 

of the traditional weak and strong priority mechanisms. 

While weak priority allows lower-priority rules to fire if 

no higher-priority rule is applicable, and strong priority 

entirely blocks lower-priority rules in the presence of a 

higher-priority alternative, both remain limited in 
scenarios where the execution of one rule must explicitly 

precede the activation of another. Dependency rule 

priority resolves this by embedding precedence directly 

into the computational model, thereby strengthening 

determinism and broadening the expressive power of P 

systems in arithmetic contexts. 

 

RESULTS AND DISCUSSION 

EXTENDING P SYSTEMS TO POSITIVE AND 

NEGATIVE INTEGER ARITHMETIC WITH 

DETERMINISTIC MIXED-PRIORITY RULES 

In the four models of P systems that folow only two 

mebranes are used, even when handling both positive and 

negative integers. The dependency priority relation 

further allows the system to avoid membrane dissolution, 

ensuring membrane preservation. In all the cases, 𝑚 and 

𝑛 are the multiplicities of some objects 𝑎 and 𝑏 in the 

membrane structure. Therefore, they are positive integers. 

The same applies to other multiplicities used in the P 

system such as those of 𝑐 and 𝑥. The goal is to design a P 

system that will carry out the four cardinal binary 

operations on 𝑚 and 𝑛.   

 

ADDITION P SYSTEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Addition P system membrane system 

 

Addition P system is of the form: 

 

𝛱+ = (𝑉, 𝜇, (𝑤1 , 𝑤2), (𝑅1, 𝜌1), (𝑅2, 𝜌2), 𝑖0) 
 

where: 

• 𝑉 = {𝑎, 𝑏, 𝑐, 𝑥} is a finite set of objects. 

• 𝜇 = [1, [2, ]2, ]1 is a membrane structure of 

degree 2, with Membrane 1 (outer membrane) 

and, Membrane 2 (inner membrane). 

• 𝑤1 = 𝑎𝑛𝑏𝑚 or 𝑤2 = 𝑎𝑛𝑏𝑚 or 𝑤1 = 𝑎𝑛, 𝑤2 =
𝑏𝑚 is the initial multiset of objects in Membrane 

1 and/or Membrane 2, depending on the case 

presented. 

• 𝑅1 = {𝑟11: 𝑐 → 𝑏, 𝑟12: 𝑎 → (𝑥, 𝑖𝑛2), 𝑟13: 𝑎𝑏 →
(𝑎𝑏, 𝑜𝑢𝑡), 𝑟14: 𝑥 → (𝑥, 𝑜𝑢𝑡)} is the set of 

evolution rules assigned to membranes 1. 

• 𝑅2 = {𝑟21: 𝑎 → 𝑏, 𝑟22: 𝑥𝑏 → (𝑎𝑏, 𝑜𝑢𝑡),
𝑟23: 𝑥 → (𝑐, 𝑜𝑢𝑡) is the set of evolution rules 

assigned to Membranes 2. 

• 𝜌1 = {𝑟13 >𝑤 𝑟14} is the priority relation of the 

rules in Membrane 1. 

• 𝜌2 = {𝑟22 >𝑤 𝑟23} is the priority relation of the 

rules in Membrane 2. 

1 
𝑎𝑛𝑏𝑚 𝑟11: 𝑐 → 𝑏 

𝑟12: 𝑎 → (𝑥, 𝑖𝑛2) 

𝑟13: 𝑎𝑏 → (𝑎𝑏, 𝑜𝑢𝑡) >𝑤 

𝑟14: 𝑥 → (𝑥, 𝑜𝑢𝑡) 
2 

𝑟21: 𝑎 → 𝑏 

𝑟22: 𝑥𝑏 → (𝑎𝑏, 𝑜𝑢𝑡) >𝑤 

𝑟23: 𝑥 → (𝑐, 𝑜𝑢𝑡) 
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• 𝑖0 is the label for the output membrane. Its value 

is 1 if the result is positive (stored in Membrane 

1), and 2 if the result is negative (stored in 

Membrane 2). 

 

The idea is to compute the sum of two integers 𝑚 and 𝑛, 

where 𝑚 and 𝑛 are the multiplicities of the objects in the 

membranes representing molecules in a biological cell.. 

Here, 𝑎 represents the first operand, 𝑏 represents the 

second operand while 𝑐 and 𝑥 are auxiliary object 

introduced during the computation process for 

communication between membranes. There are four 

cases considered.  

Case 1: +𝒎  and +𝒏 Thus, (+𝒎) + (+𝒏) is positive 

In this case the objects 𝑎 and 𝑏 with their respective 

multiplicities 𝑛 and 𝑚 are placed in Membrane 1. The 

rule 𝑟12 will be applied, it consumes the 𝑛 copies of object 

𝑎, produces 𝑛 copies of object 𝑥 and send them to 

Membrane 2. No other rule can be applied in Membrane 

1 since only object the 𝑏 is available in Membrane 1. 

However, there are 𝑛 copies of 𝑥 in Membrane 2. The rule 

𝑟22  has a weak priority over 𝑟23  in Membrane 2. However, 

since no object 𝑏 is present in Membrane 2, it will not be 

applied. Rather, 𝑟23will be applied. It consumes the 𝑛 

copies of 𝑥, produces 𝑛 copies of 𝑐 and sends them to out 

of Membrane 2 to Membrane 1. It is now time for 𝑟12 to 

be applied. It converts the 𝑛 copies of object 𝑐 in 

Membrane 1 to 𝑛 copies of 𝑏. We now have 𝑛 + 𝑚 copies 

of 𝑏 in Membrane 1. This is the result of the computation. 

At this stage, no other rules can be applied. The result of 

the computation is the 𝑛 + 𝑚 copies of 𝑏 in Membrane 1. 

Being in Membrane 1 means the result of the addition is 

positive. 

Case 2: −𝒎  and +𝒏 Thus, (−𝒎) + (−𝒏) is negative 

In this case, the two operands 𝑚 and 𝑛 are negative. Thus 

the objects and their multiplicities are placed in 

Membrane 2. Therefore, no rule in Membrane 1 can be 

applied. Only one rule in Membrane 2 will be applied and 

it is 𝑟21 . It consumes the 𝑛 copies of 𝑎 and produces 𝑛 

copies of 𝑏. The result of the computation is 𝑛 + 𝑚 copies 

of 𝑏 in Membrane 2. 

Case 3: −𝒎  and +𝒏 where 𝒏 > 𝒎. Thus, (−𝒎) + 

(+𝒏) is positive 

In this case 𝑛 copies of 𝑎 ae placed in Membrane 1 while 

𝑚 copies of 𝑏 are placed in Membrane 2. The 𝑟12  will be 

be applied in Membrane 1. It consumes the 𝑛 copies of 𝑎 

in, produces 𝑛 copies of 𝑏 and sends them to Membrane 

2. The rule 𝑟22  in Membrane 2 will now be applied. It 

consumes identical copies of 𝑥 and 𝑏 (𝑚 copies in this 

case), converts them to objects 𝑎𝑏 and sends them out of 

Membrane 2 to Membrane 1. There are now 𝑛 − 𝑚 

copies of 𝑥 in Membrane 2. This is later converted to 𝑛 −
𝑚 copies of 𝑐 in and sent out of Membrane 2 by 𝑟23 . 

Meanwhile, the 𝑚 copies of 𝑎 and 𝑏 in Membrane 1 are 

sent out of the membrane to the environemt by 𝑟13. The 

𝑛 − 𝑚 copies of 𝑐 are converted to 𝑛 − 𝑚 copies of 𝑏 in 
Membrane 1 where a positive result is obtained.  The 

computation haults at this moment since no other rules 

can be applied. 

Case 4: −𝒎  and +𝒏 where 𝒏 < 𝒎. Thus, (−𝒎) + 

(+𝒏) is negative 

This is a similar case to Case 3 above. However, the result 

of applying rule  𝑟22  is 𝑚 − 𝑛 copies of 𝑏 in Membrane 

2. Therefore, no other rule will be applied in Membrane 

2. And that is the result of the computation, and the result 

is negative since 𝑛 is greater than 𝑚. 

SUBTRACTION P SYSTEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

174 



 
An Application of Multiset to Deterministic … Chinedu & Vivian 

 
JOBASR2026 4(1): 170-181 

 

   

1 

𝑟11: 𝑎𝑏 → (𝑎𝑏, 𝑜𝑢𝑡) >𝑤 

𝑟12: 𝑏 → (𝑐, 𝑖𝑛2) 

𝑟13: 𝑐 → 𝑎 
 

𝑎𝑛𝑏𝑚 

2 

𝑟21: 𝑎𝑏 → (𝑎𝑏, 𝑜𝑢𝑡) >𝑤 
𝑟22: 𝑏 → (𝑐, 𝑜𝑢𝑡) 

𝑟23: 𝑐 → 𝑎 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Subtraction P system membrane system 

 

 

Subtraction P system is of the form: 

 

𝛱− = (𝑉, 𝜇, (𝑤1 , 𝑤2), (𝑅1, 𝜌1), (𝑅2, 𝜌2), 𝑖0) 

 
where: 

• 𝑉 = {𝑎, 𝑏, 𝑐} is a finite set of objects. 

• 𝜇 = [1, [2, ]2, ]1 is a membrane structure of 

degree 2, with Membrane 1 (outer membrane) 

and, Membrane 2 (inner membrane). 

• 𝑤 = 𝑎𝑛𝑏𝑚, 𝑤 = 𝑎𝑛 or 𝑤 = 𝑏𝑚 is the initial 

multiset of objects in Membrane 1 or Membrane 

2, depending on the case presented. 

• 𝑅1 = {𝑟11: 𝑎𝑏 → (𝑎𝑏, 𝑜𝑢𝑡), 𝑟12: 𝑏 → (𝑐, 𝑖𝑛2),
𝑟13: 𝑐 → 𝑎} is the set of evolution rules assigned 

to Membrane 1. 

• 𝑅2 = {𝑟21: 𝑎𝑏 → (𝑎𝑏, 𝑜𝑢𝑡), 𝑟22: 𝑏 → (𝑐, 𝑜𝑢𝑡),
𝑟23: 𝑐 → 𝑎 is the set of the evolution rules 

assigned to Membrane 2. 

• 𝜌1 = {𝑟11 >𝑤 𝑟12} is the priority relation of the 

rules in Membrane 1. 

• 𝜌2 = {𝑟21 >𝑤 𝑟22} is the priority relation of the 

rules in Membrane 2. 

• 𝑖0 is the label for the output membrane. Its value 

is 1 if the result is positive (stored in Membrane 

1), and 2 if the result is negative (stored in 

Membrane 2). 

 

Case 1a: +𝒎  and +𝒏 where 𝒏 > 𝒎. Thus, (+𝒏) −
 (+𝒎) is positive 

Since we are dealing with positive integers, the objects 𝑎 

and 𝑏 with their respective multiplicities 𝑛 and 𝑚 are 

placed in Membrane 1. The rule 𝑟11  is applied. It sends 𝑚 

copies of 𝑎 and 𝑏 to the environment, leaving 𝑛 − 𝑚 

copies of 𝑎 in Membrane 1. This is the result of the 

conputation and it encodes positive integer, since no rule 

can be applied again in this case. 

Case 1a: +𝒎  and +𝒏 where 𝒏 < 𝒎. Thus, (+𝒏) −
 (+𝒎) is negative 

Again Membrane 1 houses objects 𝑎 and 𝑏 with their 

multiplicities 𝑛 and 𝑚, respectively. This time after the 

same rule 𝑟11 is applied there would be 𝑚 − 𝑛 copies of 

the object 𝑏 in Membrane 1. In this the rule 𝑟12  can be 

applied to the object 𝑏 It send the 𝑚 − 𝑛 copies of 𝑏 to 

Membrane 2 after converting them to 𝑐′𝑠. Thus, we have 

𝑚 − 𝑛 copies of 𝑐 in Membrane 2. No rule can be applied 
again. The computation halts and we have a negative 

result. 

Case 2a: −𝒎  and −𝒏 where 𝒏 > 𝒎. Thus, (−𝒏) −
 (−𝒎) is negative 

Since we are dealing with negative integers, the objects 𝑎 

and 𝑏 with their respective multiplicities 𝑛 and 𝑚 are 

placed in Membrane 2. The rule 𝑟21  is applied. It sends 𝑛 

copies of 𝑎 and 𝑏 out of Membrane 2, leaving 𝑛 − 𝑚 

copies of 𝑏 behind. The rule 𝑟21 will now be applied. It 

sends the 𝑛 − 𝑚 copies of 𝑎 out of Membrane 2. We are 

now left with 𝑛 − 𝑚 copies of 𝑎 in Membrane 2. This is 

the result of the conputation and it encodes negative 

integer. 
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Case 2b: −𝒎  and −𝒏 where 𝒏 < 𝒎. Thus, (−𝒏) −
 (−𝒎) is positive 

Again, since we are dealing with negative integers, the 

objects 𝑎 and 𝑏 with their respective multiplicities 𝑛 and 

𝑚 are placed in Membrane 2. The rule 𝑟21 is applied. It 

sends 𝑛 copies of 𝑎 and 𝑏 out of Membrane 2, leaving 

𝑚 − 𝑛 copies of 𝑏 behind. The rule 𝑟21  will now be 

applied. It sends the 𝑚 − 𝑛 copies of 𝑏 out of Membrane 

2 after converting them to 𝑐. We now have 𝑚 − 𝑛 copies 

of 𝑐 in Membrane 1. This is the result of the conputation 

and it encodes positive integer. 

Case 3a: −𝒎  and 𝒏 where 𝒏 > 𝒎. Thus, (+𝒏) −
 (−𝒎) is positive 

In this case, 𝑛 copies of 𝑎 is placed in Membrane 1 while 

𝑚 copies of 𝑏 is placed in Membrane 2. No rule can be 

applied in Membrane 1. The rule 𝑟21 , also cannot be 

applied in Membrane 2. Thus, the rule to be applied is 𝑟22 . 

It consumes the 𝑚 copies of 𝑏, produces 𝑚 copies of 𝑐 

and send them out of Membrane 2. There are now 𝑛 

copies of 𝑎 and 𝑚 copies of 𝑐 in Membarane 1. The result 

of the computation is the 𝑚 + 𝑛 copies of 𝑎 in Membrane 

1. 

Case 3b: −𝒎  and 𝒏 where 𝒏 < 𝒎. Thus, (+𝒏) −
 (−𝒎) is positive 

The comutation is exactly the same with that of Case 3a 

above. 

Case 4a: 𝒎  and −𝒏 where 𝒏 > 𝒎. Thus, (−𝒏) −
 (+𝒎) is negative 

In this case, 𝑚 copies of 𝑏 is placed in Membrane 1 while 

𝑛 copies of 𝑎 is placed in Membrane 2. The rule 𝑟12  is 

applied in Membrane 1. It consumes the 𝑚 copies of 𝑏, 

produces 𝑚 copies of 𝑐 and sends them to Membane 2. In 

Membarane 2,  𝑟23 will be applied. It consumes 𝑚 copies 

of 𝑐, and produces 𝑚 copies of 𝑎. There are now 𝑚 + 𝑛 

copies of 𝑎 in Membrane 2. The computation halts, and 

the result is a negative value. 

Case 4a: 𝒎  and −𝒏 where 𝒏 > 𝒎. Thus, (−𝒏) −
 (+𝒎) is negative 

The comutation is exactly the same with that of Case 4a 

above. 

MULTIPLICATION P SYSTEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Multiplication P system membrane system 

  

 

1 

𝑎𝑛𝑏𝑚 

𝑟21: 𝑏𝑒 → (𝑒, 𝑜𝑢𝑡) >𝑑

𝑟22: 𝑎 → (𝑎𝑐, 𝑜𝑢𝑡)       
ൠ >𝑤

𝑟23: 𝑎 → (𝑓, 𝑜𝑢𝑡)

𝑟24: 𝑒 → (𝑓, 𝑜𝑢𝑡)
ൠ                

 

𝑟25: 𝑦𝑖 → (𝑖, 𝑜𝑢𝑡) >𝑑  

𝑟26: 𝑥 → (𝑥𝑠, 𝑜𝑢𝑡)       
ൠ >𝑤

𝑟27: 𝑥 → (𝑡, 𝑜𝑢𝑡)

𝑟28: 𝑠 → (𝑡, 𝑜𝑢𝑡)
ൠ                 

 

 

 

 

 

2 

𝑟11: 𝑎 → (𝑎, 𝑖𝑛2)

𝑟12: 𝑒 → (𝑒, 𝑖𝑛2)

𝑟13: 𝑏 → (𝑏, 𝑖𝑛2)
 

𝑟14: 𝑓 → (𝑓, 𝑜𝑢𝑡) 
𝑟15: 𝑥 → (𝑥, 𝑖𝑛2) 

𝑟16: 𝑦 → (𝑦, 𝑖𝑛2) 

𝑟17: 𝑖 → (𝑖, 𝑖𝑛2)   

𝑟18: 𝑡 → (𝑡, 𝑜𝑢𝑡) 
 

𝑟19: 𝑠𝑐 → (𝑐, 𝑖𝑛2)
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Multiplication P system is of the form: 

 

𝛱× = (𝑉, 𝜇, (𝑤1 , 𝑤2), (𝑅1, 𝜌1), (𝑅2, 𝜌2), 𝑖0) 

 
where: 

• 𝑉 = {𝑎, 𝑏, 𝑐, 𝑒, 𝑓, 𝑖, 𝑠, 𝑡, 𝑥, 𝑦} is a finite set of 

objects. 

• 𝜇 = [1, [2, ]2, ]1 is a membrane structure of 

degree 2, with Membrane 1 (outer membrane) 

and, Membrane 2 (inner membrane). 

• 𝑤 = 𝑎𝑛𝑏𝑚𝑒,𝑤 = 𝑎𝑛 , 𝑤 = 𝑏𝑚 or 𝑤 =
𝑎𝑛𝑏𝑚𝑒𝑥𝑛𝑦𝑚𝑖 is the initial multiset of objects in 

Membrane 1 or Membrane 2, depending on the 
case presented. 

• 𝑅1 = {𝑟11: 𝑎 → (𝑎, 𝑖𝑛2), 𝑟12: 𝑒 → (𝑒, 𝑖𝑛2),
𝑟13: 𝑏 → (𝑏, 𝑖𝑛2), 
𝑟14: 𝑓 → (𝑓, 𝑜𝑢𝑡), 𝑟15: 𝑥 → (𝑥, 𝑖𝑛2), 𝑟16: 𝑦

→ (𝑦, 𝑖𝑛2), 𝑟17: 𝑖 → (𝑖, 𝑖𝑛2), 
𝑟18: 𝑡 → (𝑡, 𝑖𝑛2), 𝑟19: 𝑠𝑐 → (𝑠𝑐, 𝑖𝑛2)} is the set 

of evolution rules assigned to Membrane 1. 

• 𝑅2 = {𝑟21: 𝑏𝑒 → (𝑒, 𝑜𝑢𝑡), 𝑟22: 𝑎 → (𝑎𝑐, 𝑜𝑢𝑡),
𝑟23: 𝑎 → (𝑓, 𝑜𝑢𝑡), 
𝑟24: 𝑒 → (𝑓, 𝑜𝑢𝑡), 𝑟25: 𝑦𝑖 → (𝑖, 𝑜𝑢𝑡), 𝑟26: 𝑥

→ (𝑥𝑠, 𝑜𝑢𝑡), 𝑟27: 𝑥
→ (𝑡, 𝑜𝑢𝑡), 

𝑟28: 𝑠 → (𝑡, 𝑜𝑢𝑡)} is the set of evolution rules 
assigned to Membrane 2. 

• 𝜌1 = ∅ is shows that no priority relation of rules 

exists in Membrane 1. 

• 𝜌2 =
{𝑟21 >𝑑 𝑟22, 𝑟21 >𝑤 𝑟23 , 𝑟21 >𝑤 𝑟24, 𝑟22 >𝑤 𝑟23, 𝑟22 >𝑤 𝑟24} 

is the priority relation of the rules in Membrane 
2. 

• 𝑖0 is the label for the output membrane. Its value 

is 1 if the result is positive (stored in Membrane 

1), and 2 if the result is negative (stored in 

Membrane 2). 

 

Cases 1: (+𝒏) ×  (+𝒎) is positive for positive 𝒎 and 

𝒏. 

In this process, at the initial configuration of the P system, 

there are 𝑛 copies of the object 𝑎 and 𝑚 copies of the 

abject 𝑏 in Membrane 1. That is both 𝑎 and 𝑏 present in 

the same membrane. There is also one copy of an object 

𝑒 (which is always there in all cases) in Membrane 2. 
Since there are no existing priorities in Membrane 1. 

Rules that have objects can be applied. Thus, 𝑟11 and 𝑟13  

will be applied in parallel on 𝑎 and 𝑏 in Membrane 1. 

They send all the multiplicities of 𝑎 and/or 𝑏 to 

Membrane 2. There are now 𝑛 copies of 𝑎, 𝑚 copies of 𝑏 

and the object 𝑒 in Membrane 2. In Membrane 2, both 

𝑟21and 𝑟22 have a weak priority relation over 𝑟23 and 𝑟24  

where 𝑟21  has a dependency rule priority over 𝑟22 . Thus 

𝑟22  can only be applied when 𝑟21 is being applied and not 

otherwise. The rule 𝑟21  sends a copy of 𝑏 together with a 

copy of 𝑒 out of Membrane 2. There are now 𝑛 copies of 

𝑎 and 𝑐 and 1 copy of 𝑒 in Membrane 1 and 𝑚 − 1 copies 

of 𝑏 in Membrane 2. In Membrane 1, the rules 𝑟15 and 𝑟16  

send the 𝑛 copies of 𝑎 and 𝑐 and the 1 copy of 𝑒 back to 

Membrane 2. This process is repeated untill there are no 

copies of 𝑏 left in Membrane 2. Also, the 𝑐 would have 

appered in Membrane 1 𝑚𝑛 times. Therefore, rules 𝑟21  

and 𝑟22  will cease to be applicable. Since they have a 

weak priority over rules 𝑟23  and 𝑟24, the latter two rules 

will be applied. They send one copy of each of 𝑎 and 𝑒 

out of Membrane 2 after converting them to 𝑓 to 

Membrane 1. The rule 𝑟14  in turn sends the copy of 𝑓 out 

of the environment. The result of the computtion is the 

𝑚𝑛 number of occurrences of the object 𝑐 in Membrane 

1. 

Cases 2: (−𝒏) ×  (−𝒎) is positive for positive 𝒎 and 

𝒏. 

In this case, at the initial configuration of the P system, 

there are 𝑛 copies of the object 𝑎 and 𝑚 copies of the 

abject 𝑏 in Membrane 2. That is both 𝑎 and 𝑏 are again 

present in the same membrane. Also, there is one copy of 

an object 𝑒 (which is always there in all cases) in 

Membrane 2. The computation starts in Membrane 2 and 

continues as in Case 1 above. The result is positive at the 

end of the computation. 

Cases 3: (−𝒏) ×  (𝒎) is negative for positive 𝒎 and 

𝒏. 

 

 

This is a process where 𝑎 and 𝑏 are in different 

membranes. Since they are in different membranes, they 

are accompanied by auxiliary objects in their respective 

membranes by the same multiplicities of their principal 

objects. 𝑎 is accompanied by 𝑥 while 𝑏 is accompanied 

by 𝑦. Moreover, 𝑒 is accompanied by 𝑖 in Membrane 2. 

The computation is carried out accordingly as in Process 

1 above in parallel and at the same time that Process 1 is 

executed. The auxiliary part computation ensures that the 

𝑚𝑛 copies of 𝑐 and 𝑠 are together converted to  𝑚𝑛 copies 

of 𝑐 and sent back to Membrane 2 by 𝑟19, ensuring that 

the result of the computation is negative. 

 

 DIVISION P SYSTEM 
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Figure 4: Division P system membrane structure 

A Division P system is of the form: 

 

𝛱÷ = (𝑉, 𝜇, (𝑤1, 𝑤2), (𝑅1, 𝜌1), (𝑅2, 𝜌2), 𝑖0) 

 

where: 

• 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑖, 𝑝, 𝑟, 𝑠, 𝑡, 𝑣, 𝑥, 𝑦, 𝑧} is a 

finite set of objects. 

• 𝜇 = [1, [2, ]2, ]1 is a membrane structure of 

degree 2, with Membrane 1 (outer membrane) 

and, Membrane 2 (inner membrane). 

• {𝑤1 = 𝑎𝑛𝑏𝑚𝑑, 𝑤2 = ∅}, {𝑤1 = 𝑎𝑛𝑥𝑛, 𝑤2 =
𝑏𝑚𝑦𝑚𝑑𝑝}, {𝑤1 = 𝑏𝑚𝑦𝑚𝑧𝑚, 𝑤2 = 𝑎𝑛𝑥𝑛𝑑𝑝} or 
{𝑤1 = 𝑎𝑚𝑏𝑚𝑧𝑚, 𝑤2 = 𝑑} is the initial multiset 

of objects in Membrane 1 or Membrane 2, 
depending on the case presented. 

• 𝑅1 = {𝑟1: 𝑎 → (𝑎, 𝑖𝑛2), 𝑟2: 𝑏 → (𝑏, 𝑖𝑛2),
𝑟3: 𝑥 → (𝑥, 𝑖𝑛2), 𝑟4: 𝑦 → (𝑦, 𝑖𝑛2),  
𝑟5: 𝑧 → (𝑧, 𝑖𝑛2), 𝑟6: 𝑑𝑒𝑓 → (𝑑𝑒𝑓, 𝑜𝑢𝑡), 𝑟7: 𝑓

→ (𝑓, 𝑜𝑢𝑡), 𝑟8: 𝑐𝑣
→ (𝑎𝑣, 𝑖𝑛2),  

𝑟9: 𝑐 → (𝑎, 𝑖𝑛2), 𝑟10: 𝑑 → (𝑑, 𝑖𝑛2), 𝑟11: 𝑝𝑖𝑡
→ (𝑝𝑖𝑡, 𝑜𝑢𝑡), 𝑟12: 𝑡
→ (𝑡, 𝑜𝑢𝑡),  

𝑟13: 𝑠 → (𝑥, 𝑖𝑛2), 𝑟14: 𝑝 → (𝑝, 𝑖𝑛2), 𝑟15: 𝑒𝑖
→ (𝑒, 𝑖𝑛2), 𝑟16: 𝑝 → (𝑝, 𝑜𝑢𝑡),  

𝑟17: 𝑣 → (𝑣, 𝑜𝑢𝑡)} 

is the set of evolution rules assigned to 

Membrane 1. 

• 𝑅2 = {𝑟21: 𝑎𝑏𝑧 → (𝑐𝑣, 𝑜𝑢𝑡), 𝑟22: 𝑎𝑏 →
(𝑐, 𝑜𝑢𝑡), 𝑟23: 𝑎 → (𝑓, 𝑜𝑢𝑡),   
𝑟24: 𝑑 → (𝑑𝑒, 𝑜𝑢𝑡), 𝑟25: 𝑥𝑦 → (𝑠, 𝑜𝑢𝑡),
𝑟26: 𝑥 → (𝑡, 𝑜𝑢𝑡), 𝑟27: 𝑝 → (𝑝𝑖, 𝑜𝑢𝑡), 𝑟28: 𝑥 →
(𝑝, 𝑜𝑢𝑡), 𝑟29: 𝑎𝑣 → (𝑟, 𝑜𝑢𝑡), 𝑟210: 𝑣 →
(𝑣, 𝑜𝑢𝑡)}  
is the set of evolution rules assigned to 

Membrane 2. 

• 𝜌1 = {𝑟6 >𝑤 𝑟7 , 𝑟8 >𝑤 𝑟9 , 𝑟11 >𝑤 𝑟12,
(𝑟6, 𝑟7, 𝑟8 , 𝑟9, 𝑟10 , 𝑟11 , 𝑟12, 𝑟13, 𝑟14) >𝑠 ( 𝑟15, 𝑟16, 𝑟17)} 

shows that no priority relation of rules exists in 

Membrane 1. 

1 

𝑎𝑛𝑏𝑚 

𝑟21: 𝑎𝑏𝑧 → (𝑐𝑣, 𝑜𝑢𝑡) >𝑤

𝑟22: 𝑎𝑏 → (𝑐, 𝑜𝑢𝑡)            
ൠ >𝑑

𝑟23: 𝑎 → (𝑓, 𝑜𝑢𝑡)  

𝑟24: 𝑑 → (𝑑𝑒, 𝑜𝑢𝑡)
ൠ                  

 
 

𝑟25: 𝑥𝑦 → (𝑠, 𝑜𝑢𝑡) >𝑑

𝑟26: 𝑥 → (𝑡, 𝑜𝑢𝑡)    

𝑟27: 𝑝 → (𝑝𝑖, 𝑜𝑢𝑡) 
ൠ    

    

ቑ >𝑠     

𝑟28: 𝑥 → (𝑝, 𝑜𝑢𝑡)                       ۙ
ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۗ

>𝑠 

 
𝑟29: 𝑎𝑣 → (𝑟, 𝑜𝑢𝑡) >𝑤

𝑟211: 𝑣 → (𝑣, 𝑜𝑢𝑡)        
ൠ 

2 

𝑟11: 𝑎 → (𝑎, 𝑖𝑛2)

𝑟12: 𝑒 → (𝑒, 𝑖𝑛2)

𝑟13: 𝑏 → (𝑏, 𝑖𝑛2)
 

𝑟14: 𝑓 → (𝑓, 𝑜𝑢𝑡) 
𝑟15: 𝑥 → (𝑥, 𝑖𝑛2) 

𝑟16: 𝑦 → (𝑦, 𝑖𝑛2) 

𝑟17: 𝑖 → (𝑖, 𝑖𝑛2)   

𝑟18: 𝑡 → (𝑡, 𝑜𝑢𝑡) 
 

𝑟19: 𝑠𝑐 → (𝑐, 𝑖𝑛2)
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• 𝜌2 = {𝑟21 >𝑤 𝑟22,
𝑟25 >𝑤 (𝑟26, 𝑟27), (𝑟21, 𝑟22) >𝑑 (𝑟23 , 𝑟24),  
(𝑟21, 𝑟22) >𝑑 (𝑟23, 𝑟24), (𝑟25, 𝑟26, 𝑟27) >𝑠 𝑟28,
(𝑟21, 𝑟22, 𝑟23, 𝑟24 , 𝑟25, 𝑟26, 𝑟27) >𝑠 (𝑟29 , 𝑟210)}  

is the priority relation of the rules in Membrane 

2.  

• 𝑖0 is the label for the output membrane. Its value 

is 1 if the result is positive (stored in Membrane 

1), and 2 if the result is negative (stored in 
Membrane 2). 

 

Case 1: −𝒏 divide by −𝒎, yields a positive quotient 

with a negative remainder.  

 

At the initial configuration of the P system, there are 𝑛 

copies of 𝑎, 𝑚 copies of 𝑏 and the object 𝑑 in Membrane 

2. The only rules that can be applied at the moment are 

𝑟22  and 𝑟24 . They convert 𝑛 copies of 𝑎𝑏 to 𝑐 and the one 

copy of 𝑑 to 𝑑𝑒 and send them out of Membrane 2 to 

Membrane 1. There are now 𝑛 copies of 𝑐, one copy of 𝑑 

and one copy of 𝑒 in Membrane 1. The rules 𝑟9 converts 

the object 𝑐 to 𝑎 and send it to Membrane 2 while the rule 

𝑟10  sends 𝑑 to Membrane 2. The process continues this 

way until there are no copies of 𝑏 left for and 𝑟22  to act 

upon in Membrane 2. There are now copies of 𝑎 left in 

Membrane 2. This also is converted to 𝑓 and sent out of 

Membrane 2 by and 𝑟23 . There are now copies of 𝑑, 𝑒 and 

𝑓 in Membrane 1. Therefore, and 𝑟6  is used for the first 

time. It sends identical copies of 𝑑, 𝑒 and 𝑓 into the 

environment while and 𝑟7  sends the remaining copies of 

𝑓 into the environment. The object 𝑐 is sent back to 

Membrane 2 by and 𝑟9 after converting it to 𝑎. There are 

now only copies of 𝑒 in Membrane 1 and copies of 𝑎 in 

Membrane 2. The multiplicity of the copies of 𝑒 encodes 

the dividend while that of 𝑎 encodes the remainder. The 

computation halts as no other rule can be applied. 

 

Case 2: −𝒏 divide by 𝒎, yields a negative quotient 

with a negative remainder.  

 

In this case the numerator is negative while the 

denominator is positive. Therefore, the object 𝑎 is placed 

in Membrane 1 while the object 𝑏 is placed in Membrane 

2. Moreover, since they are in separate membranes, they 

are accompanied by objects 𝑥 in Membrane 1 and 𝑦 in 

Membrane 2. The objects in the same membrane have the 

same multiplicity with the main objects. The object 𝑑 as 

usual is placed in Membrane 2 together with its 

accompanying object 𝑝.The computation begins by 

transferring all objects in Membrane 1 to Membrane 2. 

The computation continues as in Case 1 above, only that 

this time the accompanying objects 𝑥, 𝑦 and 𝑝 undergo 

similar process as 𝑎, 𝑏 and 𝑑 using the rules dedicated to 

them. As the computation comes towards end, the 

availability of 𝑖 in Membrane 2 makes possible for the 

rule 𝑟15 to be applied. It converts 𝑒𝑖 to 𝑒 and send it to 

Membrane 2. Note that 𝑒 in this case represents the 

dividend in the division. Since 𝑒 would now be in 
Membrane 2, it shows that the result of the division is 

negative being in Membrane 2, so also is the remainder 

𝑎. 

  

 

Case 3: 𝒏 divide by −𝒎, yields a negative quotient 

with a positive remainder.  

In this case the object 𝑏 encoding the numerator is in 

Membrane 1 while the divisor is object is in Membrane 2 

𝑦 and 𝑥 in their respective multiplicities. An additional 

object 𝑧 with the same multiplicity as 𝑏 and  𝑦 is placed 

in Membrane 1 as well. This is because the object 

encoding the dividend (𝑏 in this case) is in Membrane 1. 

In other words, whenever dividend object is in Membrane 

1, it is accompanied by another object (𝑧) in the same 

Membrane 1 with the same multiplicity. The computation 

takes place as usual after all objects in the initial 

configuration have been transferred to Membrane 2 by the 
required rules. This is to ensure that the remainder is 

transferred to Membrane 1, while the quotient is 

transferred to Membrane 2 as in Case 2. 

 

Case 4: 𝒏 divide by 𝒎, yields a positive dividend with 

a positive remainder.  

At the initial configuration of the P system, objects 𝑎 and 

𝑏 are in Membrane 1 while only the object 𝑑 is in 

Membrane 2 as usual. Since 𝑏 is in Membrane 2, it is 

accompanied by the object 𝑧 as in Case 3 above. The 

computation takes place as usual. The availability of 𝑧 

ensures that the remainder encoded by the object 𝑟 is 

finally in Membrane 1, while that which encode the 

quotient is in Membrane 1 as well.  

CONCLUSION 

The deterministic P systems with weak, strong and 

dependency rule priorities presented in this paper have 

successfully extended arithmetic computations from 
positive integers to both positive and negative integers. 

Several directions for future research naturally emerge 

from this extension. 

 

First, it is promising to extend the present work to rational 

numbers. Since a rational number can be expressed as the 

quotient of two integers, its encoding would involve the 

operation of division P systems, with additional rules to 

preserve the sign of the result. Extending further to real 

numbers, rational and irrational components must be 

clearly distinguished. While rational numbers may be 
handled using integer-based division systems, encoding 
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irrational numbers will require new strategies for both 

approximation and representation. 

 

Second, fractional arithmetic could be enhanced by 

incorporating remainder-handling mechanisms that 
operate in parallel while tracking signs. This would allow 

P systems to deal with recurring decimals and extend 

applicability to scientific computation tasks. 

 

Third, the interaction of multiple membranes can be 

further explored to support hierarchical arithmetic 

operations, such as exponentiation, roots, and modular 

arithmetic. Such extensions could provide powerful tools 

for applications in cryptography, coding theory, and 

symbolic computation. 

 

Finally, the biological interpretation of objects can be 
deepened. For example, distinguishing between 

computational objects (representing integer values) and 

cofactor objects (regulating computation flow) may 

strengthen the analogy between membrane systems and 

biochemical processes. This could lead to models that are 

simultaneously computationally rigorous and 

biologically possible. 

 

In conclusion, the results presented here provide a strong 

foundation for extending deterministic P systems toward 

a full arithmetic operation and expression encompassing 
integers, rationales, and reals, while also inviting cross-

disciplinary applications in mathematics, computer 

science, and systems biology. 
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