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ABSTRACT

This paper begins with a mathematical analysis of multisets as a formal
apparatus for computation: we give precise definitions, describe multiset algebra
(union, intersection, difference, complementation and additive union), present
the vector interpretation of multisets and Parikh-style mappings, and examine
properties of multiset rewriting systems. Building on that analysis, we show how
multisets can be used to encode integers (positive and negative) in a membrane
system in a uniform way. Negative values being represented by an appropriate
placement of multiplicities across membrane systems with only two membranes,
and how algebraic properties are used in the correct design of rewriting rules.

Keywords: Using this multiset foundation, we construct P systems for integer arithmetic
Multisets, (addition, subtraction, multiplication and division) that preserve membrane
P systems, structure (i.e., without dissolution) and operate under nested weak, strong and

dependency priority relations. Worked examples illustrate how the multiset
analyses are used in rule priorities and how priorities control the flow of
computation to guarantee correctness and termination across all the cases
presented.

Rule prioritization,
Membrane preservation,
Negative integer,
Algebraic representation

INTRODUCTION

Membrane computing, introduced by Gheorghe Paun in
1998, is a branch of natural computing inspired by the
structure and functioning of living cells. Its core model,
the P system, captures distributed and parallel
computation by means of membranes, objects, and
evolution rules. Over the years, P systems have found
applications in formal language theory, biology,
optimization, and computational complexity. A central
feature of P systems is that molecules are handled as
objects of multisets. From a mathematical point of view,
the use of multisets gives P systems their algebraic
flexibility. The state of a membrane region can be
interpreted not merely as a set, but as an algebraic
structure in which objects occur with multiplicities. This
makes multisets suited to encode numerical data and to
perform arithmetic operations in a rigorous manner. Most
existing works on arithmetic with P systems have been
restricted to the use of positive integers, with objects
representing quantities and rules realizing operations
such as addition or multiplication in a straightforward
way (Paun, 2000; Ciobanu & Angeles, 2006).

Alhazov et al. (2006) explores the use of P systems for
encoding numbers and carrying out arithmetic operations,
highlighting how membrane computing can simulate
fundamental mathematical processes. It presents different
strategies for representing integers within membranes and
design rules that enable addition, subtraction,
multiplication, and division to be performed in a
distributed and parallel manner. Atanasiu (2001) extends
this by proposing models that encode operands in base
two and use membrane structures where objects represent
bits that are controlled by evolution rules in parallel. It
shows that these computations can achieve a lower
complexity than conventional hardware implementations.
Yang et al. (2015) further advances the field by presenting
methods for the automatic design of P systems for
arithmetic, reducing manual construction errors while
preserving the inherent parallelism and distributed
computation features.

Guo et al. (2013) expands arithmetic in P systems to
fractions by encoding numerators and denominators as
separate objects, allowing parallel manipulation for
addition, subtraction, multiplication,
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and division of rational numbers. Zeng et al. (2012)
demonstrate arithmetic in spiking neural P systems,
encoding numbers as spike trains and using neuron-
inspired spiking rules to leverage temporal dynamics
alongside parallel computation. Guo and Chen (2008) and
Guo and Zhang (2008) investigate arithmetic operations
in general and single-membrane P systems, respectively,
showing that even minimal membrane structures can
perform addition, subtraction, multiplication, and
division efficiently.

From a theoretical perspective, Freund and Paun (2003)
formalizes deterministic P systems, specifying conditions
for unique successor configurations and eliminating
nondeterministic ambiguity, while Ibarra (2005) analyzes
the distinction between deterministic and
nondeterministic P systems and their implications for
computational efficiency and predictability.

To achieve a more realistic mathematical representation
of integers, it is necessary to incorporate both positive and
negative values within the same framework. Negative
integers arise naturally in real life reasonings, and without
them, arithmetic remains incomplete. Multisets provide a
natural and uniform way to represent both positive and
negative values by distributing multiplicities of objects
across distinct membranes, one can encode positive and
negative values effectively.

In this paper, we develop a membrane-preserving P
system that realizes the four basic integer operations, viz,
addition, subtraction, multiplication, and division. Unlike
approaches relying on dissolution or structural changes,
our system employs nested strong rule prioritization and
dependency-based rule application, ensuring
deterministic and controlled computation. The inclusion
of negative integers is handled seamlessly through
multiset-dedicated membrane encoding, while priority
mechanisms govern the flow of computation across
different cases.

The main contribution of this work lies in successfully
showing that positive and negative integers can be
modelled using multiset representations in a single
membrane structure, P systems can serve as a robust
mathematical model for the structure of the integers under
basic operations. This strengthens the algebraic
foundations of membrane computing and demonstrates
the expressive capacity of P systems as models of
symbolic computation. Examples are provided to
illustrate the functioning of the system and to highlight
the role of rule priority in directing computations. Peter et
al. (2025) and Peter (2025) are some articles on the
application of multiset by the authors.
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To develop a uniform multiset-based encoding of positive
and negative integers within a membrane system, using
object multiplicities and membrane placement to
represent sign and magnitude without increasing the
membrane degree or relying on membrane dissolution.

To construct deterministic, membrane-preserving P
systems for the four basic arithmetic operations—
addition, subtraction, multiplication, and division—on
integers, and to present the corresponding computation
algorithms through detailed configurations, tables, and
illustrative diagrams that demonstrate rule application
under mixed weak, strong, and dependency priorities.

To validate the correctness, determinism, and termination
of the proposed arithmetic P systems, by analyzing the
interaction of rule priorities and examining step-by-step
illustrative examples that cover all sign combinations of
integer operands.

JUSTIFICATION OF THE MODEL

Two notable applications of membrane computing,
namely static sorting and circuit simulations were studied
in Paun and Thierrin (2001). Number sorting has long
been a central problem in computer science, and
membrane computing provides an alternative way of
simulating Boolean circuits. This naturally motivates the
need to model P systems for the basic binary operations
that underlie such computations.

A distinctive feature of P systems, which provides an
edge over traditional digital computing, is their
parallelism. Objects that match the left-hand side of a rule
are applied to all the occurrences of such an object
(subject to the imposed priority relation), and all
membranes in the system operate simultaneously.

So far, research on arithmetic operations in P systems has
focused mainly on the strong rule priority relation, likely
due to its ability to capture aspects such as energy
accounting and resource constraints. In contrast, the weak
rule priority relation has not been given serious attention,
despite its potential advantages. Paun (2000) concluded
thus:

“Of course also, the weak interpretation of the priority is
of interest: a rule is always used when objects exist which
were not used by a rule of a higher priority.”

This observation provides a strong motivation for
exploring weak rule priority as well. In fact, the weak
interpretation achieves greater maximality of parallelism
compared to the strong interpretation. The reason is that
in a weak priority system, rules of lower priority do not
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have to wait for a subsequent iteration if there are objects
on which they can act. On the other hand, in a strong
priority system, both the rules of lower priority and the
objects they would act upon may be forced to wait until
the next step.

Also of interest in this paper is the newly introduced
dependency rule priority. It enforces that a rule is only
applied if the rules it depends on have already been
applied during a current iteration or transition. This is
introduced in order to avoid premature rule applications
which could distort the computation and lead to invalid
results. Moreover, since the system is designed to
preserve membranes, correctness cannot rely on
dissolution. ~ The dependency priority  relation
compensates for this restriction by guaranteeing that only
valid sequences of dependent rules are applied. This
makes the computation both stable and faithful to the
model being constructed.

MATERIALS AND METHODS
RULE PRIORITIZATION

In membrane systems, priority relations are introduced to
regulate the application of rules whenever multiple
options are available. Weak and strong priority relations
were employed. Weak priority allows a lower-priority
rule to be applied provided no higher-priority rule is
applicable in the same transition. Strong priority ensures
that, whenever a higher-priority rule is applicable, all
rules of lower priority are completely blocked, regardless
of whether they could also be applied. Ciobanu and Paun
(2013) explicitly defines strong priority and weak priority
in P systems, explains their formal semantics, and gives
examples contrasting them. Paun (2002) is one of the
foundational sources of priority relations.

While these two methods of rule priority are sufficient in
simple settings, they become limited where the
applicability of one rule naturally depends on the prior
application of another rule. To address this, the present
paper introduces the notion of a dependency rule priority
relation. Under dependency priority, the applicability of a
rule is conditioned not only by its relative rank but also
by whether another rule has already been triggered in the
computation. This reflects situations where one
transformation has no mathematical or computational
meaning unless it is preceded by another. The inclusion
of dependency priority thus significantly strengthens the
control of the system.

This refinement also goes beyond the method used in
Peter and Singh (2017) and is justified by the need to
capture the extended algebraic structure considered in the
present work. In this work, the weak rule relation is
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denoted by >, the strong rule relation is denoted by >
while the dependency rule relation is denoted by >,.

SOME APPLICATIONS OF P SYSTEMS TO
ARITHMETIC OPERATIONS ON INTEGERS

In this section, we design a variant of P systems for
arithmetic operations on integers that incorporates
dependency rule priority. Unlike the earlier model based
solely on weak and strong rule priorities, the present
approach enforces an dependency relation among rules
called the dependency priority. This ensures that certain
rules are applied only after those they depend on have
been executed, thereby guaranteeing determinism
throughout the computation.

The study of arithmetic operations within the framework
of P systems has been a continuing line of research. For
example, Yang et al. (2015) proposed arithmetic P
systems based on arithmetic formula tables, where the
four fundamental operations—addition, subtraction,
multiplication, and division are realized by distributing
digits into hierarchical membrane structures. Their
approach demonstrates that P systems can serve as
algorithmic devices for numerical computation, although
with models that emphasize digit-wise encoding rather
than multiset-based representations.

Yang et al. (2015) introduced Arithmetic P Systems based
on arithmetic formula tables, where each decimal digit is
placed in a separate membrane and rules mirror standard
human calculation methods such as carrying and
borrowing. Their approach reduces membrane
complexity and provides a clear, table-driven way of
handling addition, subtraction, multiplication, and
division, though it is restricted to positive integers. This
work is relevant to extensions like the present study,
which expands arithmetic P systems to include negative
integers, as their digit-wise encoding and formula-based
rules can serve as a foundation for incorporating sign-
handling mechanisms and broader integer arithmetic.

Other models have explored the role of priorities in
achieving arithmetic tasks. Recent work has applied
priority-based mechanisms to P systems that handle
rational computations, such as fraction simplification,
showing how deterministic results can be ensured through
controlled rule application (e.g., rule priorities that
enforce reductions before other transformations are
executed) (see Nan et al. (2023)). Similarly, arithmetic P
systems constructed on the basis of the symmetric ternary
system have highlighted how careful design of rule
priorities can support consistent execution of arithmetic
operations (Nan et al. (2024)). These contributions
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highlights the importance of prioritization in aligning rule
application.

Building upon these existing approaches, the present
work introduces dependency rule priority as a refinement
of the traditional weak and strong priority mechanisms.
While weak priority allows lower-priority rules to fire if
no higher-priority rule is applicable, and strong priority
entirely blocks lower-priority rules in the presence of a
higher-priority alternative, both remain limited in
scenarios where the execution of one rule must explicitly
precede the activation of another. Dependency rule
priority resolves this by embedding precedence directly
into the computational model, thereby strengthening
determinism and broadening the expressive power of P
systems in arithmetic contexts.

RESULTS AND DISCUSSION
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EXTENDING P SYSTEMS TO POSITIVE AND
NEGATIVE INTEGER ARITHMETIC WITH
DETERMINISTIC MIXED-PRIORITY RULES

In the four models of P systems that folow only two
mebranes are used, even when handling both positive and
negative integers. The dependency priority relation
further allows the system to avoid membrane dissolution,
ensuring membrane preservation. In all the cases, m and
n are the multiplicities of some objects a and b in the
membrane structure. Therefore, they are positive integers.
The same applies to other multiplicities used in the P
system such as those of ¢ and x. The goal is to design a P
system that will carry out the four cardinal binary
operations on m and n.

ADDITION P SYSTEM

ri1:¢—Db
T12:a = (x,iny)

ab™

r13: ab - (ab, out) >,

:a—b

T53:x = (c, out)

T5,: xb = (ab,out) >,

Figure 1: Addition P system membrane system

Addition P system is of the form:

n+ = (V; ,u; (Wll Wz), (Rll pl): (RZJ p2): lO)

where:

o V ={a,b,c x}isafinite set of objects.

o u=/[4[2]:]i is a membrane structure of
degree 2, with Membrane 1 (outer membrane)
and, Membrane 2 (inner membrane).

o w, =a'b™orw,=a"h™ orw; =a", w, =
b™ is the initial multiset of objects in Membrane

1 and/or Membrane 2, depending on the case
presented.

e R, ={r;:c—>b, ry:a- (x,in,), rz:ab -
(ab,out), r4:x » (x,out)} is the set of
evolution rules assigned to membranes 1.

e R,={n:a—-b, ry:xb - (ab,out),

1,3:x = (c,out) is the set of evolution rules
assigned to Membranes 2.

o p, ={r3 >, 1.4} is the priority relation of the
rules in Membrane 1.

o p, ={n, >, nrns3}isthe priority relation of the
rules in Membrane 2.
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e i, isthe label for the output membrane. Its value
is 1 if the result is positive (stored in Membrane
1), and 2 if the result is negative (stored in
Membrane 2).

The idea is to compute the sum of two integers m and n,
where m and n are the multiplicities of the objects in the
membranes representing molecules in a biological cell..
Here, a represents the first operand, b represents the
second operand while ¢ and x are auxiliary object
introduced during the computation process for
communication between membranes. There are four
cases considered.

Case 1: +m and +n Thus, (+m) + (+n) is positive

In this case the objects a and b with their respective
multiplicities n and m are placed in Membrane 1. The
rule r;, will be applied, it consumes the n copies of object
a, produces n copies of object x and send them to
Membrane 2. No other rule can be applied in Membrane
1 since only object the b is available in Membrane 1.
However, there are n copies of x in Membrane 2. The rule
15, has a weak priority over r,; in Membrane 2. However,
since no object b is present in Membrane 2, it will not be
applied. Rather, r,;will be applied. It consumes the n
copies of x, produces n copies of ¢ and sends them to out
of Membrane 2 to Membrane 1. It is now time for r;, to
be applied. It converts the n copies of object ¢ in
Membrane 1 to n copies of b. We now have n + m copies
of b in Membrane 1. This is the result of the computation.
At this stage, no other rules can be applied. The result of
the computation is the n + m copies of b in Membrane 1.
Being in Membrane 1 means the result of the addition is
positive.

Case 2: —m and +n Thus, (—m) + (—n) is negative
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In this case, the two operands m and n are negative. Thus
the objects and their multiplicities are placed in
Membrane 2. Therefore, no rule in Membrane 1 can be
applied. Only one rule in Membrane 2 will be applied and
it is r,;. It consumes the n copies of a and produces n
copies of b. The result of the computation is n + m copies
of b in Membrane 2.

Case 3: —m and +n where n > m. Thus, (—m) +
(+n) is positive

In this case n copies of a ae placed in Membrane 1 while
m copies of b are placed in Membrane 2. The r;, will be
be applied in Membrane 1. It consumes the n copies of a
in, produces n copies of b and sends them to Membrane
2. The rule 7y, in Membrane 2 will now be applied. It
consumes identical copies of x and b (m copies in this
case), converts them to objects ab and sends them out of
Membrane 2 to Membrane 1. There are now n—m
copies of x in Membrane 2. This is later converted to n —
m copies of ¢ in and sent out of Membrane 2 by 7,5.
Meanwhile, the m copies of a and b in Membrane 1 are
sent out of the membrane to the environemt by r;5. The
n —m copies of ¢ are converted to n — m copies of b in
Membrane 1 where a positive result is obtained. The
computation haults at this moment since no other rules
can be applied.

Case 4: —m and +n where n < m. Thus, (—m) +
(+n) is negative

Thisisa similar case to Case 3 above. However, the result
of applying rule r,, is m — n copies of b in Membrane
2. Therefore, no other rule will be applied in Membrane
2. And that is the result of the computation, and the result
is negative since n is greater than m.

SUBTRACTION P SYSTEM
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r11: ab — (ab,out) >,
r12:b = (c,iny)
T3:C > a

T5.:b = (¢, out)
Ty3:C > @

r51:ab = (ab, out) >,

ab™

Figure 2: Subtraction P system membrane system

Subtraction P system is of the form:

”_ = (Vr ,ur (le WZ); (Rly P1); (Rz, ,02): lO)

where:

o V ={a,b,c}isafinite set of objects.

o u=/[4[2]:]i is a membrane structure of
degree 2, with Membrane 1 (outer membrane)
and, Membrane 2 (inner membrane).

e w=a"h™, w=a" or w=b™ is the initial
multiset of objects in Membrane 1 or Membrane
2, depending on the case presented.

e R, ={r:ab - (ab,out), r,:b - (c,in,),
113: € = a} is the set of evolution rules assigned
to Membrane 1.

e R, ={nry:ab - (ab,out), ry:b - (c,out),
T,3:c = a is the set of the evolution rules
assigned to Membrane 2.

o p, ={r, >, r,} is the priority relation of the
rules in Membrane 1.

o p, ={r,y >, 1y} isthe priority relation of the
rules in Membrane 2.

e i, isthe label for the output membrane. Its value
is 1 if the result is positive (stored in Membrane
1), and 2 if the result is negative (stored in
Membrane 2).

Case la: +m and +n where n > m. Thus, (+n) —
(+m) is positive

Since we are dealing with positive integers, the objects a
and b with their respective multiplicities n and m are
placed in Membrane 1. The rule r;, is applied. It sends m
copies of a and b to the environment, leaving n —m
copies of a in Membrane 1. This is the result of the
conputation and it encodes positive integer, since no rule
can be applied again in this case.

Case la: +m and +n where n < m. Thus, (+n) —
(+m) is negative

Again Membrane 1 houses objects a and b with their
multiplicities n and m, respectively. This time after the
same rule 1y, is applied there would be m — n copies of
the object b in Membrane 1. In this the rule r;, can be
applied to the object b It send the m — n copies of b to
Membrane 2 after converting them to ¢’s. Thus, we have
m — n copies of ¢ in Membrane 2. No rule can be applied
again. The computation halts and we have a negative
result.

Case 2a: —m and —n where n > m. Thus, (—n) —
(—m) is negative

Since we are dealing with negative integers, the objects a
and b with their respective multiplicities n and m are
placed in Membrane 2. The rule r,, is applied. It sends n
copies of a and b out of Membrane 2, leaving n —m
copies of b behind. The rule r,, will now be applied. It
sends the n — m copies of a out of Membrane 2. We are
now left with n — m copies of a in Membrane 2. This is
the result of the conputation and it encodes negative
integer.
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Case 2b: —m and —n where n < m. Thus, (—n) —
(—m) is positive

Again, since we are dealing with negative integers, the
objects a and b with their respective multiplicities n and
m are placed in Membrane 2. The rule r,, is applied. It
sends n copies of a and b out of Membrane 2, leaving
m —n copies of b behind. The rule r,; will now be
applied. It sends the m — n copies of b out of Membrane
2 after converting them to c. We now have m — n copies
of ¢ in Membrane 1. This is the result of the conputation
and it encodes positive integer.

Case 3a: —m and n where n > m. Thus, (+n) —
(—m) is positive

In this case, n copies of a is placed in Membrane 1 while
m copies of b is placed in Membrane 2. No rule can be
applied in Membrane 1. The rule r,,, also cannot be
applied in Membrane 2. Thus, the rule to be applied is 7,5, .
It consumes the m copies of b, produces m copies of ¢
and send them out of Membrane 2. There are now n
copies of a and m copies of ¢ in Membarane 1. The result
of the computation is the m + n copies of a in Membrane
1.
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Case 3b: —m and n where n < m. Thus, (+n) —
(—m) is positive

The comutation is exactly the same with that of Case 3a
above.

Case 4a: m and —n where n > m. Thus, (—n) —
(+m) is negative

In this case, m copies of b is placed in Membrane 1 while
n copies of a is placed in Membrane 2. The rule 7y, is
applied in Membrane 1. It consumes the m copies of b,
produces m copies of ¢ and sends them to Membane 2. In
Membarane 2, r,; will be applied. It consumes m copies
of ¢, and produces m copies of a. There are now m + n
copies of a in Membrane 2. The computation halts, and
the result is a negative value.

Case 4a: m and —n where n > m. Thus, (—n) —
(+m) is negative

The comutation is exactly the same with that of Case 4a
above.

MULTIPLICATION P SYSTEM

ab™

ca - (a,in,)
ce > (e, iny)
:b - (b,in,)
:f = (f, out)
:x - (x,in,)
:y - (y' inZ)
1> (i,iny)

.t > (t,out)

:sc - (c,in,)

r51:be = (e, out) >,
T99:a = (ac, out) } v
ry3:a = (f, out)

r24:€ = (f, out)}
rys: yi = (i, out) >4
The: X = (xs, out)
ry7:x = (t, out)
785 = (¢, out)}

>,

Figure 3: Multiplication P system membrane system
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Multiplication P system is of the form:

m=,pu, (W1: Wz): (R1: p1): (Rz: ,02): io)

where:

o V=A{abcef,istxy} is a finite set of
objects.

o u=/[y[2]:]1 is a membrane structure of
degree 2, with Membrane 1 (outer membrane)
and, Membrane 2 (inner membrane).

e w=a"hmew=a" , w=b" or w=
ab™ex™y™i is the initial multiset of objects in
Membrane 1 or Membrane 2, depending on the
case presented.

e R, ={n:a-(ain,), ry:e - (einy),
r13:b = (b, iny),

1.t f = (f,out), ris:x = (x,in,), 11y

- (y,in,), 17:0 = (i,in,),
rg:t = (t,iny), r19: SC = (sc,in,)} is the set
of evolution rules assigned to Membrane 1.

e R, ={n:be - (e, out), ry:a - (ac,out),
ry3:a = (f, out),
i€ = (f,out), rys: yi = (i,out), rye: X

- (xs,0ut), 1571 %

- (t, out),
T,5:5 = (t,out)} is the set of evolution rules
assigned to Membrane 2.

e p, = O isshows that no priority relation of rules
exists in Membrane 1.

L] p2=
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and the object e in Membrane 2. In Membrane 2, both
15,and 1, have a weak priority relation over r,; and r,,
where r,, has a dependency rule priority over r,,. Thus
13, can only be applied when r,, is being applied and not
otherwise. The rule r,, sends a copy of b together with a
copy of e out of Membrane 2. There are now n copies of
a and c and 1 copy of e in Membrane 1 and m — 1 copies
of b in Membrane 2. In Membrane 1, the rules r; 5 and ;¢
send the n copies of a and ¢ and the 1 copy of e back to
Membrane 2. This process is repeated untill there are no
copies of b left in Membrane 2. Also, the ¢ would have
appered in Membrane 1 mn times. Therefore, rules r,,
and r,, will cease to be applicable. Since they have a
weak priority over rules r,; and r,,, the latter two rules
will be applied. They send one copy of each of a and e
out of Membrane 2 after converting them to f to
Membrane 1. The rule 7, in turn sends the copy of f out
of the environment. The result of the computtion is the
mn number of occurrences of the object ¢ in Membrane
1.

Cases 2: (—n) x (—mv) is positive for positive m and
n.

In this case, at the initial configuration of the P system,
there are n copies of the object a and m copies of the
abject b in Membrane 2. That is both a and b are again
present in the same membrane. Also, there is one copy of
an object e (which is always there in all cases) in
Membrane 2. The computation starts in Membrane 2 and

{21 >4 a2, o1 > To3, 121 > Tosy Toz >y To3, TooCBmtiMuES as in Case 1 above. The result is positive at the

is the priority relation of the rules in Membrane
2.

e i, isthe label for the output membrane. Its value
is 1 if the result is positive (stored in Membrane
1), and 2 if the result is negative (stored in
Membrane 2).

Cases 1: (+n) x (+m) is positive for positive m and
n.

In this process, at the initial configuration of the P system,
there are n copies of the object a and m copies of the
abject b in Membrane 1. That is both a and b present in
the same membrane. There is also one copy of an object
e (which is always there in all cases) in Membrane 2.
Since there are no existing priorities in Membrane 1.
Rules that have objects can be applied. Thus, r;; and ;5
will be applied in parallel on a and b in Membrane 1.
They send all the multiplicities of a and/or b to
Membrane 2. There are now n copies of a, m copies of b

end of the computation.

Cases 3: (—n) x (m) is negative for positive m and
n.

This is a process where a and b are in different
membranes. Since they are in different membranes, they
are accompanied by auxiliary objects in their respective
membranes by the same multiplicities of their principal
objects. a is accompanied by x while b is accompanied
by y. Moreover, e is accompanied by i in Membrane 2.
The computation is carried out accordingly as in Process
1 above in parallel and at the same time that Process 1 is
executed. The auxiliary part computation ensures that the
mn copies of ¢ and s are together converted to mn copies
of ¢ and sent back to Membrane 2 by r,4, ensuring that
the result of the computation is negative.

DIVISION P SYSTEM
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where:

Chinedu & Vivian

ca - (a,in,)
ce - (e, in,)
:b - (b,in,)
:f - (f, out)
:x - (x,in,)
i - (i,in,)

.t - (t,out)

:sc - (c,in,)

N

r51:abz - (cv, out) >,
T50:ab - (c,out)
ry3:a = (f, out) }
T54:d — (de,out)
>
rys:xy — (s, 0ut) >4
Ty6: x = (t, out) } >
127:p = (pi, out)

Tyg:x = (p, out)

JOBASR2026 4(1): 170-181

Ty9:av - (r,out) >,
kt(v out)

Figure 4: Division P system membrane structure
A Division P system is of the form:

= =V, u, (wy, wy), (Ry, p1), (Ry, p2), i)

V={ab,cdef,iprstvxyz} is a
finite set of objects.
U =11u1]21211 IS @ membrane structure of
degree 2, with Membrane 1 (outer membrane)
and, Membrane 2 (inner membrane).
{w; =a"b™d,w, = ¢}, {w; =ad*x™",w, =
b™my™dp}, {w; = b™y™z™, w, = a"x"dp} or
{fw, = a™b™z™,w, = d} is the initial multiset
of objects in Membrane 1 or Membrane 2,
depending on the case presented.
R, ={r:a - (a,iny), rp:b - (b,in,),
r3ix = (x,in,), 131y = (¥, iny),
15:Z = (2,in,), rs:def - (def,out),r;: f

- (f,out),rg: cv

- (av,in,),

r9:¢ = (a,iny),r:d » (d, iny),11: pit

- (pit,out),ry,: t

- (t, out),
n3is = (x,iny), 141 p = (p, iny), 1yst €l

- (e,iny),116:p — (p,out),
1. v = (v, out)}
is the set of evolution rules assigned to
Membrane 1.
R, = {ry;:abz — (cv, out), 1y,:ab -
(c,out), ryz:a - (f,out),
1. d — (de, out), 1,5: xy = (s, out),
The: X = (t,0ut), rp;:p > (pi,out), rpg:x —
(p, out), rpg: av —» (r,out), 1,10:vV >
(v, out)}
is the set of evolution rules assigned to
Membrane 2.
pr=1{re >u 15, g >y Ty, T11 >y T1a,
(T 77, Tg, To, 10, T11, T12, T13, T14) 5 (715, T16, T17)}
shows that no priority relation of rules exists in
Membrane 1.
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o pr={r >y 1
125 > (126, 127), (121, 122) >4 (123,724),
(121, 122) >4 (123, 124), (125, T2, T27) >5 Tog,
(121, T22, 123, 24, 125, T26, T27) s (120, 7210)}
is the priority relation of the rules in Membrane
2.

e i, isthe label for the output membrane. Its value
is 1 if the result is positive (stored in Membrane
1), and 2 if the result is negative (stored in
Membrane 2).

Case 1: —n divide by —m, yields a positive quotient
with a negative remainder.

At the initial configuration of the P system, there are n
copies of a, m copies of b and the object d in Membrane
2. The only rules that can be applied at the moment are
15, and r,,. They convert n copies of ab to ¢ and the one
copy of d to de and send them out of Membrane 2 to
Membrane 1. There are now n copies of ¢, one copy of d
and one copy of e in Membrane 1. The rules r, converts
the object ¢ to a and send it to Membrane 2 while the rule
110 Sends d to Membrane 2. The process continues this
way until there are no copies of b left for and ,, to act
upon in Membrane 2. There are now copies of a left in
Membrane 2. This also is converted to f and sent out of
Membrane 2 by and r,5. There are now copies of d, e and
f in Membrane 1. Therefore, and r, is used for the first
time. It sends identical copies of d,e and f into the
environment while and r, sends the remaining copies of
f into the environment. The object ¢ is sent back to
Membrane 2 by and r, after converting it to a. There are
now only copies of e in Membrane 1 and copies of a in
Membrane 2. The multiplicity of the copies of e encodes
the dividend while that of a encodes the remainder. The
computation halts as no other rule can be applied.

Case 2: —n divide by m, yields a negative quotient
with a negative remainder.

In this case the numerator is negative while the
denominator is positive. Therefore, the object a is placed
in Membrane 1 while the object b is placed in Membrane
2. Moreover, since they are in separate membranes, they
are accompanied by objects x in Membrane 1 and y in
Membrane 2. The objects in the same membrane have the
same multiplicity with the main objects. The object d as
usual is placed in Membrane 2 together with its
accompanying object p.The computation begins by
transferring all objects in Membrane 1 to Membrane 2.
The computation continues as in Case 1 above, only that
this time the accompanying objects x, y and p undergo
similar process as a, b and d using the rules dedicated to
them. As the computation comes towards end, the
availability of i in Membrane 2 makes possible for the

Chinedu & Vivian

JOBASR2026 4(1): 170-181

rule ;5 to be applied. It converts ei to e and send it to
Membrane 2. Note that e in this case represents the
dividend in the division. Since e would now be in
Membrane 2, it shows that the result of the division is
negative being in Membrane 2, so also is the remainder
a.

Case 3: n divide by —m, yields a negative quotient
with a positive remainder.

In this case the object b encoding the numerator is in
Membrane 1 while the divisor is object is in Membrane 2
y and x in their respective multiplicities. An additional
object z with the same multiplicity as b and 1y is placed
in Membrane 1 as well. This is because the object
encoding the dividend (b in this case) is in Membrane 1.
In other words, whenever dividend object is in Membrane
1, it is accompanied by another object (z) in the same
Membrane 1 with the same multiplicity. The computation
takes place as usual after all objects in the initial
configuration have been transferred to Membrane 2 by the
required rules. This is to ensure that the remainder is
transferred to Membrane 1, while the quotient is
transferred to Membrane 2 as in Case 2.

Case 4: n divide by m, yields a positive dividend with
a positive remainder.

At the initial configuration of the P system, objects a and
b are in Membrane 1 while only the object d is in
Membrane 2 as usual. Since b is in Membrane 2, it is
accompanied by the object z as in Case 3 above. The
computation takes place as usual. The availability of z
ensures that the remainder encoded by the object r is
finally in Membrane 1, while that which encode the
quotient is in Membrane 1 as well.

CONCLUSION

The deterministic P systems with weak, strong and
dependency rule priorities presented in this paper have
successfully extended arithmetic computations from
positive integers to both positive and negative integers.
Several directions for future research naturally emerge
from this extension.

First, it is promising to extend the present work to rational
numbers. Since a rational number can be expressed as the
quotient of two integers, its encoding would involve the
operation of division P systems, with additional rules to
preserve the sign of the result. Extending further to real
numbers, rational and irrational components must be
clearly distinguished. While rational numbers may be
handled using integer-based division systems, encoding

179




An Application of Multiset to Deterministic ...

irrational numbers will require new strategies for both
approximation and representation.

Second, fractional arithmetic could be enhanced by
incorporating remainder-handling mechanisms that
operate in parallel while tracking signs. This would allow
P systems to deal with recurring decimals and extend
applicability to scientific computation tasks.

Third, the interaction of multiple membranes can be
further explored to support hierarchical arithmetic
operations, such as exponentiation, roots, and modular
arithmetic. Such extensions could provide powerful tools
for applications in cryptography, coding theory, and
symbolic computation.

Finally, the biological interpretation of objects can be
deepened. For example, distinguishing between
computational objects (representing integer values) and
cofactor objects (regulating computation flow) may
strengthen the analogy between membrane systems and
biochemical processes. This could lead to models that are
simultaneously ~ computationally ~ rigorous  and
biologically possible.

In conclusion, the results presented here provide a strong
foundation for extending deterministic P systems toward
a full arithmetic operation and expression encompassing
integers, rationales, and reals, while also inviting cross-
disciplinary applications in mathematics, computer
science, and systems biology.
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