

An Application of Multiset to Deterministic P Systems with Nested Rule Prioritization and

Membrane Preservation

Chinedu M. Peter1* & Vivian O. Ike2

1,2Department of Mathematics, Federal University, Dutsin-Ma, Nigeria.
*Corresponding Author Email: macpee3@yahoo.com

 Keywords:

 Multisets,

 P systems,

 Rule prioritization,

 Membrane preservation,

 Negative integer,

 Algebraic representation

ABSTRACT

This paper begins with a mathematical analysis of multisets as a formal

apparatus for computation: we give precise definitions, describe multiset algebra

(union, intersection, difference, complementation and additive union), present

the vector interpretation of multisets and Parikh-style mappings, and examine

properties of multiset rewriting systems. Building on that analysis, we show how
multisets can be used to encode integers (positive and negative) in a membrane

system in a uniform way. Negative values being represented by an appropriate

placement of multiplicities across membrane systems with only two membranes,

and how algebraic properties are used in the correct design of rewriting rules.

Using this multiset foundation, we construct P systems for integer arithmetic

(addition, subtraction, multiplication and division) that preserve membrane

structure (i.e., without dissolution) and operate under nested weak, strong and

dependency priority relations. Worked examples illustrate how the multiset

analyses are used in rule priorities and how priorities control the flow of

computation to guarantee correctness and termination across all the cases

presented.

INTRODUCTION

Membrane computing, introduced by Gheorghe Păun in

1998, is a branch of natural computing inspired by the

structure and functioning of living cells. Its core model,

the P system, captures distributed and parallel

computation by means of membranes, objects, and

evolution rules. Over the years, P systems have found

applications in formal language theory, biology,

optimization, and computational complexity. A central

feature of P systems is that molecules are handled as
objects of multisets. From a mathematical point of view,

the use of multisets gives P systems their algebraic

flexibility. The state of a membrane region can be

interpreted not merely as a set, but as an algebraic

structure in which objects occur with multiplicities. This

makes multisets suited to encode numerical data and to

perform arithmetic operations in a rigorous manner. Most

existing works on arithmetic with P systems have been

restricted to the use of positive integers, with objects

representing quantities and rules realizing operations

such as addition or multiplication in a straightforward
way (Paun, 2000; Ciobanu & Angeles, 2006).

Alhazov et al. (2006) explores the use of P systems for

encoding numbers and carrying out arithmetic operations,

highlighting how membrane computing can simulate

fundamental mathematical processes. It presents different

strategies for representing integers within membranes and

design rules that enable addition, subtraction,

multiplication, and division to be performed in a

distributed and parallel manner. Atanasiu (2001) extends

this by proposing models that encode operands in base

two and use membrane structures where objects represent
bits that are controlled by evolution rules in parallel. It

shows that these computations can achieve a lower

complexity than conventional hardware implementations.

Yang et al. (2015) further advances the field by presenting

methods for the automatic design of P systems for

arithmetic, reducing manual construction errors while

preserving the inherent parallelism and distributed

computation features.

Guo et al. (2013) expands arithmetic in P systems to

fractions by encoding numerators and denominators as
separate objects, allowing parallel manipulation for

addition, subtraction, multiplication,

ISSN (print): 3026-9091, ISSN (online): 1597-9962

DOI: https://dx.doi.org/10.4314/jobasr.v4i1.19

170

Chinedu M. P. & Vivian O. I. An Application of Multiset to Deterministic P Systems

with Nested Rule Prioritization and Membrane Preservation. 4(1), 170-

181. https://dx.doi.org/10.4314/jobasr.v4i1.19

mailto:macpee3@yahoo.com
https://dx.doi.org/10.4314/jobasr.v4i1.19
https://dx.doi.org/10.4314/jobasr.v4i1.19

An Application of Multiset to Deterministic … Chinedu & Vivian

JOBASR2026 4(1): 170-181

and division of rational numbers. Zeng et al. (2012)

demonstrate arithmetic in spiking neural P systems,

encoding numbers as spike trains and using neuron-

inspired spiking rules to leverage temporal dynamics

alongside parallel computation. Guo and Chen (2008) and
Guo and Zhang (2008) investigate arithmetic operations

in general and single-membrane P systems, respectively,

showing that even minimal membrane structures can

perform addition, subtraction, multiplication, and

division efficiently.

From a theoretical perspective, Freund and Păun (2003)

formalizes deterministic P systems, specifying conditions

for unique successor configurations and eliminating

nondeterministic ambiguity, while Ibarra (2005) analyzes

the distinction between deterministic and

nondeterministic P systems and their implications for
computational efficiency and predictability.

To achieve a more realistic mathematical representation

of integers, it is necessary to incorporate both positive and

negative values within the same framework. Negative

integers arise naturally in real life reasonings, and without

them, arithmetic remains incomplete. Multisets provide a

natural and uniform way to represent both positive and

negative values by distributing multiplicities of objects

across distinct membranes, one can encode positive and

negative values effectively.

In this paper, we develop a membrane-preserving P

system that realizes the four basic integer operations, viz,

addition, subtraction, multiplication, and division. Unlike

approaches relying on dissolution or structural changes,

our system employs nested strong rule prioritization and

dependency-based rule application, ensuring

deterministic and controlled computation. The inclusion

of negative integers is handled seamlessly through

multiset-dedicated membrane encoding, while priority

mechanisms govern the flow of computation across

different cases.

The main contribution of this work lies in successfully

showing that positive and negative integers can be

modelled using multiset representations in a single

membrane structure, P systems can serve as a robust

mathematical model for the structure of the integers under

basic operations. This strengthens the algebraic

foundations of membrane computing and demonstrates

the expressive capacity of P systems as models of

symbolic computation. Examples are provided to

illustrate the functioning of the system and to highlight
the role of rule priority in directing computations. Peter et

al. (2025) and Peter (2025) are some articles on the

application of multiset by the authors.

To develop a uniform multiset-based encoding of positive

and negative integers within a membrane system, using

object multiplicities and membrane placement to

represent sign and magnitude without increasing the

membrane degree or relying on membrane dissolution.

To construct deterministic, membrane-preserving P

systems for the four basic arithmetic operations—

addition, subtraction, multiplication, and division—on

integers, and to present the corresponding computation

algorithms through detailed configurations, tables, and

illustrative diagrams that demonstrate rule application

under mixed weak, strong, and dependency priorities.

To validate the correctness, determinism, and termination

of the proposed arithmetic P systems, by analyzing the

interaction of rule priorities and examining step-by-step
illustrative examples that cover all sign combinations of

integer operands.

JUSTIFICATION OF THE MODEL

Two notable applications of membrane computing,

namely static sorting and circuit simulations were studied

in Păun and Thierrin (2001). Number sorting has long

been a central problem in computer science, and

membrane computing provides an alternative way of
simulating Boolean circuits. This naturally motivates the

need to model P systems for the basic binary operations

that underlie such computations.

A distinctive feature of P systems, which provides an

edge over traditional digital computing, is their

parallelism. Objects that match the left-hand side of a rule

are applied to all the occurrences of such an object

(subject to the imposed priority relation), and all

membranes in the system operate simultaneously.

So far, research on arithmetic operations in P systems has
focused mainly on the strong rule priority relation, likely

due to its ability to capture aspects such as energy

accounting and resource constraints. In contrast, the weak

rule priority relation has not been given serious attention,

despite its potential advantages. Păun (2000) concluded

thus:

“Of course also, the weak interpretation of the priority is

of interest: a rule is always used when objects exist which

were not used by a rule of a higher priority.”

This observation provides a strong motivation for

exploring weak rule priority as well. In fact, the weak

interpretation achieves greater maximality of parallelism

compared to the strong interpretation. The reason is that

in a weak priority system, rules of lower priority do not

171

An Application of Multiset to Deterministic … Chinedu & Vivian

JOBASR2026 4(1): 170-181

have to wait for a subsequent iteration if there are objects

on which they can act. On the other hand, in a strong

priority system, both the rules of lower priority and the

objects they would act upon may be forced to wait until

the next step.

Also of interest in this paper is the newly introduced

dependency rule priority. It enforces that a rule is only

applied if the rules it depends on have already been

applied during a current iteration or transition. This is

introduced in order to avoid premature rule applications

which could distort the computation and lead to invalid

results. Moreover, since the system is designed to

preserve membranes, correctness cannot rely on

dissolution. The dependency priority relation

compensates for this restriction by guaranteeing that only

valid sequences of dependent rules are applied. This
makes the computation both stable and faithful to the

model being constructed.

MATERIALS AND METHODS

RULE PRIORITIZATION

In membrane systems, priority relations are introduced to

regulate the application of rules whenever multiple

options are available. Weak and strong priority relations

were employed. Weak priority allows a lower-priority

rule to be applied provided no higher-priority rule is
applicable in the same transition. Strong priority ensures

that, whenever a higher-priority rule is applicable, all

rules of lower priority are completely blocked, regardless

of whether they could also be applied. Ciobanu and Păun

(2013) explicitly defines strong priority and weak priority

in P systems, explains their formal semantics, and gives

examples contrasting them. Păun (2002) is one of the

foundational sources of priority relations.

While these two methods of rule priority are sufficient in

simple settings, they become limited where the

applicability of one rule naturally depends on the prior
application of another rule. To address this, the present

paper introduces the notion of a dependency rule priority

relation. Under dependency priority, the applicability of a

rule is conditioned not only by its relative rank but also

by whether another rule has already been triggered in the

computation. This reflects situations where one

transformation has no mathematical or computational

meaning unless it is preceded by another. The inclusion

of dependency priority thus significantly strengthens the

control of the system.

This refinement also goes beyond the method used in

Peter and Singh (2017) and is justified by the need to

capture the extended algebraic structure considered in the

present work. In this work, the weak rule relation is

denoted by >𝑤, the strong rule relation is denoted by >𝑠

while the dependency rule relation is denoted by >𝑑 .

SOME APPLICATIONS OF P SYSTEMS TO

ARITHMETIC OPERATIONS ON INTEGERS

In this section, we design a variant of P systems for

arithmetic operations on integers that incorporates
dependency rule priority. Unlike the earlier model based

solely on weak and strong rule priorities, the present

approach enforces an dependency relation among rules

called the dependency priority. This ensures that certain

rules are applied only after those they depend on have

been executed, thereby guaranteeing determinism

throughout the computation.

The study of arithmetic operations within the framework

of P systems has been a continuing line of research. For

example, Yang et al. (2015) proposed arithmetic P

systems based on arithmetic formula tables, where the

four fundamental operations—addition, subtraction,

multiplication, and division are realized by distributing

digits into hierarchical membrane structures. Their

approach demonstrates that P systems can serve as
algorithmic devices for numerical computation, although

with models that emphasize digit-wise encoding rather

than multiset-based representations.

Yang et al. (2015) introduced Arithmetic P Systems based
on arithmetic formula tables, where each decimal digit is

placed in a separate membrane and rules mirror standard

human calculation methods such as carrying and

borrowing. Their approach reduces membrane

complexity and provides a clear, table-driven way of

handling addition, subtraction, multiplication, and

division, though it is restricted to positive integers. This

work is relevant to extensions like the present study,

which expands arithmetic P systems to include negative

integers, as their digit-wise encoding and formula-based

rules can serve as a foundation for incorporating sign-

handling mechanisms and broader integer arithmetic.

Other models have explored the role of priorities in

achieving arithmetic tasks. Recent work has applied

priority-based mechanisms to P systems that handle
rational computations, such as fraction simplification,

showing how deterministic results can be ensured through

controlled rule application (e.g., rule priorities that

enforce reductions before other transformations are

executed) (see Nan et al. (2023)). Similarly, arithmetic P

systems constructed on the basis of the symmetric ternary

system have highlighted how careful design of rule

priorities can support consistent execution of arithmetic

operations (Nan et al. (2024)). These contributions

172

An Application of Multiset to Deterministic … Chinedu & Vivian

JOBASR2026 4(1): 170-181

highlights the importance of prioritization in aligning rule

application.

Building upon these existing approaches, the present

work introduces dependency rule priority as a refinement

of the traditional weak and strong priority mechanisms.

While weak priority allows lower-priority rules to fire if

no higher-priority rule is applicable, and strong priority

entirely blocks lower-priority rules in the presence of a

higher-priority alternative, both remain limited in
scenarios where the execution of one rule must explicitly

precede the activation of another. Dependency rule

priority resolves this by embedding precedence directly

into the computational model, thereby strengthening

determinism and broadening the expressive power of P

systems in arithmetic contexts.

RESULTS AND DISCUSSION

EXTENDING P SYSTEMS TO POSITIVE AND

NEGATIVE INTEGER ARITHMETIC WITH

DETERMINISTIC MIXED-PRIORITY RULES

In the four models of P systems that folow only two

mebranes are used, even when handling both positive and

negative integers. The dependency priority relation

further allows the system to avoid membrane dissolution,

ensuring membrane preservation. In all the cases, 𝑚 and

𝑛 are the multiplicities of some objects 𝑎 and 𝑏 in the

membrane structure. Therefore, they are positive integers.

The same applies to other multiplicities used in the P

system such as those of 𝑐 and 𝑥. The goal is to design a P

system that will carry out the four cardinal binary

operations on 𝑚 and 𝑛.

ADDITION P SYSTEM

Figure 1: Addition P system membrane system

Addition P system is of the form:

𝛱+ = (𝑉, 𝜇, (𝑤1 , 𝑤2), (𝑅1, 𝜌1), (𝑅2, 𝜌2), 𝑖0)

where:

• 𝑉 = {𝑎, 𝑏, 𝑐, 𝑥} is a finite set of objects.

• 𝜇 = [1, [2,]2,]1 is a membrane structure of

degree 2, with Membrane 1 (outer membrane)

and, Membrane 2 (inner membrane).

• 𝑤1 = 𝑎𝑛𝑏𝑚 or 𝑤2 = 𝑎𝑛𝑏𝑚 or 𝑤1 = 𝑎𝑛, 𝑤2 =
𝑏𝑚 is the initial multiset of objects in Membrane

1 and/or Membrane 2, depending on the case

presented.

• 𝑅1 = {𝑟11: 𝑐 → 𝑏, 𝑟12: 𝑎 → (𝑥, 𝑖𝑛2), 𝑟13: 𝑎𝑏 →
(𝑎𝑏, 𝑜𝑢𝑡), 𝑟14: 𝑥 → (𝑥, 𝑜𝑢𝑡)} is the set of

evolution rules assigned to membranes 1.

• 𝑅2 = {𝑟21: 𝑎 → 𝑏, 𝑟22: 𝑥𝑏 → (𝑎𝑏, 𝑜𝑢𝑡),
𝑟23: 𝑥 → (𝑐, 𝑜𝑢𝑡) is the set of evolution rules

assigned to Membranes 2.

• 𝜌1 = {𝑟13 >𝑤 𝑟14} is the priority relation of the

rules in Membrane 1.

• 𝜌2 = {𝑟22 >𝑤 𝑟23} is the priority relation of the

rules in Membrane 2.

1
𝑎𝑛𝑏𝑚 𝑟11: 𝑐 → 𝑏

𝑟12: 𝑎 → (𝑥, 𝑖𝑛2)

𝑟13: 𝑎𝑏 → (𝑎𝑏, 𝑜𝑢𝑡) >𝑤

𝑟14: 𝑥 → (𝑥, 𝑜𝑢𝑡)
2

𝑟21: 𝑎 → 𝑏

𝑟22: 𝑥𝑏 → (𝑎𝑏, 𝑜𝑢𝑡) >𝑤

𝑟23: 𝑥 → (𝑐, 𝑜𝑢𝑡)

173

An Application of Multiset to Deterministic … Chinedu & Vivian

JOBASR2026 4(1): 170-181

• 𝑖0 is the label for the output membrane. Its value

is 1 if the result is positive (stored in Membrane

1), and 2 if the result is negative (stored in

Membrane 2).

The idea is to compute the sum of two integers 𝑚 and 𝑛,

where 𝑚 and 𝑛 are the multiplicities of the objects in the

membranes representing molecules in a biological cell..

Here, 𝑎 represents the first operand, 𝑏 represents the

second operand while 𝑐 and 𝑥 are auxiliary object

introduced during the computation process for

communication between membranes. There are four

cases considered.

Case 1: +𝒎 and +𝒏 Thus, (+𝒎) + (+𝒏) is positive

In this case the objects 𝑎 and 𝑏 with their respective

multiplicities 𝑛 and 𝑚 are placed in Membrane 1. The

rule 𝑟12 will be applied, it consumes the 𝑛 copies of object

𝑎, produces 𝑛 copies of object 𝑥 and send them to

Membrane 2. No other rule can be applied in Membrane

1 since only object the 𝑏 is available in Membrane 1.

However, there are 𝑛 copies of 𝑥 in Membrane 2. The rule

𝑟22 has a weak priority over 𝑟23 in Membrane 2. However,

since no object 𝑏 is present in Membrane 2, it will not be

applied. Rather, 𝑟23will be applied. It consumes the 𝑛

copies of 𝑥, produces 𝑛 copies of 𝑐 and sends them to out

of Membrane 2 to Membrane 1. It is now time for 𝑟12 to

be applied. It converts the 𝑛 copies of object 𝑐 in

Membrane 1 to 𝑛 copies of 𝑏. We now have 𝑛 + 𝑚 copies

of 𝑏 in Membrane 1. This is the result of the computation.

At this stage, no other rules can be applied. The result of

the computation is the 𝑛 + 𝑚 copies of 𝑏 in Membrane 1.

Being in Membrane 1 means the result of the addition is

positive.

Case 2: −𝒎 and +𝒏 Thus, (−𝒎) + (−𝒏) is negative

In this case, the two operands 𝑚 and 𝑛 are negative. Thus

the objects and their multiplicities are placed in

Membrane 2. Therefore, no rule in Membrane 1 can be

applied. Only one rule in Membrane 2 will be applied and

it is 𝑟21 . It consumes the 𝑛 copies of 𝑎 and produces 𝑛

copies of 𝑏. The result of the computation is 𝑛 + 𝑚 copies

of 𝑏 in Membrane 2.

Case 3: −𝒎 and +𝒏 where 𝒏 > 𝒎. Thus, (−𝒎) +

(+𝒏) is positive

In this case 𝑛 copies of 𝑎 ae placed in Membrane 1 while

𝑚 copies of 𝑏 are placed in Membrane 2. The 𝑟12 will be

be applied in Membrane 1. It consumes the 𝑛 copies of 𝑎

in, produces 𝑛 copies of 𝑏 and sends them to Membrane

2. The rule 𝑟22 in Membrane 2 will now be applied. It

consumes identical copies of 𝑥 and 𝑏 (𝑚 copies in this

case), converts them to objects 𝑎𝑏 and sends them out of

Membrane 2 to Membrane 1. There are now 𝑛 − 𝑚

copies of 𝑥 in Membrane 2. This is later converted to 𝑛 −
𝑚 copies of 𝑐 in and sent out of Membrane 2 by 𝑟23 .

Meanwhile, the 𝑚 copies of 𝑎 and 𝑏 in Membrane 1 are

sent out of the membrane to the environemt by 𝑟13. The

𝑛 − 𝑚 copies of 𝑐 are converted to 𝑛 − 𝑚 copies of 𝑏 in
Membrane 1 where a positive result is obtained. The

computation haults at this moment since no other rules

can be applied.

Case 4: −𝒎 and +𝒏 where 𝒏 < 𝒎. Thus, (−𝒎) +

(+𝒏) is negative

This is a similar case to Case 3 above. However, the result

of applying rule 𝑟22 is 𝑚 − 𝑛 copies of 𝑏 in Membrane

2. Therefore, no other rule will be applied in Membrane

2. And that is the result of the computation, and the result

is negative since 𝑛 is greater than 𝑚.

SUBTRACTION P SYSTEM

174

An Application of Multiset to Deterministic … Chinedu & Vivian

JOBASR2026 4(1): 170-181

1

𝑟11: 𝑎𝑏 → (𝑎𝑏, 𝑜𝑢𝑡) >𝑤

𝑟12: 𝑏 → (𝑐, 𝑖𝑛2)

𝑟13: 𝑐 → 𝑎

𝑎𝑛𝑏𝑚

2

𝑟21: 𝑎𝑏 → (𝑎𝑏, 𝑜𝑢𝑡) >𝑤
𝑟22: 𝑏 → (𝑐, 𝑜𝑢𝑡)

𝑟23: 𝑐 → 𝑎

Figure 2: Subtraction P system membrane system

Subtraction P system is of the form:

𝛱− = (𝑉, 𝜇, (𝑤1 , 𝑤2), (𝑅1, 𝜌1), (𝑅2, 𝜌2), 𝑖0)

where:

• 𝑉 = {𝑎, 𝑏, 𝑐} is a finite set of objects.

• 𝜇 = [1, [2,]2,]1 is a membrane structure of

degree 2, with Membrane 1 (outer membrane)

and, Membrane 2 (inner membrane).

• 𝑤 = 𝑎𝑛𝑏𝑚, 𝑤 = 𝑎𝑛 or 𝑤 = 𝑏𝑚 is the initial

multiset of objects in Membrane 1 or Membrane

2, depending on the case presented.

• 𝑅1 = {𝑟11: 𝑎𝑏 → (𝑎𝑏, 𝑜𝑢𝑡), 𝑟12: 𝑏 → (𝑐, 𝑖𝑛2),
𝑟13: 𝑐 → 𝑎} is the set of evolution rules assigned

to Membrane 1.

• 𝑅2 = {𝑟21: 𝑎𝑏 → (𝑎𝑏, 𝑜𝑢𝑡), 𝑟22: 𝑏 → (𝑐, 𝑜𝑢𝑡),
𝑟23: 𝑐 → 𝑎 is the set of the evolution rules

assigned to Membrane 2.

• 𝜌1 = {𝑟11 >𝑤 𝑟12} is the priority relation of the

rules in Membrane 1.

• 𝜌2 = {𝑟21 >𝑤 𝑟22} is the priority relation of the

rules in Membrane 2.

• 𝑖0 is the label for the output membrane. Its value

is 1 if the result is positive (stored in Membrane

1), and 2 if the result is negative (stored in

Membrane 2).

Case 1a: +𝒎 and +𝒏 where 𝒏 > 𝒎. Thus, (+𝒏) −
 (+𝒎) is positive

Since we are dealing with positive integers, the objects 𝑎

and 𝑏 with their respective multiplicities 𝑛 and 𝑚 are

placed in Membrane 1. The rule 𝑟11 is applied. It sends 𝑚

copies of 𝑎 and 𝑏 to the environment, leaving 𝑛 − 𝑚

copies of 𝑎 in Membrane 1. This is the result of the

conputation and it encodes positive integer, since no rule

can be applied again in this case.

Case 1a: +𝒎 and +𝒏 where 𝒏 < 𝒎. Thus, (+𝒏) −
 (+𝒎) is negative

Again Membrane 1 houses objects 𝑎 and 𝑏 with their

multiplicities 𝑛 and 𝑚, respectively. This time after the

same rule 𝑟11 is applied there would be 𝑚 − 𝑛 copies of

the object 𝑏 in Membrane 1. In this the rule 𝑟12 can be

applied to the object 𝑏 It send the 𝑚 − 𝑛 copies of 𝑏 to

Membrane 2 after converting them to 𝑐′𝑠. Thus, we have

𝑚 − 𝑛 copies of 𝑐 in Membrane 2. No rule can be applied
again. The computation halts and we have a negative

result.

Case 2a: −𝒎 and −𝒏 where 𝒏 > 𝒎. Thus, (−𝒏) −
 (−𝒎) is negative

Since we are dealing with negative integers, the objects 𝑎

and 𝑏 with their respective multiplicities 𝑛 and 𝑚 are

placed in Membrane 2. The rule 𝑟21 is applied. It sends 𝑛

copies of 𝑎 and 𝑏 out of Membrane 2, leaving 𝑛 − 𝑚

copies of 𝑏 behind. The rule 𝑟21 will now be applied. It

sends the 𝑛 − 𝑚 copies of 𝑎 out of Membrane 2. We are

now left with 𝑛 − 𝑚 copies of 𝑎 in Membrane 2. This is

the result of the conputation and it encodes negative

integer.

175

An Application of Multiset to Deterministic … Chinedu & Vivian

JOBASR2026 4(1): 170-181

Case 2b: −𝒎 and −𝒏 where 𝒏 < 𝒎. Thus, (−𝒏) −
 (−𝒎) is positive

Again, since we are dealing with negative integers, the

objects 𝑎 and 𝑏 with their respective multiplicities 𝑛 and

𝑚 are placed in Membrane 2. The rule 𝑟21 is applied. It

sends 𝑛 copies of 𝑎 and 𝑏 out of Membrane 2, leaving

𝑚 − 𝑛 copies of 𝑏 behind. The rule 𝑟21 will now be

applied. It sends the 𝑚 − 𝑛 copies of 𝑏 out of Membrane

2 after converting them to 𝑐. We now have 𝑚 − 𝑛 copies

of 𝑐 in Membrane 1. This is the result of the conputation

and it encodes positive integer.

Case 3a: −𝒎 and 𝒏 where 𝒏 > 𝒎. Thus, (+𝒏) −
 (−𝒎) is positive

In this case, 𝑛 copies of 𝑎 is placed in Membrane 1 while

𝑚 copies of 𝑏 is placed in Membrane 2. No rule can be

applied in Membrane 1. The rule 𝑟21 , also cannot be

applied in Membrane 2. Thus, the rule to be applied is 𝑟22 .

It consumes the 𝑚 copies of 𝑏, produces 𝑚 copies of 𝑐

and send them out of Membrane 2. There are now 𝑛

copies of 𝑎 and 𝑚 copies of 𝑐 in Membarane 1. The result

of the computation is the 𝑚 + 𝑛 copies of 𝑎 in Membrane

1.

Case 3b: −𝒎 and 𝒏 where 𝒏 < 𝒎. Thus, (+𝒏) −
 (−𝒎) is positive

The comutation is exactly the same with that of Case 3a

above.

Case 4a: 𝒎 and −𝒏 where 𝒏 > 𝒎. Thus, (−𝒏) −
 (+𝒎) is negative

In this case, 𝑚 copies of 𝑏 is placed in Membrane 1 while

𝑛 copies of 𝑎 is placed in Membrane 2. The rule 𝑟12 is

applied in Membrane 1. It consumes the 𝑚 copies of 𝑏,

produces 𝑚 copies of 𝑐 and sends them to Membane 2. In

Membarane 2, 𝑟23 will be applied. It consumes 𝑚 copies

of 𝑐, and produces 𝑚 copies of 𝑎. There are now 𝑚 + 𝑛

copies of 𝑎 in Membrane 2. The computation halts, and

the result is a negative value.

Case 4a: 𝒎 and −𝒏 where 𝒏 > 𝒎. Thus, (−𝒏) −
 (+𝒎) is negative

The comutation is exactly the same with that of Case 4a

above.

MULTIPLICATION P SYSTEM

Figure 3: Multiplication P system membrane system

1

𝑎𝑛𝑏𝑚

𝑟21: 𝑏𝑒 → (𝑒, 𝑜𝑢𝑡) >𝑑

𝑟22: 𝑎 → (𝑎𝑐, 𝑜𝑢𝑡)
ൠ >𝑤

𝑟23: 𝑎 → (𝑓, 𝑜𝑢𝑡)

𝑟24: 𝑒 → (𝑓, 𝑜𝑢𝑡)
ൠ

𝑟25: 𝑦𝑖 → (𝑖, 𝑜𝑢𝑡) >𝑑

𝑟26: 𝑥 → (𝑥𝑠, 𝑜𝑢𝑡)
ൠ >𝑤

𝑟27: 𝑥 → (𝑡, 𝑜𝑢𝑡)

𝑟28: 𝑠 → (𝑡, 𝑜𝑢𝑡)
ൠ

2

𝑟11: 𝑎 → (𝑎, 𝑖𝑛2)

𝑟12: 𝑒 → (𝑒, 𝑖𝑛2)

𝑟13: 𝑏 → (𝑏, 𝑖𝑛2)

𝑟14: 𝑓 → (𝑓, 𝑜𝑢𝑡)
𝑟15: 𝑥 → (𝑥, 𝑖𝑛2)

𝑟16: 𝑦 → (𝑦, 𝑖𝑛2)

𝑟17: 𝑖 → (𝑖, 𝑖𝑛2)

𝑟18: 𝑡 → (𝑡, 𝑜𝑢𝑡)

𝑟19: 𝑠𝑐 → (𝑐, 𝑖𝑛2)

176

An Application of Multiset to Deterministic … Chinedu & Vivian

JOBASR2026 4(1): 170-181

Multiplication P system is of the form:

𝛱× = (𝑉, 𝜇, (𝑤1 , 𝑤2), (𝑅1, 𝜌1), (𝑅2, 𝜌2), 𝑖0)

where:

• 𝑉 = {𝑎, 𝑏, 𝑐, 𝑒, 𝑓, 𝑖, 𝑠, 𝑡, 𝑥, 𝑦} is a finite set of

objects.

• 𝜇 = [1, [2,]2,]1 is a membrane structure of

degree 2, with Membrane 1 (outer membrane)

and, Membrane 2 (inner membrane).

• 𝑤 = 𝑎𝑛𝑏𝑚𝑒,𝑤 = 𝑎𝑛 , 𝑤 = 𝑏𝑚 or 𝑤 =
𝑎𝑛𝑏𝑚𝑒𝑥𝑛𝑦𝑚𝑖 is the initial multiset of objects in

Membrane 1 or Membrane 2, depending on the
case presented.

• 𝑅1 = {𝑟11: 𝑎 → (𝑎, 𝑖𝑛2), 𝑟12: 𝑒 → (𝑒, 𝑖𝑛2),
𝑟13: 𝑏 → (𝑏, 𝑖𝑛2),
𝑟14: 𝑓 → (𝑓, 𝑜𝑢𝑡), 𝑟15: 𝑥 → (𝑥, 𝑖𝑛2), 𝑟16: 𝑦

→ (𝑦, 𝑖𝑛2), 𝑟17: 𝑖 → (𝑖, 𝑖𝑛2),
𝑟18: 𝑡 → (𝑡, 𝑖𝑛2), 𝑟19: 𝑠𝑐 → (𝑠𝑐, 𝑖𝑛2)} is the set

of evolution rules assigned to Membrane 1.

• 𝑅2 = {𝑟21: 𝑏𝑒 → (𝑒, 𝑜𝑢𝑡), 𝑟22: 𝑎 → (𝑎𝑐, 𝑜𝑢𝑡),
𝑟23: 𝑎 → (𝑓, 𝑜𝑢𝑡),
𝑟24: 𝑒 → (𝑓, 𝑜𝑢𝑡), 𝑟25: 𝑦𝑖 → (𝑖, 𝑜𝑢𝑡), 𝑟26: 𝑥

→ (𝑥𝑠, 𝑜𝑢𝑡), 𝑟27: 𝑥
→ (𝑡, 𝑜𝑢𝑡),

𝑟28: 𝑠 → (𝑡, 𝑜𝑢𝑡)} is the set of evolution rules
assigned to Membrane 2.

• 𝜌1 = ∅ is shows that no priority relation of rules

exists in Membrane 1.

• 𝜌2 =
{𝑟21 >𝑑 𝑟22, 𝑟21 >𝑤 𝑟23 , 𝑟21 >𝑤 𝑟24, 𝑟22 >𝑤 𝑟23, 𝑟22 >𝑤 𝑟24}

is the priority relation of the rules in Membrane
2.

• 𝑖0 is the label for the output membrane. Its value

is 1 if the result is positive (stored in Membrane

1), and 2 if the result is negative (stored in

Membrane 2).

Cases 1: (+𝒏) × (+𝒎) is positive for positive 𝒎 and

𝒏.

In this process, at the initial configuration of the P system,

there are 𝑛 copies of the object 𝑎 and 𝑚 copies of the

abject 𝑏 in Membrane 1. That is both 𝑎 and 𝑏 present in

the same membrane. There is also one copy of an object

𝑒 (which is always there in all cases) in Membrane 2.
Since there are no existing priorities in Membrane 1.

Rules that have objects can be applied. Thus, 𝑟11 and 𝑟13

will be applied in parallel on 𝑎 and 𝑏 in Membrane 1.

They send all the multiplicities of 𝑎 and/or 𝑏 to

Membrane 2. There are now 𝑛 copies of 𝑎, 𝑚 copies of 𝑏

and the object 𝑒 in Membrane 2. In Membrane 2, both

𝑟21and 𝑟22 have a weak priority relation over 𝑟23 and 𝑟24

where 𝑟21 has a dependency rule priority over 𝑟22 . Thus

𝑟22 can only be applied when 𝑟21 is being applied and not

otherwise. The rule 𝑟21 sends a copy of 𝑏 together with a

copy of 𝑒 out of Membrane 2. There are now 𝑛 copies of

𝑎 and 𝑐 and 1 copy of 𝑒 in Membrane 1 and 𝑚 − 1 copies

of 𝑏 in Membrane 2. In Membrane 1, the rules 𝑟15 and 𝑟16

send the 𝑛 copies of 𝑎 and 𝑐 and the 1 copy of 𝑒 back to

Membrane 2. This process is repeated untill there are no

copies of 𝑏 left in Membrane 2. Also, the 𝑐 would have

appered in Membrane 1 𝑚𝑛 times. Therefore, rules 𝑟21

and 𝑟22 will cease to be applicable. Since they have a

weak priority over rules 𝑟23 and 𝑟24, the latter two rules

will be applied. They send one copy of each of 𝑎 and 𝑒

out of Membrane 2 after converting them to 𝑓 to

Membrane 1. The rule 𝑟14 in turn sends the copy of 𝑓 out

of the environment. The result of the computtion is the

𝑚𝑛 number of occurrences of the object 𝑐 in Membrane

1.

Cases 2: (−𝒏) × (−𝒎) is positive for positive 𝒎 and

𝒏.

In this case, at the initial configuration of the P system,

there are 𝑛 copies of the object 𝑎 and 𝑚 copies of the

abject 𝑏 in Membrane 2. That is both 𝑎 and 𝑏 are again

present in the same membrane. Also, there is one copy of

an object 𝑒 (which is always there in all cases) in

Membrane 2. The computation starts in Membrane 2 and

continues as in Case 1 above. The result is positive at the

end of the computation.

Cases 3: (−𝒏) × (𝒎) is negative for positive 𝒎 and

𝒏.

This is a process where 𝑎 and 𝑏 are in different

membranes. Since they are in different membranes, they

are accompanied by auxiliary objects in their respective

membranes by the same multiplicities of their principal

objects. 𝑎 is accompanied by 𝑥 while 𝑏 is accompanied

by 𝑦. Moreover, 𝑒 is accompanied by 𝑖 in Membrane 2.

The computation is carried out accordingly as in Process

1 above in parallel and at the same time that Process 1 is

executed. The auxiliary part computation ensures that the

𝑚𝑛 copies of 𝑐 and 𝑠 are together converted to 𝑚𝑛 copies

of 𝑐 and sent back to Membrane 2 by 𝑟19, ensuring that

the result of the computation is negative.

 DIVISION P SYSTEM

177

An Application of Multiset to Deterministic … Chinedu & Vivian

JOBASR2026 4(1): 170-181

Figure 4: Division P system membrane structure

A Division P system is of the form:

𝛱÷ = (𝑉, 𝜇, (𝑤1, 𝑤2), (𝑅1, 𝜌1), (𝑅2, 𝜌2), 𝑖0)

where:

• 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑖, 𝑝, 𝑟, 𝑠, 𝑡, 𝑣, 𝑥, 𝑦, 𝑧} is a

finite set of objects.

• 𝜇 = [1, [2,]2,]1 is a membrane structure of

degree 2, with Membrane 1 (outer membrane)

and, Membrane 2 (inner membrane).

• {𝑤1 = 𝑎𝑛𝑏𝑚𝑑, 𝑤2 = ∅}, {𝑤1 = 𝑎𝑛𝑥𝑛, 𝑤2 =
𝑏𝑚𝑦𝑚𝑑𝑝}, {𝑤1 = 𝑏𝑚𝑦𝑚𝑧𝑚, 𝑤2 = 𝑎𝑛𝑥𝑛𝑑𝑝} or
{𝑤1 = 𝑎𝑚𝑏𝑚𝑧𝑚, 𝑤2 = 𝑑} is the initial multiset

of objects in Membrane 1 or Membrane 2,
depending on the case presented.

• 𝑅1 = {𝑟1: 𝑎 → (𝑎, 𝑖𝑛2), 𝑟2: 𝑏 → (𝑏, 𝑖𝑛2),
𝑟3: 𝑥 → (𝑥, 𝑖𝑛2), 𝑟4: 𝑦 → (𝑦, 𝑖𝑛2),
𝑟5: 𝑧 → (𝑧, 𝑖𝑛2), 𝑟6: 𝑑𝑒𝑓 → (𝑑𝑒𝑓, 𝑜𝑢𝑡), 𝑟7: 𝑓

→ (𝑓, 𝑜𝑢𝑡), 𝑟8: 𝑐𝑣
→ (𝑎𝑣, 𝑖𝑛2),

𝑟9: 𝑐 → (𝑎, 𝑖𝑛2), 𝑟10: 𝑑 → (𝑑, 𝑖𝑛2), 𝑟11: 𝑝𝑖𝑡
→ (𝑝𝑖𝑡, 𝑜𝑢𝑡), 𝑟12: 𝑡
→ (𝑡, 𝑜𝑢𝑡),

𝑟13: 𝑠 → (𝑥, 𝑖𝑛2), 𝑟14: 𝑝 → (𝑝, 𝑖𝑛2), 𝑟15: 𝑒𝑖
→ (𝑒, 𝑖𝑛2), 𝑟16: 𝑝 → (𝑝, 𝑜𝑢𝑡),

𝑟17: 𝑣 → (𝑣, 𝑜𝑢𝑡)}

is the set of evolution rules assigned to

Membrane 1.

• 𝑅2 = {𝑟21: 𝑎𝑏𝑧 → (𝑐𝑣, 𝑜𝑢𝑡), 𝑟22: 𝑎𝑏 →
(𝑐, 𝑜𝑢𝑡), 𝑟23: 𝑎 → (𝑓, 𝑜𝑢𝑡),
𝑟24: 𝑑 → (𝑑𝑒, 𝑜𝑢𝑡), 𝑟25: 𝑥𝑦 → (𝑠, 𝑜𝑢𝑡),
𝑟26: 𝑥 → (𝑡, 𝑜𝑢𝑡), 𝑟27: 𝑝 → (𝑝𝑖, 𝑜𝑢𝑡), 𝑟28: 𝑥 →
(𝑝, 𝑜𝑢𝑡), 𝑟29: 𝑎𝑣 → (𝑟, 𝑜𝑢𝑡), 𝑟210: 𝑣 →
(𝑣, 𝑜𝑢𝑡)}
is the set of evolution rules assigned to

Membrane 2.

• 𝜌1 = {𝑟6 >𝑤 𝑟7 , 𝑟8 >𝑤 𝑟9 , 𝑟11 >𝑤 𝑟12,
(𝑟6, 𝑟7, 𝑟8 , 𝑟9, 𝑟10 , 𝑟11 , 𝑟12, 𝑟13, 𝑟14) >𝑠 (𝑟15, 𝑟16, 𝑟17)}

shows that no priority relation of rules exists in

Membrane 1.

1

𝑎𝑛𝑏𝑚

𝑟21: 𝑎𝑏𝑧 → (𝑐𝑣, 𝑜𝑢𝑡) >𝑤

𝑟22: 𝑎𝑏 → (𝑐, 𝑜𝑢𝑡)
ൠ >𝑑

𝑟23: 𝑎 → (𝑓, 𝑜𝑢𝑡)

𝑟24: 𝑑 → (𝑑𝑒, 𝑜𝑢𝑡)
ൠ

𝑟25: 𝑥𝑦 → (𝑠, 𝑜𝑢𝑡) >𝑑

𝑟26: 𝑥 → (𝑡, 𝑜𝑢𝑡)

𝑟27: 𝑝 → (𝑝𝑖, 𝑜𝑢𝑡)
ൠ

ቑ >𝑠

𝑟28: 𝑥 → (𝑝, 𝑜𝑢𝑡) ۙ
ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۗ

>𝑠

𝑟29: 𝑎𝑣 → (𝑟, 𝑜𝑢𝑡) >𝑤

𝑟211: 𝑣 → (𝑣, 𝑜𝑢𝑡)
ൠ

2

𝑟11: 𝑎 → (𝑎, 𝑖𝑛2)

𝑟12: 𝑒 → (𝑒, 𝑖𝑛2)

𝑟13: 𝑏 → (𝑏, 𝑖𝑛2)

𝑟14: 𝑓 → (𝑓, 𝑜𝑢𝑡)
𝑟15: 𝑥 → (𝑥, 𝑖𝑛2)

𝑟16: 𝑦 → (𝑦, 𝑖𝑛2)

𝑟17: 𝑖 → (𝑖, 𝑖𝑛2)

𝑟18: 𝑡 → (𝑡, 𝑜𝑢𝑡)

𝑟19: 𝑠𝑐 → (𝑐, 𝑖𝑛2)

178

An Application of Multiset to Deterministic … Chinedu & Vivian

JOBASR2026 4(1): 170-181

• 𝜌2 = {𝑟21 >𝑤 𝑟22,
𝑟25 >𝑤 (𝑟26, 𝑟27), (𝑟21, 𝑟22) >𝑑 (𝑟23 , 𝑟24),
(𝑟21, 𝑟22) >𝑑 (𝑟23, 𝑟24), (𝑟25, 𝑟26, 𝑟27) >𝑠 𝑟28,
(𝑟21, 𝑟22, 𝑟23, 𝑟24 , 𝑟25, 𝑟26, 𝑟27) >𝑠 (𝑟29 , 𝑟210)}

is the priority relation of the rules in Membrane

2.

• 𝑖0 is the label for the output membrane. Its value

is 1 if the result is positive (stored in Membrane

1), and 2 if the result is negative (stored in
Membrane 2).

Case 1: −𝒏 divide by −𝒎, yields a positive quotient

with a negative remainder.

At the initial configuration of the P system, there are 𝑛

copies of 𝑎, 𝑚 copies of 𝑏 and the object 𝑑 in Membrane

2. The only rules that can be applied at the moment are

𝑟22 and 𝑟24 . They convert 𝑛 copies of 𝑎𝑏 to 𝑐 and the one

copy of 𝑑 to 𝑑𝑒 and send them out of Membrane 2 to

Membrane 1. There are now 𝑛 copies of 𝑐, one copy of 𝑑

and one copy of 𝑒 in Membrane 1. The rules 𝑟9 converts

the object 𝑐 to 𝑎 and send it to Membrane 2 while the rule

𝑟10 sends 𝑑 to Membrane 2. The process continues this

way until there are no copies of 𝑏 left for and 𝑟22 to act

upon in Membrane 2. There are now copies of 𝑎 left in

Membrane 2. This also is converted to 𝑓 and sent out of

Membrane 2 by and 𝑟23 . There are now copies of 𝑑, 𝑒 and

𝑓 in Membrane 1. Therefore, and 𝑟6 is used for the first

time. It sends identical copies of 𝑑, 𝑒 and 𝑓 into the

environment while and 𝑟7 sends the remaining copies of

𝑓 into the environment. The object 𝑐 is sent back to

Membrane 2 by and 𝑟9 after converting it to 𝑎. There are

now only copies of 𝑒 in Membrane 1 and copies of 𝑎 in

Membrane 2. The multiplicity of the copies of 𝑒 encodes

the dividend while that of 𝑎 encodes the remainder. The

computation halts as no other rule can be applied.

Case 2: −𝒏 divide by 𝒎, yields a negative quotient

with a negative remainder.

In this case the numerator is negative while the

denominator is positive. Therefore, the object 𝑎 is placed

in Membrane 1 while the object 𝑏 is placed in Membrane

2. Moreover, since they are in separate membranes, they

are accompanied by objects 𝑥 in Membrane 1 and 𝑦 in

Membrane 2. The objects in the same membrane have the

same multiplicity with the main objects. The object 𝑑 as

usual is placed in Membrane 2 together with its

accompanying object 𝑝.The computation begins by

transferring all objects in Membrane 1 to Membrane 2.

The computation continues as in Case 1 above, only that

this time the accompanying objects 𝑥, 𝑦 and 𝑝 undergo

similar process as 𝑎, 𝑏 and 𝑑 using the rules dedicated to

them. As the computation comes towards end, the

availability of 𝑖 in Membrane 2 makes possible for the

rule 𝑟15 to be applied. It converts 𝑒𝑖 to 𝑒 and send it to

Membrane 2. Note that 𝑒 in this case represents the

dividend in the division. Since 𝑒 would now be in
Membrane 2, it shows that the result of the division is

negative being in Membrane 2, so also is the remainder

𝑎.

Case 3: 𝒏 divide by −𝒎, yields a negative quotient

with a positive remainder.

In this case the object 𝑏 encoding the numerator is in

Membrane 1 while the divisor is object is in Membrane 2

𝑦 and 𝑥 in their respective multiplicities. An additional

object 𝑧 with the same multiplicity as 𝑏 and 𝑦 is placed

in Membrane 1 as well. This is because the object

encoding the dividend (𝑏 in this case) is in Membrane 1.

In other words, whenever dividend object is in Membrane

1, it is accompanied by another object (𝑧) in the same

Membrane 1 with the same multiplicity. The computation

takes place as usual after all objects in the initial

configuration have been transferred to Membrane 2 by the
required rules. This is to ensure that the remainder is

transferred to Membrane 1, while the quotient is

transferred to Membrane 2 as in Case 2.

Case 4: 𝒏 divide by 𝒎, yields a positive dividend with

a positive remainder.

At the initial configuration of the P system, objects 𝑎 and

𝑏 are in Membrane 1 while only the object 𝑑 is in

Membrane 2 as usual. Since 𝑏 is in Membrane 2, it is

accompanied by the object 𝑧 as in Case 3 above. The

computation takes place as usual. The availability of 𝑧

ensures that the remainder encoded by the object 𝑟 is

finally in Membrane 1, while that which encode the

quotient is in Membrane 1 as well.

CONCLUSION

The deterministic P systems with weak, strong and

dependency rule priorities presented in this paper have

successfully extended arithmetic computations from
positive integers to both positive and negative integers.

Several directions for future research naturally emerge

from this extension.

First, it is promising to extend the present work to rational

numbers. Since a rational number can be expressed as the

quotient of two integers, its encoding would involve the

operation of division P systems, with additional rules to

preserve the sign of the result. Extending further to real

numbers, rational and irrational components must be

clearly distinguished. While rational numbers may be
handled using integer-based division systems, encoding

179

An Application of Multiset to Deterministic … Chinedu & Vivian

JOBASR2026 4(1): 170-181

irrational numbers will require new strategies for both

approximation and representation.

Second, fractional arithmetic could be enhanced by

incorporating remainder-handling mechanisms that
operate in parallel while tracking signs. This would allow

P systems to deal with recurring decimals and extend

applicability to scientific computation tasks.

Third, the interaction of multiple membranes can be

further explored to support hierarchical arithmetic

operations, such as exponentiation, roots, and modular

arithmetic. Such extensions could provide powerful tools

for applications in cryptography, coding theory, and

symbolic computation.

Finally, the biological interpretation of objects can be
deepened. For example, distinguishing between

computational objects (representing integer values) and

cofactor objects (regulating computation flow) may

strengthen the analogy between membrane systems and

biochemical processes. This could lead to models that are

simultaneously computationally rigorous and

biologically possible.

In conclusion, the results presented here provide a strong

foundation for extending deterministic P systems toward

a full arithmetic operation and expression encompassing
integers, rationales, and reals, while also inviting cross-

disciplinary applications in mathematics, computer

science, and systems biology.

ACKNOWLEDGEMENTS

We extend our deep appreciation to Gh. Păun, the pioneer

of membrane computing, whose foundational

contributions continue to inspire this line of research. We

are also grateful to the authors of the various texts and

resources we have consulted in the preparation of this

work, as well as to colleagues and individuals who have
contributed directly or indirectly to the development of

the ideas presented in this paper. Our special thanks go to

the anonymous reviewers whose constructive comments

and suggestions have greatly improved the clarity,

structure, and overall quality of this manuscript.

REFERENCE

Alhazov, A., Freund, R., Oswald, M., & Verlan, S. (2007,

September). Partial halting in P systems using membrane

rules with permitting contexts. In International

Conference on Machines, Computations, and
Universality (pp. 110-121). Berlin, Heidelberg: Springer

Berlin Heidelberg.

Atanasiu, A. (2001). Arithmetic with membranes.

Romanian Journal of Information Science and

Technology, 4(1–2), 5–20.

Ciobanu, G., & Angeles, C. (2006). Encodings and

arithmetic operations in membrane computing. In Theory
and Applications of Models of Computation (TAMC

2006) (pp. 621–630). Springer.

Ciobanu, G., & Păun, G. (2013). “Using the Formal

Framework for P Systems” in Membrane Computing:
14th International Conference, CMC 2013, Revised

Selected Papers. Springer.

Freund, R., & Păun, G. (2003). On deterministic P

systems (Technical report). Retrieved from

http://psystems.disco.unimib.it

Guo, P., & Chen, J. (2008, May). Arithmetic Operation in

Membrane System. In Proceedings of the 2008

International Conference on Biomedical Engineering and

Informatics (Vol. 1, pp. 231-234). IEEE.

https://doi.org/10.1109/BMEI.2008.13

Guo, P., & Zhang, H. (2008, December). Arithmetic

operation in single membrane. In Proceedings of the 2008

International Conference on Computer Science and

Software Engineering (CSSE) (Vol. 3, pp. 532-535).

IEEE. https://doi.org/10.1109/CSSE.2008.121

Guo, P., Zhang, H., Chen, H., & Chen, J. (2013). Fraction

arithmetic operations performed by P systems. Chinese

Journal of Electronics, 22(4), 690–694.

https://doi.org/10.1049/cje.2013.07.012

Ibarra, O. H. (2005). Some computational issues in

membrane computing. In Mathematical Foundations of

Computer Science 2005 (MFCS 2005) (Lecture Notes in

Computer Science, Vol. 3618, pp. 39-51). Springer.

https://doi.org/10.1007/11549345_4

Nan, H., Xue, Z., Li, C., Zhou, M., & Liu, X. (2023). P

system design for integer factorization. Applied Sciences,

13(15), 8910. https://doi.org/10.3390/app13158910

Nan, H., Zhang, J., Guo, P., Jiang, J., & Zhang, X. (2024).

An arithmetic operation P system based on symmetric

ternary system. PLOS ONE, 19(11), e0312778.

https://doi.org/10.1371/journal.pone.0312778

Păun, G. (2000). Computing with membranes (P

systems). Journal of Computer and System Sciences,

61(1), 108–143. Academia.

180

http://psystems.disco.unimib.it/
https://doi.org/10.1109/BMEI.2008.13
https://doi.org/10.1109/CSSE.2008.121
https://doi.org/10.1049/cje.2013.07.012
https://doi.org/10.3390/app13158910
https://doi.org/10.1371/journal.pone.0312778
https://www.academia.edu/94062478/Encodings_and_arithmetic_operations_in_P_systems?utm_source=chatgpt.com

An Application of Multiset to Deterministic … Chinedu & Vivian

JOBASR2026 4(1): 170-181

Paun, G. (2002). Membrane computing: an introduction.

Springer Science & Business Media..

Păun, G., & Thierrin, G. (2001). Multiset Processing by

Means of Systems of Finite State Transducers. In O.

Boldt & H. Jürgensen (Eds.), Automata Implementation.
WIA 1999 (Lecture Notes in Computer Science, Vol.

2214, pp. 140-157). Springer. https://doi.org/10.1007/3-

540-45526-4_13

Peter, C. M., Singh, D. (2017) Arithmetic operations in

deterministic P systems based on the weak rule priority,

Proceedings of the Nigerian Computer Society, Vol. 28,

No. 10, 92-100.

Peter, C., (2025) On Singh’s Dressed Epsilon Perspective

of Multigroup. Journal of Basics and Applied Sciences

Research (JOBASR) Vol 3(3), 1597-9962.

Peter, C., Balogun, F., Adewumi A. O. (2025) On

Substructures and Root Sets in Antimultigroups and their

Direct Products., Journal of Basics and Applied Sciences

Research (JOBASR) Vol 3(4), 1597-9962.

Yang, R., Guo, P., & Li, J. (2015). Arithmetic P Systems

Based on Arithmetic Formula Tables. Chinese Journal of

Electronics, 24(3), 542-549.

DOI:10.1049/cje.2015.07.018.

Zeng, X., Song, T., Zhang, X., & Pan, L. (2012).

Performing four basic arithmetic operations with spiking

neural P systems. IEEE Transactions on NanoBioscience,

11(4), 366-374.

https://doi.org/10.1109/TNB.2012.2211034

181

https://doi.org/10.1109/TNB.2012.2211034

