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ABSTRACT 

Timely classification of the Hepatitis B Virus (HBV) infection stages remains a 

major challenge in clinical diagnostics, particularly in differentiating acute from 

chronic cases using complex serological profiles. This study aims to propose a 

CNN-LSTM predictive model for accurate prediction of Hepatitis B Virus 

(HBV) stages, with improved performance metrics and generalizability. A 

dataset comprising 758 patient records from the Immunology Department of 

Usmanu Danfodiyo University Teaching Hospital, Sokoto, collected between 

February 14 and December 31, 2019 was utilized. Pre-processing involved data 

imputation, categorical encoding, normalization, and expert rule-based labeling. 

The model architecture combines convolutional and recurrent layers to enhance 

feature extraction and sequence learning, thereby improving classification 

accuracy between acute and chronic infection states. The CNN-LSTM model 

architecture consists of approximately 8 trainable layers. Input Layer :Input 

shape = 7,1, Conv 1D(1): 32 filters, kernel size = 3, activation =ReLU, 

Maxpooling 1D: Pool size =2, Conv 1D(2): 64 filters, kernel size = 3, activation 

= ReLU,  Maxpooling 1D: Pool size =2, LSTM(1): 50 units, dropout = 0.3, 

LSTM(2): 25 units, dropout = 0.3, Dense( Fully Connected Layer: 16 neurons, 

activation = ReLU, Output Layer: 1 neuron, activation = Sigmoid. The proposed 

CNN-LSTM model was trained and evaluated using stratified 10-fold cross-

validation, achieving mean values of accuracy, precision, recall, and F1-score of 

99.50%, 99.80%, 99.69%, and 99.69% respectively. Receiver Operating 

Characteristic (ROC) analysis yielded near-perfect Area Under the Curve (AUC) 

values across folds. Comparative evaluations against standalone CNN, LSTM, 

and Deep Neural Network (DNN) models demonstrated the superior predictive 

capability of the hybrid model, outperforming previous studies that achieved 

66.30% accuracy. The CNN–LSTM model achieved outstanding performance 

with 99.50% accuracy, 99.80% precision, 99.69% recall, and 99.69% F1-score, 

significantly surpassing existing models. The identification of key serological 

risk factors (HBeAg, HBeAb), the successful development of a high-performing 

CNN–LSTM classifier, and the model’s demonstrated superiority over existing 

approaches together illustrate a cohesive framework for HBV stage prediction. 
 

INTRODUCTION 

Hepatitis B Virus (HBV) remains a significant global 

health concern and a major contributor to chronic liver 

disease, cirrhosis, and hepatocellular carcinoma. Despite 

preventive vaccines and effective antiviral therapies, 

HBV continues to cause high mortality and morbidity 

because of delayed diagnosis, limited access to testing,  

 

 

 

 

 

and weak surveillance systems in many developing 

countries (WHO, 2012). These systemic limitations are 

compounded in low-resource settings by underfunded 

healthcare infrastructures, which impede early detection 

and management. Behavioral and environmental factors, 

including smoking, alcohol use, and co-infections, further 

accelerate hepatic damage and complicate prognosis. 
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 For example, smoking has been associated with 

increased liver toxicity and may amplify HBV-related 

hepatotoxic effects through elevated viral load and 

carcinogen accumulation. 

Progression from acute to chronic HBV infection is 

influenced by clinical markers such as viral load and 

HBeAg status, liver enzymes (ALT, AST), platelet count 

and fibrosis stage, as well as demographic and exposure 

factors (e.g., age, sexual behavior, blood transfusion 

history). Accurately identifying and modeling these risk 

factors is essential for targeted clinical interventions 

(Mutisya, 2022; Koffas et al., 2020). Traditional 

statistical approaches often struggle with the nonlinear 

and dynamic relationships present in clinical HBV data, 

which has motivated greater adoption of machine 

learning and deep learning methods in recent years (Wei 

& Yang, 2021; Xiaolu et al., 2021). However, many 

ANN-based models reported in the literature face 

constraints such as overfitting, limited generalizability to 

diverse populations, small training sets, and sensitivity to 

class imbalance, issues that reduce their clinical utility 

(Ibrahim et al., 2021; Adebola et al., 2021). 

Deep learning architectures such as Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks have shown promise in medical 

classification tasks due to their ability to learn complex, 

nonlinear patterns. Nonetheless, the majority of HBV 

studies to date have used standalone architectures or 

classical hybridizations that do not fully exploit temporal 

and spatial feature extraction together. Importantly, there 

is currently no published HBV classification study from 

Nigeria that integrates a combined CNN–LSTM 

architecture for stage classification using locally sourced 

clinical datasets, creating a methodological and 

contextual gap in the literature. 

Problem statement: there is a lack of robust hybrid deep 

learning models tailored for HBV stage classification in 

Nigerian clinical settings, despite the clear need for 

accurate, context-sensitive diagnostic tools to enable 

earlier intervention. 

To address this gap, this study will develop and evaluate 

a CNN–LSTM hybrid predictive framework designed to 

(1) improve classification accuracy, sensitivity, and 

specificity relative to standalone CNN, LSTM, and DNN 

models; and (2) identify the most influential clinical and 

behavioral risk factors associated with HBV progression. 

The model will employ rigorous preprocessing 

(imputation, encoding, normalization), k-fold cross-

validation, and comparative performance metrics to 

ensure robustness and generalizability. 

Beyond technical novelty, the proposed approach aims to 

provide practical public health value by laying the 

groundwork for intelligent decision-support tools that can 

be integrated into healthcare systems in Nigeria and other 

resource-limited environments, Such tools have the 

potential to improve early diagnosis, guide clinical 

decision-making, and ultimately reduce HBV-related 

morbidity and mortality. 

 

Overview of Literature 

Advances in deep learning architectures, especially 

Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) networks, have opened new 

opportunities for improving predictive accuracy in 

medical applications. CNNs are particularly effective in 

extracting spatial features from complex data, while 

LSTMs are capable of modeling temporal dependencies 

in sequential data, making them suitable for analyzing 

dynamic biological and clinical patterns (Yogambigai et 

al., 2021). Integrating these two architectures into a 

CNN-LSTM framework provides the advantage of 

leveraging both spatial and temporal features for more 

accurate classification. In the context of HBV infection, 

this hybrid approach can be instrumental in distinguishing 

between acute and chronic cases based on serological 

markers and patient demographics. This study, therefore, 

proposes a CNN-LSTM model specifically designed for 

HBV infection classification using data obtained from the 

Immunology Department of Usmanu Danfodiyo 

University Teaching Hospital, Sokoto. The dataset, 

comprising 758 patient records collected between 

February and December 2019, provides a reliable 

foundation for model training and evaluation. 

 

MATERIALS AND METHODS 

 

This section presents the materials and methodological 

framework adopted for the classification of Hepatitis B 

Virus (HBV) infection stages using deep learning 

techniques. The proposed model integrates Convolutional 

Neural Network (CNN) and Long Short-Term Memory 

(LSTM) architectures to enhance the predictive accuracy 

of HBV stage classification. The process encompasses 

data collection, preprocessing, dataset partitioning, model 

design (architecture), and performance evaluation. 

 

Research methods 

Data Collection and Description 

The dataset used in this study was obtained from the 

Immunology Laboratory of the Usmanu Danfodiyo 

University Teaching Hospital, Sokoto. It comprises 

secondary data on the Hepatitis B Profile of 758 patients 

collected between February 14 and December 31, 2019. 

The dataset includes both demographic and serological 

information relevant to HBV diagnosis. Patient metadata 

such as age and gender were captured alongside hepatitis 

B serological markers, which include HBsAg, HBsAb, 

HBeAg, HBeAb, and HBcAb. Each test result was 

categorized as either reactive (+, w+) or non-reactive (–). 

These serological markers served as independent 

variables (features), while the HBV infection stages 
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(Acute, Chronic, and NaN) were treated as target (class) 

labels. 

The hepatitis B surface antigen (HBsAg) is a protein 

found on the outer surface of the virus. Its detection in the 

bloodstream signifies an active HBV infection, either 

acute or chronic. The hepatitis B surface antibody 

(HBsAb) develops following recovery from infection or 

successful vaccination, thus indicating immunity. The 

hepatitis B envelope antigen (HBeAg) serves as a marker 

of viral replication and infectivity, while the hepatitis B 

envelope antibody (HBeAb) typically emerges after the 

disappearance of HBeAg, suggesting reduced viral 

activity. The hepatitis B core antibody (HBcAb) targets 

the core component of the virus and exists in two forms: 

IgM anti-HBc, which indicates recent infection (acute), 

and IgG anti-HBc, which reflects a past or chronic 

infection. These biomarkers collectively provide a 

clinically meaningful representation of infection 

progression. 

 

Data Preprocessing 

Prior to model development, several preprocessing 

operations were conducted to enhance data quality and 

ensure compatibility with deep learning algorithms. 

Initially, missing values were identified and appropriately 

imputed; numerical features were replaced with their 

mean values, while categorical attributes were filled 

using their respective mode (Khan et al., 2020). Duplicate 

entries were detected and removed to prevent redundancy 

and bias in the learning process. Subsequently, 

categorical variables were encoded into numerical form 

using label encoding, where each unique category was 

assigned an integer code. This transformation preserved 

categorical relationships while facilitating computational 

processing. 

Normalization was applied to scale all features to a 

uniform range, thereby preventing attributes with large 

numerical magnitudes from dominating the learning 

process. The Min–Max normalization method was 

employed, as expressed in Equation 1; 

𝑥′ =  
𝑥 − min(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
                                               (1) 

where min(𝑥) and max(𝑥) represent the minimum and 

maximum values of feature x across the dataset, 

respectively. This normalization ensured that all features 

contributed proportionately to the model’s optimization 

process, leading to faster convergence and better stability 

during training. 

 

Dataset Splitting 

To ensure an unbiased model evaluation and maximize 

the use of limited data, the study employed a 10-fold 

cross-validation strategy. The dataset was divided into ten 

equal subsets (folds). In each iteration, nine folds were 

used for training and one for testing, ensuring that every 

sample was tested exactly once. The performance metrics 

from all iterations were averaged to yield a robust 

estimate of model generalization capability. Compared to 

traditional static splits such as 80/20 or 70/30, cross-

validation reduces the variability in performance 

estimates and minimizes overfitting. This approach 

provides a more dependable performance indicator, 

especially in medical datasets where sample size and class 

balance are often constraints. 

 

Data Analysis 

All analyses were conducted in Python using NumPy, 

Pandas, and Scikit-learn for data preprocessing and 

evaluation, while TensorFlow–Keras was used to build 

and train the neural network models. The experiments 

were executed on a standard CPU-based environment. 

Model training employed the Adam optimizer (learning 

rate = 0.001), binary cross-entropy loss, a batch size of 

16, and up to 30 epochs with Early Stopping (patience = 

5). A 10-fold Stratified K-Fold cross-validation approach 

was used to ensure robust performance assessment. The 

implemented models included ANN, CNN, LSTM, GRU, 

and a hybrid CNN–LSTM network, each comprising 

combinations of dense, convolutional, recurrent, dropout, 

and sigmoid output layers tailored for binary 

classification of HBV infection stages 

 

Theoretical Framework and Model Architecture 

The proposed theoretical framework combines the feature 

extraction capability of CNN with the sequential 

modeling power of LSTM to improve the accuracy of 

HBV classification. The hybrid CNN-LSTM architecture 

allows the model to learn spatial patterns from serological 

features while simultaneously capturing temporal 

dependencies across clinical observations. The overall 

workflow of the study is depicted in Figure 1; 
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Figure 1: Workflow of the proposed CNN-LSTM

 based HBV classification framework. 

CNN–LSTM Model Architecture and Training 

The proposed hybrid CNN–LSTM model was developed 

to exploit the complementary strengths of convolutional 

and recurrent neural components for accurate HBV 

infection classification. As illustrated in Figure 1, the 

architecture integrates convolutional layers for feature 

extraction with LSTM layers for sequence modeling. The 

CNN component comprises two one-dimensional 

convolutional layers with 32 and 64 filters, respectively, 

followed by Rectified Linear Unit (ReLU) activation and 

max-pooling operations (pool size = 2) to down-sample 

feature maps while preserving critical local dependencies. 

Dropout layers (rate = 0.2) were interspersed to prevent 

overfitting, given the relatively small dataset size. 
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Figure 1: Model Architecture 

 

Convolutional Operation 

In the convolution operation, each neuron applies a set of 

filters (kernels) across the input data to extract 

meaningful patterns. Mathematically, the operation is 

represented as: 

𝑦𝑚
𝑖,𝑗

= 𝑓 (𝑏𝑚
𝑖,𝑗

+ ∑ 𝑤𝑠,𝑚
𝑖,𝑗

∗ 𝑙𝑚+𝑠−1
𝑖−1,𝑗

𝑠

𝑠=1

)                              (2) 

where 𝑦𝑚
𝑖,𝑗

 denotes the output of the mth neuron in layer i; 

f() is the activation function; 𝑏𝑚
𝑖,𝑗

 is the bias; 𝑤𝑠,𝑚
𝑖,𝑗

 

represents the convolution kernel; and 𝑙𝑚+𝑠−1
𝑖−1,𝑗

 is the 

output from the previous layer. 

Pooling operations were used to reduce the spatial 

dimensions of the feature maps, preserving essential 

information while minimizing computation. The max 

pooling function is given as: 

 

𝜑 𝑚
𝑖,𝑗

= 𝑓(𝛿𝑚
𝑖,𝑗

𝑝𝑜𝑜𝑙(𝑙𝑚
𝑖−1,𝑗

) + 𝑏𝑚
𝑖,𝑗

)                                    (3) 

 

Activation functions were incorporated to introduce non-

linearity, enabling the network to model complex data 

relationships. The key activation functions used include: 

 

Rectified Linear Unit (ReLU): 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                                              (4) 

Sigmoid Function: 

𝜎(𝑥) =  
1

1 − 𝑒−𝑥
                                                 (5) 

Hyperbolic Tangent (tanh): 

𝑡𝑎𝑛ℎ(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
                                        (6) 

 

LSTM Layer Operations 

The LSTM network is designed to handle sequential data 

by maintaining an internal memory of previous states. At 

each time step t, given input xt, previous hidden state 

ℎ𝑡−1, and previous cell state 𝐶𝑡−1, the computations are 

defined as follows: 

Forget Gate: 

𝑓𝑡 = 𝜎(𝑤𝑓  ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                            (7) 

Input Gate: 

𝑖𝑡 = 𝜎(𝑤𝑖  ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                              (8) 

Candidate Cell State: 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝐶  ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                    (9) 

Update Cell State: 
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𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡                                              (10) 

Output Gate: 

𝑜𝑡 = 𝜎(𝑤𝑜  ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                         (11) 

 

Hidden State: 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡)                                                         (12) 

 

where 𝜎(∙) denotes the sigmoid activation, 𝑡𝑎𝑛ℎ(∙) 

represents the hyperbolic tangent function, and (∙) 

indicates element-wise multiplication. The weight 

matrices 𝑤𝑓 , 𝑤𝑖 , 𝑤𝐶 , 𝑤𝑜 and bias vectors 𝑏𝑓 , 𝑏𝑖 , 𝑏𝐶 , 𝑏𝑜  are 

learned during training. 

The hybrid CNN-LSTM network thus leverages both 

spatial and sequential dependencies in the data, enabling 

it to achieve improved predictive performance for HBV 

classification. 

 

Performance Evaluation 

The proposed model’s performance was assessed using 

standard classification metrics derived from the 

confusion matrix, including Accuracy, Precision, Recall, 

and F1-Score. Let True Positives (TP), True Negatives 

(TN), False Positives (FP), and False Negatives (FN) be 

the components of the confusion matrix. The metrics are 

defined as follows: 

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
        (13) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                  (14) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                        (15) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
   (16) 

These metrics collectively provide a holistic evaluation of 

the model’s performance, ensuring not only high 

accuracy but also a balance between sensitivity (to detect 

true HBV cases) and specificity (to avoid false positives). 

Such balanced evaluation is essential in clinical 

applications where diagnostic precision directly affects 

treatment decisions and patient outcomes. 

 

RESULTS AND DISCUSSION 

Dataset Overview and Preprocessing 

The dataset used for this study comprised 758 patient 

records obtained from the Immunology Laboratory of the 

Usmanu Danfodiyo University Teaching Hospital 

(UDUTH), Sokoto, Nigeria. Each record contained 

demographic and serological attributes relevant to the 

Hepatitis B Virus (HBV) diagnosis, including five 

serological markers (HBsAg, HBsAb, HBeAg, HBeAb, 

and HBcAb) and two demographic variables (Age and 

Gender). Preliminary inspection revealed instances of 

missing values across several features and 164 unlabeled 

cases that lacked adequate clinical information for 

classification. These were carefully addressed using 

mode imputation for categorical features to preserve data 

distribution and ensure completeness. Weakly reactive 

cases, coded as “1w”, were converted to 0.5 to capture 

partial reactivity. This preprocessing ensured that no 

missing entries remained prior to model training, thereby 

improving the robustness of subsequent analyses. 

Demographic features were encoded numerically to suit 

machine learning requirements, where “Adult” (≥ 15 

years) was represented as 1 and “Child” (< 15 years) as 0, 

while gender was encoded as 1 for males and 0 for 

females. Similarly, serological markers were encoded as 

1 (positive), 0 (negative), and 0.5 (weakly positive). 

Classification of infection stages was performed using 

clinically validated serological criteria. Acute HBV cases 

were identified by the co-occurrence of HBsAg (+) and 

HBcAb (+) alongside one or more of HBeAg (+), HBeAb 

(–), or age < 15 years, while chronic HBV was defined by 

HBsAg (+) and HBcAb (+) with either HBeAb (+) or age 

≥ 15 years. Samples that did not meet either condition 

were discarded, resulting in a final dataset of 594 records 

suitable for modeling. 

Normalization using Min–Max scaling was subsequently 

applied to constrain all feature values to the [0, 1] range. 

This transformation prevented features with large 

numeric ranges (such as age) from dominating smaller-

scaled binary variables during training. The cleaned 

dataset exhibited a moderately imbalanced class 

distribution, with 483 (81.3 %) chronic and 111 (18.7 %) 

acute cases. Although this imbalance was not severe, it 

required stratified cross-validation to maintain 

representative distributions during evaluation. 

 

Table 1: Final Dataset after Preprocessing: 

Age Gender HBsAg HBsAb HBeAg HBeAb HBcAb Label 

1 1 0 0 0 1 1 Chronic 

1 1 1 0 0 1 1 Chronic 

0 0 1 0 0 0 1 Acute 
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 Table 2: shows the distribution after classification (final label) 

 

Table 3: Comparision of Risk Factors between Acute and Chronic HBV Patients 

The Chi-square test was used to determine whether there 

is a statistically significant association between the type 

of hepatitis B infection (acute or chronic) and the 

categorical variables: age group, gender, and serological 

markers (HBeAg and HBeAb). 

Assumptions of the Chi-square Test: 

1. Data Type: The variables are categorical (e.g., 

gender, age category, sero-marker reactivity). 

2. Independence: The observations are 

independent; each subject belongs to only one 

category. 

3. Expected Frequency: The expected frequency 

in each cell of the contingency table should be 

at least 5 for the test to be valid. 

4. Sample Size: The sample size is sufficiently 

large (n = 587). 

The Test statistic was Pearson’s Chi-square statistic (χ²) 

with Degrees of freedom (df): (r − 1) (c − 1), where r = 

number of rows and c = number of columns and 

Significance level (α): 0.05 

Hypothesis 

1. If p < 0.05 → significant association 

(reject H₀). 

2. If p ≥ 0.05 → no significant 

association (fail to reject H₀). 

From the result p < 0.001 indicating 

it’s statistically significant.  

Percentages are calculated within each 

infection group. 

Model training employed the Adam optimizer (learning 

rate = 0.001) with binary cross-entropy as the loss 

function. Ten-fold stratified cross-validation was used to 

ensure generalizability across patient subgroups while 

maintaining class proportions. Early stopping (patience 

=5) halted training upon convergence to prevent 

overfitting, and L2 regularization (λ = 0.01) was applied 

to encourage weight sparsity. Training stabilized within 

30 epochs, achieving validation accuracies consistently 

above 99 %. 

Figure 2: Training Dynamics of the CNN-LSTM model 

showing smooth convergence of training and validation 

loss across epochs. 

 

Variable Acute (n = 477) Chronic (n =110) p-

value 

Age 

(Child/Adult) 

Child: 456 (95.6%) Adult: 21 (4.4%) Child: 103 (93.6%) Adult: 7 (6.4%) 0.534 

Gender (M/F) Male: 260 (54.5%) Female: 222 (45.5%) Male: 64 (57.1%) Female: 47 (42.9%) 0.546 

HBeAg (+) 0 (0.0%) 18 (16.4%) 0.000 

HBeAb (+) 454 (95.2%) 0 (0.0%) 0.000 

HBsAg (+) 481 (100%) 110 (100%) – 

HBcAb (+) 481 (100%) 106 (96.4%) – 

Label Count Percentage 

Chronic 483 81.3% 

Acute 111 18.7% 

NaN 164 0.0% 
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Model Evaluation and Results 

 

Table 3: Metrics across 10 Folds 

Metric     Mean    Std     Min     Max    

Accuracy   0.9950 0.0081 0.9831 1.000 

Precision 0.9980 0.0065 0.9796 1.000 

Recall     0.9959 0.0086 0.9796 1.000 

F1-Score   0.9969 0.0050 0.9897 1.000 

 

The CNN–LSTM achieved near-perfect classification 

performance across all ten cross-validation folds. As 

summarized in Table 4, the model attained a mean 

accuracy of 99.50 %, precision of 99.80 %, recall of 99.59 

%, and F1-score of 99.69 %, with standard deviations 

below 1 % across folds. These results indicate exceptional 

stability and a balanced trade-off between sensitivity and 

specificity both critical in clinical contexts where 

diagnostic accuracy must be uncompromising. The 

confusion matrix shown in Figure 3 reveals that 

misclassifications were virtually absent, highlighting the 

model’s discriminative power. 

 

 

Figure 1: confusion matrix from ten-fold 

Receiver Operating Characteristic (ROC) analysis further 

reinforced the model’s reliability, producing average 

AUC values between 0.99 and 1.00 (Figure 4). This 

confirms the CNN–LSTM’s capacity to differentiate 

between acute and chronic HBV stages with near-perfect 

sensitivity and specificity. Such results are particularly 

remarkable for biomedical data, where noise and overlap 

among features often limit model accuracy. 

Comparative Analysis with Baseline and Existing 

Models 

Table 4: CNN-LSTM Comparisons with Baseline Models 

Model Accuracy Precision Recall F1-Score AUC 

CNN 0.9746 0.9781 0.9745 0.9762 0.9867 

LSTM 0.9797 0.9817 0.9792 0.9804 0.9916 

DNN 0.9639 0.9693 0.9612 0.9652 0.9829 

CNN-LSTM 0.9950 0.9980 0.9959 0.9969 0.9973 

Table 5: Comparison with Ibrahim et al. (2021) 

 

Model Accuracy Precision Recall  Specificity F1-Score 

Proposed CNN-LSTM 99.50% 99.80% 99.59% 99.70% 99.69% 

ANN-GA (Ibrahim et al.) 66.30% 63.33% 71.53% 68.20% 67.12% 

Objective 1: Identification of Risk Factors Associated 

with Acute and Chronic HBV Infection 

The first objective aimed to identify the risk factors 

associated with acute and chronic Hepatitis B Virus 

(HBV) infections using demographic and serological 
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markers. Statistical analysis (Table 3) revealed that age 

and gender were not significantly associated with the 

infection stage (p > 0.05), indicating that demographic 

characteristics are weak predictors of HBV progression. 

However, HBeAg and HBeAb demonstrated statistically 

significant associations (p < 0.001), confirming their 

diagnostic relevance. Acute infections were 

predominantly characterized by HBeAg (+) and HBeAb 

(–), while chronic infections exhibited the reverse. These 

findings are consistent with clinical literature 

emphasizing the HBeAg–HBeAb seroconversion as a 

biomarker of disease transition. For instance, Tian et al. 

(2019) and Wang et al. (2019) similarly reported that 

HBeAg and HBeAb are the most discriminative markers 

of HBV activity and immune response. This validates the 

study’s classification approach and reinforces the 

conclusion that serological rather than demographic 

features are critical determinants in HBV stage 

prediction. 

Objective 2: Proposal and Implementation of a CNN–

LSTM Predictive Model for HBV Infection 

The CNN–LSTM model classifies HBV infection stages 

by learning both spatial and temporal dependencies 

among serological markers. The proposed model as 

summarized in table 4, achieved an average accuracy of 

99.50%, precision of 99.80%, recall of 99.59%, and 

F1-score of 99.69% through ten-fold cross-validation, 

confirming exceptional generalization and diagnostic 

reliability.  The results align with findings by Zhang et 

al. (2020) and Yogambigai et al. (2021), whose works 

also demonstrated that combining CNN and LSTM layers 

improves model accuracy and sensitivity in HBV-related 

prediction tasks. Zhang et al. achieved improved 

prediction robustness and sensitivity by incorporating 

temporal modeling through LSTM, while Yogambigai et 

al. reported significant gains in clinical prediction 

accuracy using CNN–LSTM integration compared to 

standalone deep learning models. Likewise, Rahmadani 

and Lee (2020) found that CNN–LSTM models 

consistently outperform CNN-only and RNN-only 

architectures by effectively capturing both spatial 

correlations (via CNN) and sequential dependencies 

(via LSTM).The near-perfect performance of the present 

model can be attributed to the use of rigorous 

preprocessing, Min–Max normalization, L2 

regularization, and early stopping, which collectively 

minimized overfitting—a common challenge reported in 

prior CNN–LSTM studies (Yogambigai et al., 2021; 

Gupta & Katarya, 2021). This outcome reinforces the 

importance of balanced architecture design and cross-

validation in ensuring stable performance, particularly 

when handling moderately imbalanced biomedical 

datasets. 

 

Objective 3: Comparative Evaluation with Existing 

and Baseline Models 

As presented in table 5, Comparing the CNN–LSTM 

model with both baseline deep learning models (CNN, 

LSTM, DNN) and existing literature. CNN–LSTM 

achieved the highest performance across all metrics 

(accuracy = 99.50%, AUC = 0.9973), outperforming the 

standalone CNN (97.46%), LSTM (97.97%), and DNN 

(96.39%). When compared with the ANN–GA model by 

Ibrahim et al. (2021), which recorded 66.30% accuracy 

and 71.53% sensitivity as shown in table 6, the CNN–

LSTM achieved absolute improvements of 33.2% in 

accuracy and 28.06% in sensitivity, highlighting its 

superior discriminative capacity. Similarly, Xiaolu et al. 

(2020) and Rahmadani and Lee (2020) also found 

CNN–LSTM hybrids yield substantial performance gains 

over traditional and standalone neural models. Xiaolu et 

al. achieved a 72% accuracy rate with CNNs alone, while 

Rahmadani and Lee reported performance exceeding 

95% for CNN–LSTM models on comparable biomedical 

datasets. The consistency of these findings across 

multiple studies demonstrates that the CNN–LSTM 

architecture offers a generalizable advantage for 

clinical prediction tasks. Its capacity to model 

hierarchical spatial features alongside temporal 

dependencies enables it to simulate complex biological 

processes such as HBV seroconversion and disease 

progression more effectively than shallow or static 

models. 

 

Study Limitations 

The dataset used was obtained exclusively from a single 

healthcare institution—the Immunology Department of 

Usmanu Danfodiyo University Teaching Hospital, 

Sokoto—which may restrict the generalizability of the 

findings to broader or more diverse populations. 

Additionally, although the dataset comprised 758 patient 

records, this sample size remains relatively modest for 

deep learning applications, potentially limiting the 

model’s ability to capture rare or complex HBV 

serological patterns. Furthermore, the study did not 

include external validation using an independent dataset, 

meaning that the real-world applicability and 

performance consistency of the CNN–LSTM model 

across other clinical settings could not be confirmed. The 

exceptionally high-performance scores also raise the 

possibility of overfitting to the internal dataset despite the 

use of stratified 10-fold cross-validation. These 

limitations highlight the need for future research to 

incorporate larger, multi-center datasets and independent 

validation to strengthen the robustness and 

generalizability of the proposed model. 
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CONCLUSION 

The main objective of this study was to develop a hybrid 

Convolutional Neural Network–Long Short-Term 

Memory (CNN-LSTM) model capable of accurately 

classifying Hepatitis B Virus (HBV) infection stages into 

acute and chronic cases based on serological and 

demographic features. Through rigorous pre-processing, 

expert-driven labeling, and stratified 10-fold cross-

validation, the proposed CNN–LSTM model achieved 

outstanding performance, with accuracy, precision, 

recall, and F1-score values exceeding 99%. Comparative 

evaluations further demonstrated that the hybrid model 

significantly outperformed traditional CNN, LSTM, 

DNN, and previously reported benchmark models, 

confirming its suitability for clinical decision-support in 

HBV stage prediction. The study also highlighted the 

critical role of key serological markers, particularly 

HBeAg and HbeAb in distinguishing acute from chronic 

infection states Overall, this research contributes a novel 

and empirically validated deep learning framework that 

can advance AI-driven medical diagnostics and 

strengthen data-driven public health interventions in 

Nigeria and beyond. 
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