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ABSTRACT

Timely classification of the Hepatitis B Virus (HBV) infection stages remains a
major challenge in clinical diagnostics, particularly in differentiating acute from
chronic cases using complex serological profiles. This study aims to propose a
CNN-LSTM predictive model for accurate prediction of Hepatitis B Virus
(HBV) stages, with improved performance metrics and generalizability. A
dataset comprising 758 patient records from the Immunology Department of
Usmanu Danfodiyo University Teaching Hospital, Sokoto, collected between
February 14 and December 31, 2019 was utilized. Pre-processing involved data
imputation, categorical encoding, normalization, and expert rule-based labeling.
The model architecture combines convolutional and recurrent layers to enhance
feature extraction and sequence learning, thereby improving classification
accuracy between acute and chronic infection states. The CNN-LSTM model
architecture consists of approximately 8 trainable layers. Input Layer :Input
shape = 7,1, Conv 1D(1): 32 filters, kernel size = 3, activation =RelLU,
Maxpooling 1D: Pool size =2, Conv 1D(2): 64 filters, kernel size = 3, activation
= ReLU, Maxpooling 1D: Pool size =2, LSTM(1): 50 units, dropout = 0.3,
LSTM(2): 25 units, dropout = 0.3, Dense( Fully Connected Layer: 16 neurons,
activation = ReL U, Output Layer: 1 neuron, activation = Sigmoid. The proposed
CNN-LSTM model was trained and evaluated using stratified 10-fold cross-
validation, achieving mean values of accuracy, precision, recall, and F1-score of
99.50%, 99.80%, 99.69%, and 99.69% respectively. Receiver Operating
Characteristic (ROC) analysis yielded near-perfect Area Under the Curve (AUC)
values across folds. Comparative evaluations against standalone CNN, LSTM,
and Deep Neural Network (DNN) models demonstrated the superior predictive

Keywords: capability of the hybrid model, outperforming previous studies that achieved
Hepatitis B Virus, 66.30% accuracy. The CNN-LSTM model achieved outstanding performance
CNN-LSTM, with 99.50% accuracy, 99.80% precision, 99.69% recall, and 99.69% F1-score,

significantly surpassing existing models. The identification of key serological
risk factors (HBeAg, HBeAb), the successful development of a high-performing
CNN-LSTM classifier, and the model’s demonstrated superiority over existing
approaches together illustrate a cohesive framework for HBV stage prediction.
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INTRODUCTION

and weak surveillance systems in many developing

Hepatitis B Virus (HBV) remains a significant global
health concern and a major contributor to chronic liver
disease, cirrhosis, and hepatocellular carcinoma. Despite
preventive vaccines and effective antiviral therapies,
HBV continues to cause high mortality and morbidity
because of delayed diagnosis, limited access to testing,

countries (WHO, 2012). These systemic limitations are
compounded in low-resource settings by underfunded
healthcare infrastructures, which impede early detection
and management. Behavioral and environmental factors,
including smoking, alcohol use, and co-infections, further
accelerate hepatic damage and complicate prognosis.
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For example, smoking has been associated with
increased liver toxicity and may amplify HBV-related
hepatotoxic effects through elevated viral load and
carcinogen accumulation.

Progression from acute to chronic HBV infection is
influenced by clinical markers such as viral load and
HBeAg status, liver enzymes (ALT, AST), platelet count
and fibrosis stage, as well as demographic and exposure
factors (e.g., age, sexual behavior, blood transfusion
history). Accurately identifying and modeling these risk
factors is essential for targeted clinical interventions
(Mutisya, 2022; Koffas et al., 2020). Traditional
statistical approaches often struggle with the nonlinear
and dynamic relationships present in clinical HBV data,
which has motivated greater adoption of machine
learning and deep learning methods in recent years (Wei
& Yang, 2021; Xiaolu et al., 2021). However, many
ANN-based models reported in the literature face
constraints such as overfitting, limited generalizability to
diverse populations, small training sets, and sensitivity to
class imbalance, issues that reduce their clinical utility
(Ibrahim et al., 2021; Adebola et al., 2021).

Deep learning architectures such as Convolutional Neural
Networks (CNNs) and Long Short-Term Memory
(LSTM) networks have shown promise in medical
classification tasks due to their ability to learn complex,
nonlinear patterns. Nonetheless, the majority of HBV
studies to date have used standalone architectures or
classical hybridizations that do not fully exploit temporal
and spatial feature extraction together. Importantly, there
is currently no published HBV classification study from
Nigeria that integrates a combined CNN-LSTM
architecture for stage classification using locally sourced
clinical datasets, creating a methodological and
contextual gap in the literature.

Problem statement: there is a lack of robust hybrid deep
learning models tailored for HBV stage classification in
Nigerian clinical settings, despite the clear need for
accurate, context-sensitive diagnostic tools to enable
earlier intervention.

To address this gap, this study will develop and evaluate
a CNN-LSTM hybrid predictive framework designed to
(1) improve classification accuracy, sensitivity, and
specificity relative to standalone CNN, LSTM, and DNN
models; and (2) identify the most influential clinical and
behavioral risk factors associated with HBV progression.
The model will employ rigorous preprocessing
(imputation, encoding, normalization), k-fold cross-
validation, and comparative performance metrics to
ensure robustness and generalizability.

Beyond technical novelty, the proposed approach aims to
provide practical public health value by laying the
groundwork for intelligent decision-support tools that can
be integrated into healthcare systems in Nigeria and other
resource-limited environments, Such tools have the
potential to improve early diagnosis, guide clinical
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decision-making, and ultimately reduce HBV-related
morbidity and mortality.

Overview of Literature

Advances in deep learning architectures, especially
Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) networks, have opened new
opportunities for improving predictive accuracy in
medical applications. CNNs are particularly effective in
extracting spatial features from complex data, while
LSTMs are capable of modeling temporal dependencies
in sequential data, making them suitable for analyzing
dynamic biological and clinical patterns (Yogambigai et
al., 2021). Integrating these two architectures into a
CNN-LSTM framework provides the advantage of
leveraging both spatial and temporal features for more
accurate classification. In the context of HBV infection,
this hybrid approach can be instrumental in distinguishing
between acute and chronic cases based on serological
markers and patient demographics. This study, therefore,
proposes a CNN-LSTM model specifically designed for
HBYV infection classification using data obtained from the
Immunology Department of Usmanu Danfodiyo
University Teaching Hospital, Sokoto. The dataset,
comprising 758 patient records collected between
February and December 2019, provides a reliable
foundation for model training and evaluation.

MATERIALS AND METHODS

This section presents the materials and methodological
framework adopted for the classification of Hepatitis B
Virus (HBV) infection stages using deep learning
techniques. The proposed model integrates Convolutional
Neural Network (CNN) and Long Short-Term Memory
(LSTM) architectures to enhance the predictive accuracy
of HBV stage classification. The process encompasses
data collection, preprocessing, dataset partitioning, model
design (architecture), and performance evaluation.

Research methods

Data Collection and Description

The dataset used in this study was obtained from the
Immunology Laboratory of the Usmanu Danfodiyo
University Teaching Hospital, Sokoto. It comprises
secondary data on the Hepatitis B Profile of 758 patients
collected between February 14 and December 31, 2019.
The dataset includes both demographic and serological
information relevant to HBV diagnosis. Patient metadata
such as age and gender were captured alongside hepatitis
B serological markers, which include HBsAg, HBsAD,
HBeAg, HBeAb, and HBcAb. Each test result was
categorized as either reactive (+, w+) or non-reactive (-).
These serological markers served as independent
variables (features), while the HBV infection stages
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(Acute, Chronic, and NaN) were treated as target (class)
labels.

The hepatitis B surface antigen (HBsAgQ) is a protein
found on the outer surface of the virus. Its detection in the
bloodstream signifies an active HBV infection, either
acute or chronic. The hepatitis B surface antibody
(HBsAb) develops following recovery from infection or
successful vaccination, thus indicating immunity. The
hepatitis B envelope antigen (HBeAg) serves as a marker
of viral replication and infectivity, while the hepatitis B
envelope antibody (HBeAb) typically emerges after the
disappearance of HBeAg, suggesting reduced viral
activity. The hepatitis B core antibody (HBcAb) targets
the core component of the virus and exists in two forms:
IgM anti-HBc, which indicates recent infection (acute),
and IgG anti-HBc, which reflects a past or chronic
infection. These biomarkers collectively provide a
clinically meaningful representation of infection
progression.

Data Preprocessing

Prior to model development, several preprocessing
operations were conducted to enhance data quality and
ensure compatibility with deep learning algorithms.
Initially, missing values were identified and appropriately
imputed; numerical features were replaced with their
mean values, while categorical attributes were filled
using their respective mode (Khan et al., 2020). Duplicate
entries were detected and removed to prevent redundancy
and bias in the learning process. Subsequently,
categorical variables were encoded into numerical form
using label encoding, where each unique category was
assigned an integer code. This transformation preserved
categorical relationships while facilitating computational
processing.

Normalization was applied to scale all features to a
uniform range, thereby preventing attributes with large
numerical magnitudes from dominating the learning

process. The Min-Max normalization method was
employed, as expressed in Equation 1;

x — min(x)
x' = ¢))

max(x) — min(x)
where min(x) and max(x) represent the minimum and
maximum values of feature x across the dataset,
respectively. This normalization ensured that all features
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contributed proportionately to the model’s optimization
process, leading to faster convergence and better stability
during training.

Dataset Splitting

To ensure an unbiased model evaluation and maximize
the use of limited data, the study employed a 10-fold
cross-validation strategy. The dataset was divided into ten
equal subsets (folds). In each iteration, nine folds were
used for training and one for testing, ensuring that every
sample was tested exactly once. The performance metrics
from all iterations were averaged to yield a robust
estimate of model generalization capability. Compared to
traditional static splits such as 80/20 or 70/30, cross-
validation reduces the variability in performance
estimates and minimizes overfitting. This approach
provides a more dependable performance indicator,
especially in medical datasets where sample size and class
balance are often constraints.

Data Analysis

All analyses were conducted in Python using NumPy,
Pandas, and Scikit-learn for data preprocessing and
evaluation, while TensorFlow—Keras was used to build
and train the neural network models. The experiments
were executed on a standard CPU-based environment.
Model training employed the Adam optimizer (learning
rate = 0.001), binary cross-entropy loss, a batch size of
16, and up to 30 epochs with Early Stopping (patience =
5). A 10-fold Stratified K-Fold cross-validation approach
was used to ensure robust performance assessment. The
implemented models included ANN, CNN, LSTM, GRU,
and a hybrid CNN-LSTM network, each comprising
combinations of dense, convolutional, recurrent, dropout,
and sigmoid output layers tailored for binary
classification of HBV infection stages

Theoretical Framework and Model Architecture

The proposed theoretical framework combines the feature
extraction capability of CNN with the sequential
modeling power of LSTM to improve the accuracy of
HBYV classification. The hybrid CNN-LSTM architecture
allows the model to learn spatial patterns from serological
features while simultaneously capturing temporal
dependencies across clinical observations. The overall
workflow of the study is depicted in Figure 1;
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Figure 1: Workflow of the proposed CNN-LSTM

based HBV classification framework.

CNN-LSTM Model Architecture and Training

The proposed hybrid CNN-LSTM model was developed
to exploit the complementary strengths of convolutional
and recurrent neural components for accurate HBV
infection classification. As illustrated in Figure 1, the
architecture integrates convolutional layers for feature
extraction with LSTM layers for sequence modeling. The

CNN component comprises two one-dimensional
convolutional layers with 32 and 64 filters, respectively,
followed by Rectified Linear Unit (ReLU) activation and
max-pooling operations (pool size = 2) to down-sample
feature maps while preserving critical local dependencies.
Dropout layers (rate = 0.2) were interspersed to prevent
overfitting, given the relatively small dataset size.
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Figure 1: Model Architecture

Convolutional Operation

In the convolution operation, each neuron applies a set of
filters (kernels) across the input data to extract
meaningful patterns. Mathematically, the operation is
represented as:

s
Lj _ ij ij i-1,j
Ym = f (bm + z WS,m * lm+s—1>
s=1

where v/ denotes the output of the m™ neuron in layer i;
f() is the activation function; b,; is the bias; wy,
represents the convolution kernel; and [,/ | is the
output from the previous layer.

Pooling operations were used to reduce the spatial
dimensions of the feature maps, preserving essential
information while minimizing computation. The max
pooling function is given as:

(2)

¢ = f(85/pool(l™) + by/) ©)
Activation functions were incorporated to introduce non-
linearity, enabling the network to model complex data
relationships. The key activation functions used include:

Rectified Linear Unit (ReLU):

f(x) = max(0,x) (4)
Sigmoid Function:
1
0(0) = 7= (5)
Hyperbolic Tangent (tanh):
X __ e—x
tanh(x) = prgrape (6)

LSTM Layer Operations

The LSTM network is designed to handle sequential data
by maintaining an internal memory of previous states. At
each time step t, given input x; previous hidden state
h:_4, and previous cell state C;_,, the computations are
defined as follows:

Forget Gate:

fe = U(Wf “[he—1,x] + bf) @)
Input Gate:

ip = oW - [he_1, x| + by) (8
Candidate Cell State:

Cy = tanh(wg - [he_1, X¢] + bc) €)

Update Cell State:
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CG=fOC,1+i: O C~t (10)
Output Gate:

o = 0w, *[he_q,x] + by) (11)
Hidden State:
h: = o, © tanh(C,) (12)

where o(-) denotes the sigmoid activation, tanh(-)
represents the hyperbolic tangent function, and (-)
indicates element-wise multiplication. The weight
matrices wg, w;, we, w, and bias vectors by, b;, b, b, are
learned during training.

The hybrid CNN-LSTM network thus leverages both
spatial and sequential dependencies in the data, enabling
it to achieve improved predictive performance for HBV
classification.

Performance Evaluation

The proposed model’s performance was assessed using
standard classification metrics derived from the
confusion matrix, including Accuracy, Precision, Recall,
and F1-Score. Let True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN) be
the components of the confusion matrix. The metrics are
defined as follows:

y TP+ TN 13

Ccu”ﬁ)’_ TP+ TN+ FP+FN D
Precision =

recision TP+ FP (14)

Recall —TP 15
et = TP Y FEN (15)

Precision X Recall

F1—score =2 X (16)

Precision + Recall
These metrics collectively provide a holistic evaluation of

the model’s performance, ensuring not only high
accuracy but also a balance between sensitivity (to detect
true HBV cases) and specificity (to avoid false positives).
Such balanced evaluation is essential in clinical
applications where diagnostic precision directly affects
treatment decisions and patient outcomes.

RESULTS AND DISCUSSION
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Dataset Overview and Preprocessing

The dataset used for this study comprised 758 patient
records obtained from the Immunology Laboratory of the
Usmanu Danfodiyo University Teaching Hospital
(UDUTH), Sokoto, Nigeria. Each record contained
demographic and serological attributes relevant to the
Hepatitis B Virus (HBV) diagnosis, including five
serological markers (HBsAg, HBsAb, HBeAg, HBeAb,
and HBcADb) and two demographic variables (Age and
Gender). Preliminary inspection revealed instances of
missing values across several features and 164 unlabeled
cases that lacked adequate clinical information for
classification. These were carefully addressed using
mode imputation for categorical features to preserve data
distribution and ensure completeness. Weakly reactive
cases, coded as “1w”, were converted to 0.5 to capture
partial reactivity. This preprocessing ensured that no
missing entries remained prior to model training, thereby
improving the robustness of subsequent analyses.
Demographic features were encoded numerically to suit
machine learning requirements, where “Adult” (> 15
years) was represented as 1 and “Child” (< 15 years) as 0,
while gender was encoded as 1 for males and O for
females. Similarly, serological markers were encoded as
1 (positive), 0 (negative), and 0.5 (weakly positive).
Classification of infection stages was performed using
clinically validated serological criteria. Acute HBV cases
were identified by the co-occurrence of HBsAg (+) and
HBCcADb (+) alongside one or more of HBeAg (+), HBeAb
(-), or age < 15 years, while chronic HBV was defined by
HBsAg (+) and HBcAb (+) with either HBeAb (+) or age
> 15 years. Samples that did not meet either condition
were discarded, resulting in a final dataset of 594 records
suitable for modeling.

Normalization using Min—Max scaling was subsequently
applied to constrain all feature values to the [0, 1] range.
This transformation prevented features with large
numeric ranges (such as age) from dominating smaller-
scaled binary variables during training. The cleaned
dataset exhibited a moderately imbalanced class
distribution, with 483 (81.3 %) chronic and 111 (18.7 %)
acute cases. Although this imbalance was not severe, it

required stratified cross-validation to maintain
representative distributions during evaluation.
Table 1: Final Dataset after Preprocessing:
Age Gender HBsAg HBsADb HBeAg HBeAb HBCcADb Label
1 1 0 0 0 1 1 Chronic
1 1 1 0 0 1 1 Chronic
0 0 1 0 0 0 1 Acute
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Table 2: shows the distribution after classification (final label)
Variable Acute (n = 477) Chronic (n =110) p-
value

Age Child: 456 (95.6%) Adult: 21 (4.4%) Child: 103 (93.6%) Adult: 7 (6.4%) 0.534
(Child/Adult)
Gender (M/F) Male: 260 (54.5%) Female: 222 (45.5%) | Male: 64 (57.1%) Female: 47 (42.9%) | 0.546
HBeAg (+) 0 (0.0%) 18 (16.4%) 0.000
HBeADb (+) 454 (95.2%) 0 (0.0%) 0.000
HBsAg (+) 481 (100%) 110 (100%) -
HBcAD (+) 481 (100%) 106 (96.4%) -

Table 3: Comparision of Risk Factors between Acute and Chronic HBV Patients

Label Count Percentage
Chronic 483 81.3%
Acute 111 18.7%
NaN 164 0.0%

The Chi-square test was used to determine whether there

is a statistically significant association between the type
of hepatitis B infection (acute or chronic) and the

categorical variables: age group, gender, and serological
markers (HBeAg and HBeADb).

Assumptions of the Chi-square Test:

Percentages are calculated within each
infection group.

Model training employed the Adam optimizer (learning
rate = 0.001) with binary cross-entropy as the loss
function. Ten-fold stratified cross-validation was used to
ensure generalizability across patient subgroups while

maintaining class proportions. Early stopping (patience
1. Data Type: The variables are categorical (e.g., ~ =°) halted training upon convergence to prevent
gender, age category, sero-marker reactivity). overfitting, and L2 regularization (A = 0.01) was applied

2. Independence: The observations are to encourage weight sparsity. Training stabilized within
independent; each subject belongs to only one 30 epochs, achieving validation accuracies consistently
category. above 99 %.

3. Expected Frequency: The expected frequency Figure 2: Training Dynamics of the CNN-LSTM model
in each cell of the contingency table should be  Showing smooth convergence of training and validation
at least 5 for the test to be valid. loss across epochs.

4.

Sample Size: The sample size is sufficiently
large (n = 587).

The Test statistic was Pearson’s Chi-square statistic (y?)
with Degrees of freedom (df): (r — 1) (c — 1), where r =

number of rows and ¢ = number of columns and
Significance level (a): 0.05

Hypothesis

1. If p<0.05 — significant association

(reject Ho).
If p>0.05 — no significant
association (fail to reject Ho).

2.

From the result p < 0.001 indicating
it’s statistically significant.
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Model Evaluation and Results

Table 3: Metrics across 10 Folds

Asiya et al.

Metric Mean Std Min Max

Accuracy | 0.9950 | 0.0081 | 0.9831 | 1.000
Precision | 0.9980 | 0.0065 | 0.9796 | 1.000
Recall 0.9959 | 0.0086 | 0.9796 | 1.000
F1-Score 0.9969 | 0.0050 | 0.9897 | 1.000

The CNN-LSTM achieved near-perfect classification
performance across all ten cross-validation folds. As

JOBASR2025 3(6): 177-187

summarized in Table 4, the model attained a mean
accuracy of 99.50 %, precision of 99.80 %, recall of 99.59
%, and Fl-score of 99.69 %, with standard deviations
below 1 % across folds. These results indicate exceptional
stability and a balanced trade-off between sensitivity and
specificity both critical in clinical contexts where
diagnostic accuracy must be uncompromising. The
confusion matrix shown in Figure 3 reveals that
misclassifications were virtually absent, highlighting the
model’s discriminative power.

Fold 10 Confusion Matrix
(Recall: 1.00, Precision: 1.00)

11

Actual

Predicted

Figure 1: confusion matrix from ten-fold

Receiver Operating Characteristic (ROC) analysis further
reinforced the model’s reliability, producing average
AUC values between 0.99 and 1.00 (Figure 4). This
confirms the CNN-LSTM’s capacity to differentiate
between acute and chronic HBV stages with near-perfect

sensitivity and specificity. Such results are particularly
remarkable for biomedical data, where noise and overlap
among features often limit model accuracy.
Comparative Analysis with Baseline and Existing
Models

Table 4: CNN-LSTM Comparisons with Baseline Models

Model Accuracy Precision Recall F1-Score AUC
CNN 0.9746 0.9781 0.9745 0.9762 0.9867
LSTM 0.9797 0.9817 0.9792 0.9804 0.9916
DNN 0.9639 0.9693 0.9612 0.9652 0.9829
CNN-LSTM 0.9950 0.9980 0.9959 0.9969 0.9973

Table 5: Comparison with Ibrahim et al. (2021)
Model Accuracy Precision Recall Specificity F1-Score
Proposed CNN-LSTM 99.50% 99.80% 99.59% | 99.70% 99.69%
ANN-GA (lbrahim et al.) 66.30% 63.33% 71.53% | 68.20% 67.12%

Objective 1: Identification of Risk Factors Associated
with Acute and Chronic HBV Infection

The first objective aimed to identify the risk factors
associated with acute and chronic Hepatitis B Virus
(HBV) infections using demographic and serological

184




A Convolutional Neural Network-Long ...

markers. Statistical analysis (Table 3) revealed that age
and gender were not significantly associated with the
infection stage (p > 0.05), indicating that demographic
characteristics are weak predictors of HBV progression.
However, HBeAg and HBeAb demonstrated statistically
significant associations (p < 0.001), confirming their
diagnostic  relevance.  Acute infections  were
predominantly characterized by HBeAg (+) and HBeAb
(-), while chronic infections exhibited the reverse. These
findings are consistent with clinical literature
emphasizing the HBeAg—HBeAb seroconversion as a
biomarker of disease transition. For instance, Tian et al.
(2019) and Wang et al. (2019) similarly reported that
HBeAg and HBeAb are the most discriminative markers
of HBV activity and immune response. This validates the
study’s classification approach and reinforces the
conclusion that serological rather than demographic
features are critical determinants in HBV stage
prediction.

Objective 2: Proposal and Implementation of a CNN—
LSTM Predictive Model for HBV Infection

The CNN-LSTM model classifies HBV infection stages
by learning both spatial and temporal dependencies
among serological markers. The proposed model as
summarized in table 4, achieved an average accuracy of
99.50%, precision of 99.80%, recall of 99.59%, and
F1-score of 99.69% through ten-fold cross-validation,
confirming exceptional generalization and diagnostic
reliability. The results align with findings by Zhang et
al. (2020) and Yogambigai et al. (2021), whose works
also demonstrated that combining CNN and LSTM layers
improves model accuracy and sensitivity in HBV-related
prediction tasks. Zhang et al. achieved improved
prediction robustness and sensitivity by incorporating
temporal modeling through LSTM, while Yogambigai et
al. reported significant gains in clinical prediction
accuracy using CNN-LSTM integration compared to
standalone deep learning models. Likewise, Rahmadani
and Lee (2020) found that CNN-LSTM models
consistently outperform CNN-only and RNN-only
architectures by effectively capturing both spatial
correlations (via CNN) and sequential dependencies
(via LSTM).The near-perfect performance of the present
model can be attributed to the use of rigorous
preprocessing, Min-Max  normalization, L2
regularization, and early stopping, which collectively
minimized overfitting—a common challenge reported in
prior CNN-LSTM studies (Yogambigai et al., 2021;
Gupta & Katarya, 2021). This outcome reinforces the
importance of balanced architecture design and cross-
validation in ensuring stable performance, particularly
when handling moderately imbalanced biomedical
datasets.
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Objective 3: Comparative Evaluation with Existing
and Baseline Models

As presented in table 5, Comparing the CNN-LSTM
model with both baseline deep learning models (CNN,
LSTM, DNN) and existing literature. CNN-LSTM
achieved the highest performance across all metrics
(accuracy = 99.50%, AUC = 0.9973), outperforming the
standalone CNN (97.46%), LSTM (97.97%), and DNN
(96.39%). When compared with the ANN-GA model by
Ibrahim et al. (2021), which recorded 66.30% accuracy
and 71.53% sensitivity as shown in table 6, the CNN-
LSTM achieved absolute improvements of 33.2% in
accuracy and 28.06% in sensitivity, highlighting its
superior discriminative capacity. Similarly, Xiaolu et al.
(2020) and Rahmadani and Lee (2020) also found
CNN-LSTM hybrids yield substantial performance gains
over traditional and standalone neural models. Xiaolu et
al. achieved a 72% accuracy rate with CNNs alone, while
Rahmadani and Lee reported performance exceeding
95% for CNN-LSTM models on comparable biomedical
datasets. The consistency of these findings across
multiple studies demonstrates that the CNN-LSTM
architecture offers a generalizable advantage for
clinical prediction tasks. Its capacity to model
hierarchical spatial features alongside temporal
dependencies enables it to simulate complex biological
processes such as HBV seroconversion and disease
progression more effectively than shallow or static
models.

Study Limitations

The dataset used was obtained exclusively from a single
healthcare institution—the Immunology Department of
Usmanu Danfodiyo University Teaching Hospital,
Sokoto—which may restrict the generalizability of the
findings to broader or more diverse populations.
Additionally, although the dataset comprised 758 patient
records, this sample size remains relatively modest for
deep learning applications, potentially limiting the
model’s ability to capture rare or complex HBV
serological patterns. Furthermore, the study did not
include external validation using an independent dataset,
meaning that the real-world applicability and
performance consistency of the CNN-LSTM model
across other clinical settings could not be confirmed. The
exceptionally high-performance scores also raise the
possibility of overfitting to the internal dataset despite the
use of stratified 10-fold cross-validation. These
limitations highlight the need for future research to
incorporate larger, multi-center datasets and independent
validation to strengthen the robustness and
generalizability of the proposed model.
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CONCLUSION

The main objective of this study was to develop a hybrid
Convolutional Neural Network-Long Short-Term
Memory (CNN-LSTM) model capable of accurately
classifying Hepatitis B Virus (HBV) infection stages into
acute and chronic cases based on serological and
demographic features. Through rigorous pre-processing,
expert-driven labeling, and stratified 10-fold cross-
validation, the proposed CNN-LSTM model achieved
outstanding performance, with accuracy, precision,
recall, and F1-score values exceeding 99%. Comparative
evaluations further demonstrated that the hybrid model
significantly outperformed traditional CNN, LSTM,
DNN, and previously reported benchmark models,
confirming its suitability for clinical decision-support in
HBYV stage prediction. The study also highlighted the
critical role of key serological markers, particularly
HBeAg and HbeAb in distinguishing acute from chronic
infection states Overall, this research contributes a novel
and empirically validated deep learning framework that
can advance Al-driven medical diagnostics and
strengthen data-driven public health interventions in
Nigeria and beyond.
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