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ABSTRACT

This article introduced new four parameter lifetime distribution named Hybrid
of Dhillon-Gompertz (HDG) using an additive methodology. Key properties of
the model, including the cumulative distribution function, probability density
function, failure rate, survival function, quantile function, mode, asymptotic
behavior, order statistics, characteristic function moment and moment
generating function, were derived. The parameters of the proposed distribution
were estimated using the maximum likelihood estimation (MLE) method, and
their applicability was tested using two sets of lifetime data. Goodness-of-fit

comparison, based on Akaike Information Criterion (AIC), Bayesian
Keywords: Information Criterion (BIC), and Corrected Akaike Information Criterion
Dhillon-Gompertz (AICc), demonstrated the effectiveness of the proposed model. The findings
Distribution, indicate the HDG distribution exhibited superior performance compared to some
Failure Rate, existing distributions. These results highlight the potential of the proposed

distributions to model lifetime data more accurately than existing alternatives.
The findings of this study have significant theoretical and practical implications

Additive Methodology,
Reliability Analysis,

Moment, for reliability analysis and lifetime data modeling. The proposed hybrid
Maximum Likelihood, distribution demonstrated superior performance over existing models,
Monte Carlo suggesting their potential for more accurate failure rate estimation and risk
Simulations assessment in engineering, biomedical, and industrial applications.

INTRODUCTION The cumulative distribution function and its

Classical probability distribution has long been employed
to draw inferences about populations based on observed
data. However, it is widely recognized that some of these
distributions fail to adequately capture the underlying
patterns present in real-world datasets. The Gompertz
distribution is one of the most important distributions
with a wide range of applications in statistical practice. It
is characterized by a shape that increases rapidly at first
and then slows down. It's commonly used in survival
analysis, particularly in modelling human mortality rates,
but it has applications in various other fields such as
reliability engineering and demography. The Gompertz
distribution has being considered as a well-known model
with an increasing failure rate function that investigated
the modelling a variety of data. It is monotonically
increasing or decreasing, depending on its parameter and
this makes it less flexible compared to other generalized
or modified models that can model bathtub-shaped or
non-monotonic failure rate.

corresponding probability density function of the
Gompertz distribution is given by

F(x)=1- efa(eﬁt_l) (1)
F) = aebte s @D @
Fort>0,a,p>0.

Where « and § are the scale and shape parameters
respectively.

Numerous madifications of the Gompertz distribution
have been carried out by researchers. EI-Gohary et al.
2013) introduced a generalized Gompertz distribution
with three parameters. Furthermore, Sarhan et al. (2016)
developed the Exponentiated modified Weibull extension
distribution, which generalizes the model introduced by
El-Gohary et al. (2013).
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Additionally, Ali etal. (2019), proposed a four-parameter
extension known as the beta-Gompertz distribution,
which encompasses several well-known lifetime
distributions such as the beta-exponential and generalized
Gompertz distributions as special cases. Adeyemi and
Adeleke (2021), introduced a new probability distribution
named Gompertz exponential pareto distribution with the
properties and applications to bladder cancer and
hydrological datasets using the Gompertz generator.
Abba and Wang (2023) introduced a new flexible additive
model that adequately describes complex reliability and
survival data. It is called the Flexible Exponential Power-
Gompertz (FEPG4) distribution. Jabril et al. (2024),
proposed a new statistical model named the Generalized
Gompertz-G family of distribution using a method
introduced by Alzaatreh.

Several generalized models have been proposed to
analyze lifetime data exhibiting non-monotone failure
rates, particularly in reliability engineering Abba and
Wang (2023). Examples of these models include the
upper truncated Weibull distribution Zhang and Xie
(2011), Chen's family of survival distributions by
Chaubey and Zhang (2015), and the Beta Sarhan-Zaindin
modified Weibull distribution by Saboor et al. (2016).
Others are; A new weighted Gompertz distribution by
Bakouch and Abd-El-Bar (2017), On some life
distributions with flexible failure rate by Lu and Chiang
(2018), A new extension of the exponential power
distribution by Shakil et al. (2018), The log-normal
modified Weibull distribution by Shakhatreh et al.
(2019), A new extension of the topp—Leone-family of
models by Muhammad et al. (2022), Classical and
Bayesian estimations of improved Weibull-Weibull
distribution by Wang et al. (2022), New Generalized odd
Frechet-Odd Exponential-G Family of distribution by
Sadiqg et al. (2023) Chen-Burr XII Model as a Competing
Risks Model by Kalantan et al. (2024). Despite their
utility, research has revealed that many of these
distributions display bathtub failure rate shapes but lack a
relatively constant phase (Abba et al. 2022; Shakhatreh et
al. 2019). This constant phase, which represents the
useful life span of a component or system, is crucial for
reliability modeling (Kosky et al. 2021). Therefore,
constructing models that accurately capture this constant
failure rate phase is essential. Merging the failure rates of
two distributions is a powerful technique for creating
more flexible and adaptable models that can capture
complex patterns in data (Travirdizade and Ahmadpour
2021). This approach allows researchers to combine the
strengths of different distributions, resulting in models
that can handle a wide range of data behaviors. Building
on this idea, [26] developed the Additive Weibull model
by combining the hazard rates of two Weibull
distributions.
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On the other hand, Dhillon (1980), established a new
distribution with hazard rate models which are expected
to be wuseful in situations where the traditional
distributions are rather cumbersome to apply or they
failed to represent the failed failure data. The author
symbolised the model as the FR model and described that
the model may be utilized for describing various kinds of
Monotonic Failure rate (MFR) and Non-Monotonic
Failure Rate (NMFR). One of the weaknesses of the
Dhillon distribution is that the Author neither derives the
full log-likelihood function nor developed the score
equations. Recently, modifications and extensions of the
Dhillon were proposed by several researchers including a
Modified Dhillon distribution by lliyasu et al. (2025)
which was developed using Beta integrated model
approach, a four-parameter Bi-failure modes model by
Abba et al. (2025a) in which the distribution of failure
times due to one failure type follow Dhillon distribution,
while the other failure type follows an exponential-power
distribution. Abba et al (2025b) used the same
methodology to construct a Weibull-Dhillon competing
risk model. A robust multi-risk model and its reliability
relevance by Abba et al. (2025c) with more robustness
than a Weibull-Dhillon. The Additive Dhillon-Chen
distribution by Amiru et al. (2025) which crossbred
Dhillon and Chen distributions wusing additive
methodology, the distribution can model both monotonic
and non-monotonic failure rate pattern. Ibrahim and
Aminu (2025) proposed a two-component Perks-Dhillon
competing risk model by hybridizing Perks and Dhillon
failure rate model. In this paper, we propose a new four-
parameter lifetime distribution, called A New Four-
parameter Hybrid Dhillon-Gompertz (HDG) distribution,
which combines the failure rates of the Dhillon and
Gompertz distributions in a serial system. The HDG
distribution is designed to be highly flexible, allowing it
to model data with both monotonic (consistent patterns)
and non-monotonic (irregular patterns) behaviors.

MATERIALS AND METHODS

Proposed Hybrid Dhillon-Gompertz Distribution

Let us consider a system with two components arranged
and functioning in a series, each component is operating
independently at a given time t. The system fails when the
first component fails. In view of this, our new model
signifies the lifetime of the entire serial system with two
components. The first component’s lifetime follows a
Dhillon distribution with parameters A and 6, while the
second component’s lifetime follows a Gompertz
distribution with parameters a and B. The complete
system’s lifetime is determined by the minimum lifetime
of the two components. In other word, let T; represent the
lifetime of the first component, which follows Dhillon
distribution with parameter A and 6, and let T, represent
the lifetime of the second component which follows
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Gompertz with parameter o and . If the system lifetime £ = (,wts—l

) : AU + aeft)e
isT, then T =min (T, T, ) has the cumulative distribution N elf9+1 d ) -
function given by Fort,2,0,a > Oandf 2 0.

(360 +1)-2(eBt_1) Where 4 > 0, a > 0 are the scale parameters and 6, § >
Fit)=1-e £ ) (3) 0 are the shape parameters respectively.
and

- ln(ﬂt9+1)—%(e3f—1)

(4)

\
a

/ —— ) =050=07a=03p=05
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Figure 1. Plot of the HDG cumulative distribution function for some values of parameter.
o — N\
N [ — s=050=
O — — =05 6=
=
O | = %=05, 0=
—_ H == 1=05 0=
e o4
o
Q
S =

0 2 4 6 8 10

Figure: 2. Plot of the HDG probability density function for some values of parameter.
The FR function as well as the survival function of the - m(zr9+1)-%(eﬁt-1)

[
proposed HDG distribution is defined as SH=e ©)
16t9-1
h(t) = Mteﬂ + aebt (5)
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Figure: 3. Plot of the HDG failure rate function for some values of parameter
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Figure: 4. Plot of the HDG Survival

Measure of central Tendency

In this section, we present the measures of central
tendency for the HDG distribution.

Quartile Function

Suppose the random variable T has the HDG distribution,
then the quantile function T is given by Q(p) = F~(p),
which implies that finding ¢ such that F(t) = p, forp €
[0,1]. That is,

Suppose that F(t) = p, Then
—ln(lt6+1)—%(eﬁt—1) _

F(t)=1—e P 7
This implies that
e—ln(2t9+1)—%(eﬁt—1) —1-p (®)

function for some values of parameters.
Taking the natural log of both sides, we have
—in(2t? +1) - %(eﬁt —1) =In(1-p) )
Simplify equation (20) by eliminating the negative sign,
lead to
(At +1) — %(eﬁt —1)=-In(1-p) (10)
m(at? +1) =—In(1 —p) + %(eﬁt - 1). (11)
The above equation does not have a closed-form solution
due to its complex dependence on t in both in(At% + 1)
and ePt. Therefore, a numerical method such as Newton
Raphson method, bisection method, for finding the Q(P)
for specific parameter values and probability is
appropriate.
Mode
The mode of the HDG distribution is obtained by
differentiating the density function in equation (4) with
respect to ¢.

21




A New Four Parameter Hybrid of ...

£(0) = f (aatteH + eﬁf) zn(at9+1)—%(eﬁt_1), (12)
f@) =g@).h(0), 13)
where
/’{ t9—1
g) = (m + aeﬁf> and
h(t) = e—ln(2t9+1)—%(eﬂt—1). (14)
The mode of HDG distribution is given by
Prey (2t9+1)(26(6-1)t072)-21262£26-2)
7@ =ho e
6-1
aﬁeﬁt) + g(t) ((% +
aet) ¢~ M )5l t‘”) (20)

Asymptotic Behavior of HDG Distribution

In this section, we investigate the behavior of the HDG
model. The limit of equation (4) ast - 0 andast - o«
i.e.

lim £(6) = lim £ (£) = 0 (21)
0- _ 041)-%(oBt_
f@) = ();Gtz+11+aeﬁt)Xe n(ac%+1)—5(e 1) (22)
This implies that
26t
llmf(t) —llm[ At9+1
aeﬁt)Xe m(ac? +1)__(eﬁt_1)] (23)
16t
llmf(t) —llm (At9+1 +
_Z(oBt_
aeﬁt)Xltmol ~n(2t%+1) (e 1) (24)
llmf(t) —llm(/1 Crwahd eﬁt)XO
(25)
lim £() = 0 (26)
Also,
16t
llm f@) = llm [ Me T
(Jzeﬁt)Xe_mut +1)__(eﬁt_1)] (28)
16t
llm f@) = llm (MG+1 +
_E(BE_
eﬁt)X lime —in(2t%+1) (e 1) 29)
20 6-1
lim £(©) = Jim (S5 + @) X0 (20
lim £(t) = 0 (31)

Therefore, the HDG distribution has a unimodal.
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Order Statistics

Let T, T,, ... ,T,, be a random sample from the HDG
distribution and T,., is the k" order statistic of the
sample, then the PDF of Ty, is given by

fk:n(t) [F(t)]k 1[1 -

B(k —k+1)
F(OI"*£(t) T k4 1) (32)
n—k+
where, B(k'n_k+1)=F(n—k+1+k)
_T0OT(—k +1)
B F'(n+1)
(k= D! (n = k)!
T

Therefore, equation (32) can be re-written as

fk:n(t) = {(k _ 1), (Tl _ k)'} [F(t)]k_l[l
n!

—FOI"*f(®
[FOI 1= FOI**f(t)

(33)
Where F(t) and f(t) are given in equation (3) and (4)
respectively.

(n k)‘(n k!

Pt = [1 e gD gy
- Zecy (ke )

Similarly,

(1= R = el )]

LDl Ca) (36)

Inserting (33), (35) and (36) in (32), the pdf of the k"
order statistics can be given as in (37)

Jre: n(t) = { . 5 }
m(Atf+1)+5(eft-1)
(n— k)'(n k)‘2 ( b’ ( ) g
% {e—(n k){ln(/lt +1)+B(eBt—1)}}
6-1 _{in(at® LI T
L i

(37)

Characteristics Function of HDG Distribution
Let T be a random variable that follows HDG distribution
with density function given in equation (4). The
characteristic function of T is defined as
pr(u) = E(e™) = [ etf(t)dt (38)
Substitute (4) into equation (38)
_ 26t —in(At9+1)-%(ePt-1)

= [ et (M"gl +aekt)e ﬁ 7 dt (39)
_ ¢ (20t971\  —in(at9+1)-%(eFt-1)

=% (G ) e e+

© - 041)-%(ePt_
f_oo elut(aeﬁt) e n(at%+1) ﬁ’(e 1)dt (40)
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Recall that, ﬁ = Y (—Dkxk
By applying series expansion and letting x = At on
, we have

Zo(—1)° (At0)¢

260+1
1

A0+t

E(ezut)

(41)

= f elut ygf- 12( 1)C/1Ct'9c —in(at%+1)- (eBt_l)dt

—00

+
o . _&r, Bt_
[ eMaePt 2 ((=1)°A°te G Vat
6 _a
2052 (~ 1)C/1Cf m(ae%+1) B(e
@ o (—1)eAc e [7 e Vgt (43)

Hence, the characteristics function of HDG distribution
is in equation (43).

(42)

iut t9—1+9ce_

. _X Bt_
lutaeﬁte 3(9

Moment and Moment Generating Function of HDG
Distribution

The moment generating function of T, M, (x) = E(e®)
is given by

My (x) = E(e™) = [ e f(t)dt (44)
Applying Taylor series to expand e"* and have

et = Xz, St (45)
Therefore, '

Mr(x) = [ Z20 5t ()de (46)
= X2, [P (Odt = 1+ 32, S E@hdr  (47)
To find the i** moment about the origin i.e. u/,

wp = E(t!) = [ tif(Ddt (48)

=yt

Recall that

(At 41)-%(eBt—
(Air:e+1 +ae5t)e in(At9+1) ﬁ(e ¢ 1)dt (49)
Zo(=1)° (AL,

therefore —/wte 1y (—1)°A¢

This |mpI|es that

26¢9-1 - _
ﬁ — c:o(_l)clﬁ—lg t(c+1)9 1 (50)
Substitute equation (50) into equation (49) and have
u _f t (Z 0( 1)c/1c+19 tc+Do- 14

aeﬁt)e n(at9+1)- B(e —1)dt

(51)

pit(c+1)o-1," l"(lfg"'l)‘%(eﬁt‘l)dt

2o(=1)2710 [ +
o . _ 6 _& Bt_
afo tieBte in(At¥+1) ﬁ(e 1)dt

(52)
Now, we let m = %eﬁt to simplify further and evaluate

u; by transforming the integral using substitution
method
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m= Eeﬁt implies that t = —ln ( By and dt = —dm

ul = N2 (=1)AT1o 7, (m) + aVz(m) (53)
Where V,(m) and aV,(m) are the integrals over m.
Now, the MGF is denoted by

My(x) =1+ Z—( 12410 7, (m) +
c=0
aV,(m) (54)
Parameter Estimation
In this section, we employ the maximum likelihood
estimation (MLE) method to estimate the parameters of

1) 4¢ +the HDG distribution.

Maximum Likelihood Estimator

Suppose that the likelihood function for a dataset of
independent observations t,, t,, ... ... ., t,, form the density
function f(t) is given by

Lf(w) = [T, f(’fig_1 (59)
Lf(w) = I, (ietteﬂ
ath-et”) e ke ri)raci-et) (56)

Taking the natural log of the likelihood function and
simplify it by turning products into sums, we have

f(w) =Xz In f(t)
Aetl B-1 tl
</1t 041 + aft; )
— (A% +1) +a(1l - et
We can derive the score equations by taking the partial
derivatives of (59) with respect to 4, 6, a, and 8 and

equate to zero, which eventually produce MLEs (4,0, &
B) of (4, 0, a, B). Yet, the score equations from (59) may
not lead to closed-form solutions, and hence in this
research, we recommend using any of the statistical
software available like R package to maximize the log-
likelihood function in (59)

(57)

tf(w) = (59)

RESULTS AND DISCUSSION

In this session, we present the empirical evaluation of the
proposed HDG model using well-known datasets
representing failure times and survival times data. The
objective is to assess the flexibility and reliability of the
proposed model in capturing data patterns characterized
by bathtub-shaped failure rates. Each dataset is analyzed
and compared with other existing models previously
discussed in the literature. The comparison is based on
model selection criteria, including Log-likelihood,
Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), and Corrected Akaike
Information Criterion (AlICc). The model with the
smallest values across these criteria is considered the
best-fitting model. In addition to numerical comparison,
graphical tools such as histograms and Total Time on Test
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(TTT) plots are used to examine the shape of the failure
rate and validate model suitability.

Modalities of the Simulation Studies

In this part, we perform a Monte Carlo simulation to
evaluate the performance of maximum likelihood
estimation (MLE) for the proposed HDG distribution.
First, the probability density function (PDF) of the
distribution is specified, from which the cumulative
distribution function (CDF) is obtained numerically by
integration. An inverse CDF (quantile function) is then
constructed using interpolation, allowing random sample
generation from the distribution. Samples are generated
for different sample sizes (30, 60, 90, and 120) using
fixed true parameter values (A =0.2, 0 =2, a =0.2, p =

Usman et al.
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1.0), and each experiment is replicated 100 times for
statistical stability. For each simulated dataset, the
parameters are estimated through MLE by minimizing the
negative log-likelihood function using the nlminb
optimization routine under specified bounds. The
estimated values are compared with assumed true
parameters to compute the bias and mean squared error
(MSE) for each parameter across replications. The results
are summarized in three matrices; Esti (mean estimates),
Biass (biases), and Meansq (MSEs), which show how
estimation accuracy and precision improve as the sample
size increases. This approach provides a comprehensive
numerical assessment of the estimators’ performance for
the proposed model.

Table 1 Estimators’ performance based on Average mean, Bias and MSE of the HDE parameters at four distinct

sample size.
Sampl | 1= 6= a= B = A= 6= a= B = A= 6= a=03 | 8=
e Size | 0.2 1.8 0.3 0.15 | 0.2 1.8 0.3 0.15 0.2 1.8 0.15
Estimated Means Bias MSE
30 0.210 | 1.969 | 0.187 | 1.074 | 0.010 | 0.169 | - 0.9243 | 0.002 | 0.211 | 0.0143 | 0.873
5 6 1 3 5 6 0.112 0 9 3
9
60 0.217 | 1.971 | 0.194 | 1.043 | 0.017 | 0.171 | - 0.8933 | 0.001 | 0.195 | 0.0125 | 0.873
3 1 2 3 3 2 0.105 9 0 3
8
90 0.215 | 1.988 | 0.192 | 1.023 | 0.015 | 0.177 | -1079 | 0.8739 | 0.002 | 0.195 | 0.0127 | 0.773
7 5 1 9 7 5 0 5 2
120 0.210 | 1.926 | 0.190 | 1.035 | 0.010 | 0.126 | - 0.8859 | 0.001 | 0.162 | 0.0131 | 0.793
4 5 2 9 4 5 0.109 9 5 1
8

Table 1 presents the results of a Monte Carlo simulation
conducted to assess the performance of the Maximum
Likelihood Estimators (MLES) for the parameters L =0.2,
0= 1.8, 0=0.3, and g = 0.15 of the proposed distribution
under varying sample sizes (n = 30, 60, 90, 120). The
estimated means, biases, and mean squared errors (MSES)
are reported for each parameter. As the sample size
increases, the estimated means of all parameters move
closer to their true values, while both the bias and MSE
values generally decrease, indicating improved
estimation accuracy and consistency. For smaller
samples, such as n = 30, larger biases and MSEs are
observed, particularly for 6 and o, suggesting greater
variability and slight overestimation. However, with
larger samples (n = 90, 120), the estimates stabilize, and
the biases become minimal, confirming that the MLEs are
asymptotically unbiased and efficient. Furthermore, the
results demonstrate that the Maximum Likelihood
Estimation method performs well for the HDG model,

providing reliable parameter estimates that improve with
increasing sample size.

Applications

In this section, we utilized some existing real-life data sets
to evaluate the flexibility of our proposed HDG
distribution.

Early Cable-Joint Failure Data

Table 2 presents 16 early cable-joint failure (ECJF) times.
The data was reported by Tang et al. (2015) and was
utilized by several authors as a benchmark for testing
lifetime distributions with bathtub-shaped or non-
monotonic failure rate (FR) functions, owing to its clear
reflection of early failure behaviour. Figure 4 shows that
the data exhibits a bathtub-shaped failure rate, confirming
that models allowing for non-monotonic FR functions
(e.g., HDE, OCE, hybrid models) are more appropriate
than the simple exponential distribution.
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Table 2 Early cable-joint failure times data

5|43 | 65| 194 | 259 | 262 | 354 | 620 | 968

2100 | 2629 | 2676 | 2676 | 2744 | 4254 | 4254
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Figure 5 Empirical Scaled TTT-transform plot for ECJF data.
Early Cable-Joint Failure Data
~ J—
@ —
Lo —
= <
w
|
A o —
~d —]
- u—
o —

(0] 1000

2000 3000 4000

t

Figure 6 Histogram of ECJF data

Figure 6 shows the histogram of early cable-joint failure
data with a high concentration of failures at the beginning
(0-500), reflecting infant mortality due to initial defects,

followed by a period of reliability with few failures, and
then a resurgence of failures around 2000-3000 and
beyond 4000, indicating wear-out.
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Table 3 Descriptive statistics for ECJF data.

N Min. 1 Qu. Median Mean Sd. 3 Qu. Max.

16 5.0 242.8 794.0 1506.4 1520.59 2676.0 4254.0
maximum (4254.0) show that some joints last much

Table 3 reveals that the dataset consists of 16 longer, creating a wide spread in the data, as confirmed

observations with failure times ranging from 5.0 to
4254.0. The first quartile (242.8) and median (794.0)
indicate that half of the failures occur relatively early,
while the mean (1506.4) is much larger, reflecting the
influence of later failures. The third quartile (2676.0) and

by the large standard deviation (1520.6). Overall, the data
suggest a mix of early and late failures with high
variability.

Table 4 Parameters estimation of the HDG distribution and the five other existing distributions for the infected cases

data.
Model Parameters
HDG 1=0.0075 6 = 0.9464 @ = 0.0002 B =0.0132
AGW @ = 0.6492 % =0.0006 1=0.1669 6 =709.20
FACG $=0.1781 @ =0.0241 6 = 0.705.30 1=0.9464
AMW §=7.7e-5 @ =0.0140 1=0.0351 6 =0.5611 B =149.30
INMW @ =0.0005 B=86° % =0.5925 6 =0.5.387 1=0.0118

Table 5 Goodness-of-fit test results of the HDG distribution and the four other existing distributions for the ECJF

dataset.
MLE, -LL, AIC, AICc and BIC for the trained models on the ECJF dataset
Model -L AIC AlCc BIC
HDG 108.03 224.06 227.14 227.62
AGW 121.59 251.18 254.82 254.27
FACG 122.04 252.09 255.72 254.27
AMW 124.52 259.05 265.05 262.91
INMW 129.09 268.18 274.18 272.04

Table 5 above shows the MLEs of the models’
parameters, along with the log-likelihood, AIC, AlCc,
and BIC statistics. It is observed that the HDG model has
the smallest values for AIC, AICc, and BIC among the
competing models, indicating that the HDG distribution
provides the best fit for the dataset.

Survival times data for bladder cancer among 128
individuals

Table 6 presents the remission periods in months for
bladder cancer among 128 individuals and used by many

researchers including Marshal-Olkin (1997), Karakas and
Bulut (2019) among others. Figure 7 shows the Total
Time on Test (TTT) plot, which is used to visualize the
nature of the failure rate (hazard function) in reliability
analysis. The diagonal line represents a constant failure
rate, while the purple curve represents the empirical TTT
transform based on the observed data. Since the curve lies
slightly below the diagonal in the early part and above it
in the latter part, it suggests a decreasing failure rate at the
beginning followed by an increasing failure rate later on,
which is characteristic of a bathtub-shaped FR function.
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Table 6 Survival times data for bladder cancer among 128 individuals.
0.08 0.2 0.4 0.5 0.51 0.81 0.9 1.05 1.19 1.26 1.35 1.4

1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26 2.46 2.54 2.62 2.64
2.69 2.69 2.75 2.83 2.87 3.02 3.25 3.31 3.36 3.36 3.48 3.52
3.57 3.64 3.7 3.82 3.88 4.18 4.23 4.26 4.33 4.34 4.4 4.5
451 4.87 4.98 5.06 5.09 5.17 5.32 5.32 5.34 541 5.41 5.49
5.62 5.71 5.85 6.25 6.54 6.76 6.93 6.94 6.97 7.09 7.26 7.28
7.32 7.39 7.59 7.62 7.63 7.66 7.87 7.93 8.26 8.37 8.53 8.65
8.66 9.02 9.22 9.47 9.74| 10.06 | 10.34 | 10.66 | 10.75| 11.25| 11.64| 11.79
1198 | 12.02 | 12.03 | 12.07 | 12.63 | 13.11| 13.29 13.8 | 1424 | 1476 | 1477 | 14.83
1596 | 16.62 | 17.12 | 17.14 | 17.36 18.1 | 19.13 | 2028 | 21.73 | 22.69 | 23.63| 25.74
2582 | 2631 | 32.15| 34.26 | 36.66 | 43.01 | 46.12 | 79.05
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Figure 7 Empirical Scaled TTT-transform plot for bladder cancer among 128 individuals.
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Figure 8 Histogram data for bladder cancer among 128 individuals.
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Figure 8 shows the survival times of 128 individuals with
bladder cancer, where the x-axis represents time (t) and
the y-axis represents density. The distribution is highly
right-skewed, with the majority of individuals
experiencing relatively short survival times clustered
between 0 and 20 units, and very few surviving beyond

Usman et al.
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40 units. This indicates that most patients had early
failures or short survival durations, while a small fraction
experienced much longer survival, creating a long tail in
the distribution. Such a pattern suggests the presence of
early high risk of death followed by a decreasing FR over
time.

Table 7 Descriptive statistics for the 128 bladder cancer survival times

N Min. 1t Qu. Median

Mean Sd. 3 Qu. Max.

128 0.080 3.348 6.395

9.66 10.51 11.838 79.050

Table 7 presents the summary statistics of the 128 bladder
cancer survival times showing a wide variation in survival
durations. The minimum survival time is very short
(0.08), while the maximum extends to 79.05, indicating a
long right tail. The first quartile (3.35) and median (6.40)
suggest that at least half of the patients survived less than
7 months, indicating a concentration of early death. The
mean survival time (9.66) is higher than the median,

reflecting the skewness caused by a few individuals with
much longer survival. The standard deviation (10.51) is
relatively large compared to the mean, emphasizing high
variability in the data. Overall, most individuals had short
survival durations, but a small subset survived
significantly longer, consistent with the skewed
histogram pattern.

Table 8 Parameters estimation of the HDG distribution and the three other existing distributions for the infected

cases data.
Model Parameters
HDG A=0.0305 6 =1.7014 @ =0.0251 B = 0.0008
MOPG 4=0.1068 b = 0.000001 ¢=15194 d =0.1098
MOG 2=0.1068 b = 0.000001 - d = 0.9999
PG 2=0.0939 b = 0.000001 ¢=1.0478 -

Table 9 Goodness-of-fit test results of the HDG distribution and the three other existing distributions for the for

bladder cancer among 128 individuals.

Model L AIC AlCc BIC
HDG 818.7800 826.7800 827.1050 835.2088
MOPG 820.5461 828.5461 828,8713 839.9542
MOG 828.6841 834.6841 834.8792 843.2402
PG 1084.1740 10901740 1090.3691 1098.7300

Table 9 presents four fitted models (HDG, MOPG, MOG,
and PG) with their respective information criteria values
(AIC, AlCc, and BIC). Lower values of these statistics
indicate a better fit, accounting for model complexity.
Among the models, HDG distribution yield the smallest
AIC (818.78), AICc (826.78), and BIC (835.21),
confirming that it provides the best fit to the bladder
cancer survival data

CONCLUSION

In this article, we presented the empirical evaluation
newly proposed HDG lifetime distribution developed

using an additive methodology. The study assessed the
flexibility and performance of the model using real-life
datasets representing bathtub-shaped failure rate pattern
(i.e. Decreasing, Constant and Increasing). The
parameters of the proposed model were estimated using
the Maximum Likelihood Estimation (MLE) method, and
its goodness-of-fit was compared with that of existing
lifetime models using the Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), and
Corrected Akaike Information Criterion (AICc). The
empirical results revealed that the proposed HDG model
outperformed the existing distributions across all datasets
considered. For the Early Cable-Joint Failure (ECJF)
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dataset, the HDG distribution provided the best fit,
outperforming the AGW, FACG, AMW, and INMW
models, confirming its strength in handling engineering
data with early-life failures. For the Bladder Cancer
dataset, which exhibited a non-monotonic failure rate, the
HDG distribution again achieved the best fit among
competing models such as MOPG, MOG, and PG,
thereby demonstrating its suitability for biomedical
survival data characterized by early mortality and long-
term survivorship. Furthermore, the findings indicate that
the HDG distribution is highly flexible and reliable model
capable of accurately describing a broad range of lifetime
behaviors. Its superior goodness-of-fit across the two
datasets underscores its robustness and practical utility in
reliability engineering, industrial maintenance, and
biomedical survival analysis.

Future research can investigate additional properties of
the proposed HDG model such as Mean Residual
Lifetime (MRL) to enhance understanding of the models’
behavior. Alternative estimation techniques such as
Bayesian, least squares, or percentile estimation may
yield complementary insights.
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