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ABSTRACT 

This article introduced new four parameter lifetime distribution named Hybrid 

of Dhillon-Gompertz (HDG) using an additive methodology. Key properties of 

the model, including the cumulative distribution function, probability density 

function, failure rate, survival function, quantile function, mode, asymptotic 
behavior, order statistics, characteristic function moment and moment 

generating function, were derived. The parameters of the proposed distribution 

were estimated using the maximum likelihood estimation (MLE) method, and 

their applicability was tested using two sets of lifetime data. Goodness-of-fit 

comparison, based on Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), and Corrected Akaike Information Criterion 

(AICc), demonstrated the effectiveness of the proposed model. The findings 

indicate the HDG distribution exhibited superior performance compared to some 

existing distributions. These results highlight the potential of the proposed 

distributions to model lifetime data more accurately than existing alternatives. 

The findings of this study have significant theoretical and practical implications 

for reliability analysis and lifetime data modeling. The proposed hybrid 
distribution demonstrated superior performance over existing models, 

suggesting their potential for more accurate failure rate estimation and risk 

assessment in engineering, biomedical, and industrial applications. 

 
 

INTRODUCTION 

Classical probability distribution has long been employed 

to draw inferences about populations based on observed 

data. However, it is widely recognized that some of these 

distributions fail to adequately capture the underlying 

patterns present in real-world datasets. The Gompertz 
distribution is one of the most important distributions 

with a wide range of applications in statistical practice. It 

is characterized by a shape that increases rapidly at first 

and then slows down. It's commonly used in survival 

analysis, particularly in modelling human mortality rates, 

but it has applications in various other fields such as 

reliability engineering and demography. The Gompertz 

distribution has being considered as a well-known model 

with an increasing failure rate function that investigated 

the modelling a variety of data. It is monotonically 

increasing or decreasing, depending on its parameter and 
this makes it less flexible compared to other generalized 

or modified models that can model bathtub-shaped or 

non-monotonic failure rate.  

 

 

The cumulative distribution function and its 

corresponding probability density function of the 

Gompertz distribution is given by 

𝐹(𝑥) = 1 − 𝑒
−𝛼

𝛽
(𝑒𝛽𝑡−1)

    (1) 

𝑓(𝑥) = 𝛼𝑒𝛽𝑡𝑒
−𝛼

𝛽
(𝑒𝛽𝑡−1)

     (2) 

For t > 0, 𝛼, 𝛽 > 0. 

Where 𝛼 and 𝛽  are the scale and shape parameters 

respectively.  

Numerous modifications of the Gompertz distribution 

have been carried out by researchers. El-Gohary et al. 

2013) introduced a generalized Gompertz distribution 

with three parameters. Furthermore, Sarhan et al. (2016) 

developed the Exponentiated modified Weibull extension 

distribution, which generalizes the model introduced by 

El-Gohary et al. (2013).   
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Additionally, Ali et al. (2019), proposed a four-parameter 

extension known as the beta-Gompertz distribution, 

which encompasses several well-known lifetime 

distributions such as the beta-exponential and generalized 

Gompertz distributions as special cases. Adeyemi and 
Adeleke (2021), introduced a new probability distribution 

named Gompertz exponential pareto distribution with the 

properties and applications to bladder cancer and 

hydrological datasets using the Gompertz generator.  

Abba and Wang (2023) introduced a new flexible additive 

model that adequately describes complex reliability and 

survival data. It is called the Flexible Exponential Power-

Gompertz (FEPG4) distribution. Jabril et al. (2024), 

proposed a new statistical model named the Generalized 

Gompertz-G family of distribution using a method 

introduced by Alzaatreh. 

Several generalized models have been proposed to 
analyze lifetime data exhibiting non-monotone failure 

rates, particularly in reliability engineering Abba and 

Wang (2023). Examples of these models include the 

upper truncated Weibull distribution Zhang and Xie 

(2011), Chen's family of survival distributions by 

Chaubey and Zhang (2015), and the Beta Sarhan-Zaindin 

modified Weibull distribution by Saboor et al. (2016). 

Others are; A new weighted Gompertz distribution by 

Bakouch and Abd-El-Bar (2017), On some life 

distributions with flexible failure rate by Lu and Chiang 

(2018), A new extension of the exponential power 
distribution by Shakil et al. (2018), The log-normal 

modified Weibull distribution by Shakhatreh et al. 

(2019), A new extension of the topp–Leone-family of 

models by Muhammad et al. (2022), Classical and 

Bayesian estimations of improved Weibull–Weibull 

distribution by Wang et al. (2022), New Generalized odd 

Frechet-Odd Exponential-G Family of distribution by 

Sadiq et al. (2023) Chen-Burr XII Model as a Competing 

Risks Model by Kalantan et al. (2024). Despite their 

utility, research has revealed that many of these 

distributions display bathtub failure rate shapes but lack a 

relatively constant phase (Abba et al. 2022; Shakhatreh et 
al. 2019). This constant phase, which represents the 

useful life span of a component or system, is crucial for 

reliability modeling (Kosky et al. 2021). Therefore, 

constructing models that accurately capture this constant 

failure rate phase is essential. Merging the failure rates of 

two distributions is a powerful technique for creating 

more flexible and adaptable models that can capture 

complex patterns in data (Travirdizade and Ahmadpour 

2021). This approach allows researchers to combine the 

strengths of different distributions, resulting in models 

that can handle a wide range of data behaviors. Building 
on this idea, [26] developed the Additive Weibull model 

by combining the hazard rates of two Weibull 

distributions.  

On the other hand, Dhillon (1980), established a new 

distribution with hazard rate models which are expected 

to be useful in situations where the traditional 

distributions are rather cumbersome to apply or they 

failed to represent the failed failure data. The author 
symbolised the model as the FR model and described that 

the model may be utilized for describing various kinds of 

Monotonic Failure rate (MFR) and Non-Monotonic 

Failure Rate (NMFR). One of the weaknesses of the 

Dhillon distribution is that the Author neither derives the 

full log-likelihood function nor developed the score 

equations. Recently, modifications and extensions of the 

Dhillon were proposed by several researchers including a 

Modified Dhillon distribution by Iliyasu et al. (2025) 

which was developed using Beta integrated model 

approach, a four-parameter Bi-failure modes model by 

Abba et al. (2025a) in which the distribution of failure 
times due to one failure type follow Dhillon distribution, 

while the other failure type follows an exponential-power 

distribution. Abba et al (2025b) used the same 

methodology to construct a Weibull-Dhillon competing 

risk model. A robust multi-risk model and its reliability 

relevance by Abba et al. (2025c) with more robustness 

than a Weibull-Dhillon. The Additive Dhillon-Chen 

distribution by Amiru et al. (2025) which crossbred 

Dhillon and Chen distributions using additive 

methodology, the distribution can model both monotonic 

and non-monotonic failure rate pattern. Ibrahim and 
Aminu (2025) proposed a two-component Perks-Dhillon 

competing risk model by hybridizing Perks and Dhillon 

failure rate model. In this paper, we propose a new four-

parameter lifetime distribution, called A New Four-

parameter Hybrid Dhillon-Gompertz (HDG) distribution, 

which combines the failure rates of the Dhillon and 

Gompertz distributions in a serial system. The HDG 

distribution is designed to be highly flexible, allowing it 

to model data with both monotonic (consistent patterns) 

and non-monotonic (irregular patterns) behaviors. 

 

MATERIALS AND METHODS 

Proposed Hybrid Dhillon-Gompertz Distribution 

Let us consider a system with two components arranged 

and functioning in a series, each component is operating 

independently at a given time t. The system fails when the 

first component fails. In view of this, our new model 

signifies the lifetime of the entire serial system with two 

components. The first component’s lifetime follows a 

Dhillon distribution with parameters λ and θ, while the 

second component’s lifetime follows a Gompertz 

distribution with parameters α and β. The complete 

system’s lifetime is determined by the minimum lifetime 

of the two components. In other word, let 𝑇1 represent the 

lifetime of the first component, which follows Dhillon 

distribution with parameter λ and θ, and let 𝑇2  represent 

the lifetime of the second component which follows 
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Gompertz with parameter α and β. If the system lifetime 

is 𝑇, then 𝑇 = min (𝑇1 , 𝑇2 ) has the cumulative distribution 

function given by 

𝐹(𝑡) = 1 − 𝑒
− 𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼

𝛽
(𝑒𝛽𝑡−1)

 ,                 (3) 

and 

𝑓(𝑡) = (
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ 𝛼𝑒𝛽𝑡) 𝑒

− 𝑙𝑛(𝜆𝑡𝜃+1)−
𝛼

𝛽
(𝑒𝛽𝑡−1)

  (4) 

For t, λ, θ, α >  0 and 𝛽 ≥ 0. 

Where 𝜆 > 0, α > 0 are the scale parameters and θ, 𝛽 ≥
0 are the shape parameters respectively.

Figure 1. Plot of the HDG cumulative distribution function for some values of parameter. 

 

 

 

 

 

 

 

Figure: 2. Plot of the HDG probability density function for some values of parameter. 

The FR function as well as the survival function of the 

proposed HDG distribution is defined as  

ℎ(𝑡) =
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ 𝛼𝑒𝛽𝑡    (5) 

𝑆(𝑡) = 𝑒
− 𝑙𝑛(𝜆𝑡𝜃+1)−

∝

𝛽
(𝑒𝛽𝑡−1)

                   (6) 
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Figure: 3. Plot of the HDG failure rate function for some values of parameter. 

 
Figure: 4.  Plot of the HDG Survival function for some values of parameters.

 

Measure of central Tendency  

In this section, we present the measures of central 

tendency for the HDG distribution. 

Quartile Function  

Suppose the random variable 𝑇 has the HDG distribution, 

then the quantile function T is given by 𝑄(𝑝) = 𝐹−1(𝑝), 
which implies that finding 𝑡 such that 𝐹(𝑡) = 𝑝, for 𝑝 ∈
[0,1]. That is, 

Suppose that 𝐹(𝑡) = 𝑝, Then 

𝐹(𝑡) = 1 − 𝑒
− 𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼

𝛽
(𝑒𝛽𝑡−1)

= 𝑝   (7) 

This implies that  

𝑒
− 𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼

𝛽
(𝑒𝛽𝑡−1)

= 1− 𝑝    (8) 

Taking the natural log of both sides, we have 

−𝑙𝑛(𝜆𝑡𝜃 + 1) −
𝛼

𝛽
(𝑒𝛽𝑡 − 1) = ln(1 − 𝑝)   (9) 

Simplify equation (20) by eliminating the negative sign, 

lead to 

𝑙𝑛(𝜆𝑡𝜃 + 1) −
𝛼

𝛽
(𝑒𝛽𝑡 − 1) = − ln(1 − 𝑝)              (10) 

𝑙𝑛(𝜆𝑡𝜃 + 1) = − ln(1 − 𝑝) +
𝛼

𝛽
(𝑒𝛽𝑡 − 1).              (11) 

The above equation does not have a closed-form solution 

due to its complex dependence on t in both 𝑙𝑛(𝜆𝑡𝜃 + 1) 

and 𝑒𝛽𝑡. Therefore, a numerical method such as Newton 

Raphson method, bisection method, for finding the 𝑄(𝑃) 
for specific parameter values and probability is 

appropriate.  

Mode  

The mode of the HDG distribution is obtained by 

differentiating the density function in equation (4) with 

respect to 𝑡. 
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𝑓(𝑡) = ∫ (
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ 𝛼𝑒𝛽𝑡)𝑒

− 𝑙𝑛(𝜆𝑡𝜃+1)−
𝛼

𝛽
(𝑒𝛽𝑡−1),∞

0
     (12) 

𝑓(𝑡) = 𝑔(𝑡). ℎ(𝑡),                             (13) 

where  

𝑔(𝑡) = (
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃 + 1
+ 𝛼𝑒𝛽𝑡)  𝑎𝑛𝑑  

ℎ(𝑡) = 𝑒
− 𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼

𝛽
(𝑒𝛽𝑡−1)

.             (14) 

 

The mode of HDG distribution is given by  

 

𝑓′(𝑡) = ℎ(𝑡) (
(𝜆𝑡𝜃+1)(𝜆𝜃(𝜃−1)𝑡𝜃−2)−𝜆2𝜃2𝑡2𝜃−2)

(𝜆𝑡𝜃+1)
2 +

𝛼𝛽𝑒𝛽𝑡) +  𝑔(𝑡) ((
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+

𝛼𝑒𝛽𝑡) 𝑒
− 𝑙𝑛(𝜆𝑡𝜃+1)−

∝

𝛽
(𝑒𝛽𝑡−1)

)            (20) 

Asymptotic Behavior of HDG Distribution 

In this section, we investigate the behavior of the HDG 

model. The limit of equation (4) as 𝑡 → 0 and as 𝑡 → ∞ 

i.e. 

lim
𝑡→0

𝑓(𝑡) = lim
𝑡→∞

𝑓(𝑡) = 0             (21) 

𝑓(𝑡) = (
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ 𝛼𝑒𝛽𝑡)X 𝑒

− 𝑙𝑛(𝜆𝑡𝜃+1)−
𝛼

𝛽
(𝑒𝛽𝑡−1)

     (22) 

 

This implies that   

lim
𝑡→0

𝑓(𝑡) = lim
𝑡→0

[(
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+

𝛼𝑒𝛽𝑡)X 𝑒
− 𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼

𝛽
(𝑒𝛽𝑡−1)

]             (23) 

lim
𝑡→0

𝑓(𝑡) = lim
𝑡→0

(
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+

𝛼𝑒𝛽𝑡)X lim
𝑡→0
 𝑒
−𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼

𝛽
(𝑒𝛽𝑡−1)

             (24) 

lim
𝑡→0

𝑓(𝑡) = lim
𝑡→0

(
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ 𝛼𝑒𝛽𝑡)X 0   

                   (25) 

lim
𝑡→0

𝑓(𝑡) =  0               (26) 

Also, 

 lim
𝑡→∞

𝑓(𝑡) = lim
𝑡→∞

[(
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+

𝛼𝑒𝛽𝑡)X 𝑒
− 𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼

𝛽
(𝑒𝛽𝑡−1)

]           (28) 

lim
𝑡→∞

𝑓(𝑡) = lim
𝑡→∞

(
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+

𝛼𝑒𝛽𝑡)X lim
𝑡→∞

𝑒
− 𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼

𝛽
(𝑒𝛽𝑡−1)

            (29) 

lim
𝑡→∞

𝑓(𝑡) = lim
𝑡→∞

(
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ 𝛼𝑒𝛽𝑡)X 0           (30) 

lim
𝑡→∞

𝑓(𝑡) =  0              (31) 

Therefore, the HDG distribution has a unimodal. 

Order Statistics  

Let 𝑇1 , 𝑇2, … , 𝑇𝑛 be a random sample from the HDG 

distribution and 𝑇𝑘:𝑛 is the 𝑘𝑡ℎ order statistic of the 

sample, then the PDF of 𝑇𝑘:𝑛 is given by 

𝑓𝑘:𝑛(𝑡) =
1

𝐵(𝑘,𝑛−𝑘+1)
[𝐹(𝑡)]𝑘−1[1 −

𝐹(𝑡)]𝑛−𝑘𝑓(𝑡)                                                                       (32)  

𝑤ℎ𝑒𝑟𝑒, 𝐵(𝑘, 𝑛 − 𝑘 + 1) =
Γ(𝑘)Γ(𝑛 − 𝑘 + 1)

Γ(𝑛 − 𝑘 + 1 + 𝑘)

=
Γ(𝑘)Γ(𝑛 − 𝑘 + 1)

Γ(𝑛 + 1)

=
(𝑘 − 1)! (𝑛 − 𝑘)!

𝑛!
 

Therefore, equation (32) can be re-written as 

𝑓𝑘:𝑛(𝑡) =
1

{
(𝑘 − 1)! (𝑛 − 𝑘)!

𝑛!
}
[𝐹(𝑡)]𝑘−1[1

− 𝐹(𝑡)]𝑛−𝑘𝑓(𝑡)   

=
𝑛!

(𝑛−𝑘)!(𝑛−𝑘)!
 [𝐹(𝑡)]𝑘−1[1 − 𝐹(𝑡)]𝑛−𝑘𝑓(𝑡)            

              (33) 

Where 𝐹(𝑡) and 𝑓(𝑡) are given in equation (3) and (4) 

respectively. 

[𝐹(𝑡)]𝑘−1 = [1 − 𝑒
−{𝑙𝑛(𝜆𝑡𝜃+1)+

𝛼

𝛽
(𝑒𝛽𝑡−1)}

]
𝑘−1

            (34) 

= ∑ (−1)𝑖 (
𝑘 − 1
𝑖
) 𝑒

−𝑖{𝑙𝑛(𝜆𝑡𝜃+1)+
𝛼

𝛽
(𝑒𝛽𝑡−1)}𝑘−1

𝑖=0            (35) 

Similarly,  

[1 − 𝐹(𝑡)]𝑛−𝑘 = [𝑒
−{𝑙𝑛(𝜆𝑡𝜃+1)+

𝛼

𝛽
(𝑒𝛽𝑡−1)}

]
𝑛−𝑘

=

𝑒
−(𝑛−𝑘){𝑙𝑛(𝜆𝑡𝜃+1)+

𝛼

𝛽
(𝑒𝛽𝑡−1)}

                      (36) 

Inserting (33), (35) and (36) in (32), the pdf of the 𝑘𝑡ℎ 

order statistics can be given as in (37) 

𝑓𝑘:𝑛(𝑡) =

(

 
 
 

𝑛!

(𝑛−𝑘)!(𝑛−𝑘)!
∑ (−1)𝑖 (

𝑘 − 1
𝑖
) 𝑒

−𝑖{𝑙𝑛(𝜆𝑡𝜃+1)+
𝛼

𝛽
(𝑒𝛽𝑡−1)}𝑘−1

𝑖=0

× {𝑒
−(𝑛−𝑘){𝑙𝑛(𝜆𝑡𝜃+1)+

𝛼

𝛽
(𝑒𝛽𝑡−1)}

}

(
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ 𝛼𝑒𝛽𝑡) 𝑒

−{𝑙𝑛(𝜆𝑡𝜃+1)+
𝛼

𝛽
(𝑒𝛽𝑡−1)}

)

 
 
 
  

  

           (37) 

Characteristics Function of HDG Distribution 

Let 𝑇 be a random variable that follows HDG distribution 

with density function given in equation (4). The 

characteristic function of 𝑇 is defined as 

 

𝜑𝑇(𝑢) = 𝐸(𝑒
𝑖𝑢𝑡) = ∫ 𝑒𝑖𝑢𝑡𝑓(𝑡)𝑑𝑡

∞

−∞
              (38) 

Substitute (4) into equation (38) 

= ∫ 𝑒𝑖𝑢𝑡 (
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ 𝛼𝑒𝛽𝑡)

∞

−∞
𝑒
− 𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼

𝛽
(𝑒𝛽𝑡−1)

𝑑𝑡 (39) 

= ∫ 𝑒𝑖𝑢𝑡 (
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
)

∞

−∞
𝑒
− 𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼

𝛽
(𝑒𝛽𝑡−1)

𝑑𝑡 +

∫ 𝑒𝑖𝑢𝑡(𝛼𝑒𝛽𝑡)
∞

−∞
𝑒
− 𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼

𝛽
(𝑒𝛽𝑡−1)

𝑑𝑡              (40) 
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Recall that, 
1

1+𝑥
= ∑ (−1)𝑘∞

𝑘=0 𝑥𝑘 

By applying series expansion and letting 𝑥 = 𝜆𝑡𝜃 on 
1

𝜆𝑡𝜃+1
, we have 

1

𝜆𝑡𝜃+1
= ∑ (−1)𝑐∞

𝑐=0 (𝜆𝑡𝜃)𝑐            (41) 

𝐸(𝑒𝑖𝑢𝑡)

= ∫ 𝑒𝑖𝑢𝑡𝜆𝜃𝑡𝜃−1

∞

−∞

∑(−1)𝑐𝜆𝑐
∞

𝑐=0

𝑡𝜃𝑐𝑒
−𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼
𝛽
(𝑒𝛽𝑡−1)

𝑑𝑡

+ 

∫ 𝑒𝑖𝑢𝑡𝛼𝑒𝛽𝑡
∞

−∞
∑ (−1)𝑐𝜆𝑐∞
𝑐=0 𝑡𝜃𝑐𝑒

−
𝛼

𝛽
(𝑒𝛽𝑡−1)

𝑑𝑡           (42) 

𝜆𝜃∑ (−1)𝑐𝜆𝑐∞
𝑐=0 ∫ 𝑒𝑖𝑢𝑡

∞

−∞
𝑡𝜃−1+𝜃𝑐𝑒

− 𝑙𝑛(𝜆𝑡𝜃+1)−
𝛼

𝛽
(𝑒𝛽𝑡−1)

𝑑𝑡 +

∑ (−1)𝑐𝜆𝑐∞
𝑐=0 𝑡𝜃𝑐 ∫ 𝑒𝑖𝑢𝑡𝛼𝑒𝛽𝑡

∞

−∞
𝑒
−
𝛼

𝛽
(𝑒𝛽𝑡−1)

𝑑𝑡         (43) 

Hence, the characteristics function of HDG distribution 

is in equation (43). 

 

Moment and Moment Generating Function of HDG 

Distribution 

The moment generating function of 𝑇, 𝑀𝑇(𝑥) = 𝐸(𝑒
𝑡𝑥) 

is given by 

𝑀𝑇(𝑥) = 𝐸(𝑒
𝑡𝑥) = ∫ 𝑒𝑡𝑥𝑓(𝑡)𝑑𝑡

∞

0
          (44) 

Applying Taylor series to expand 𝑒𝑡𝑥 and have 

𝑒𝑡𝑥 = ∑
𝑥𝑖

𝑖!

∞
𝑖=0 𝑡𝑖            (45) 

Therefore,  

𝑀𝑇(𝑥) = ∫ ∑
𝑥𝑖

𝑖!

∞
𝑖=0 𝑡𝑖𝑓(𝑡)𝑑𝑡

∞

0
          (46) 

= ∑
𝑥𝑖

𝑖 !

∞
𝑖=0 ∫ 𝑡𝑖𝑓(𝑡)𝑑𝑡 = 1 +∑

𝑥𝑖

𝑖!

∞
𝑖=0

∞

0
𝐸(𝑡𝑖)𝑑𝑡       (47) 

To find the 𝑖𝑡ℎ moment about the origin i.e. 𝑢𝑖
′, 

𝑢𝑖
′ = 𝐸(𝑡𝑖) = ∫ 𝑡𝑖𝑓(𝑡)𝑑𝑡

∞

0
          (48) 

= ∫ 𝑡𝑖 (
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ 𝛼𝑒𝛽𝑡)𝑒

− 𝑙𝑛(𝜆𝑡𝜃+1)−
𝛼

𝛽
(𝑒𝛽𝑡−1)

𝑑𝑡
∞

0
 (49) 

Recall that 
1

𝜆𝑡𝜃+1
, ∑ (−1)𝑐∞

𝑐=0 (𝜆𝑡𝜃)𝑐,  

therefore 
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
= 𝜆𝜃𝑡𝜃−1 ∑ (−1)𝑐𝜆𝑐∞

𝑐=0  

This implies that 
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
= ∑ (−1)𝑐𝜆𝑐+1𝜃∞

𝑐=0 𝑡(𝑐+1)𝜃−1       (50) 

Substitute equation (50) into equation (49) and have 

𝑢𝑖
′ = ∫ 𝑡𝑖(∑ (−1)𝑐𝜆𝑐+1𝜃∞

𝑐=0 𝑡(𝑐+1)𝜃−1 +
∞

0

𝛼𝑒𝛽𝑡)𝑒
−𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼

𝛽
(𝑒𝛽𝑡−1)

𝑑𝑡        (51) 

=

∑ (−1)𝑐𝜆𝑐+1𝜃∞
𝑐=0 ∫

𝑡𝑖+(𝑐+1)𝜃−1𝑒
−𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼

𝛽
(𝑒𝛽𝑡−1)

𝑑𝑡
+

𝛼 ∫ 𝑡𝑖𝑒𝛽𝑡𝑒
− 𝑙𝑛(𝜆𝑡𝜃+1)−

𝛼

𝛽
(𝑒𝛽𝑡−1)

𝑑𝑡
∞

0

∞

0

     

     (52) 

Now, we let 𝑚 =
∝

𝛽
𝑒𝛽𝑡 to simplify further and evaluate 

𝑢𝑖
′ by transforming the integral using substitution 

method 

𝑚 =
𝛼

𝛽
𝑒𝛽𝑡 , 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑡 =

1

𝛽
ln (

𝑚𝛽

𝛼
), and 𝑑𝑡 =

1

𝛽
𝑑𝑚 

𝑢𝑖
′ = ∑ (−1)𝑐𝜆𝑐+1𝜃∞

𝑐=0 𝛻1(𝑚) + 𝛼𝛻2(𝑚)             (53) 

Where 𝛻1(𝑚) 𝑎𝑛𝑑 𝛼𝛻2(𝑚) are the integrals over m. 

Now, the MGF is denoted by 

𝑀𝑇(𝑥) = 1 +∑
𝑥𝑖

𝑖!
(−1)𝑐𝜆𝑐+1𝜃

∞

𝑐=0

𝛻1(𝑚) + 

𝛼𝛻2(𝑚)                   (54) 

 

Parameter Estimation 

In this section, we employ the maximum likelihood 

estimation (MLE) method to estimate the parameters of 

the HDG distribution.  

Maximum Likelihood Estimator 

Suppose that the likelihood function for a dataset of 

independent observations 𝑡1, 𝑡2, …… . , 𝑡𝑛 form the density 

function 𝑓(𝑡) is given by 

𝐿𝑓(𝜔) =  ∏ 𝑓(𝑡𝑖)
𝑛
𝑖=1                 (55) 

𝐿𝑓(𝜔) =  ∏ (
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+𝑛

𝑖=1

αβ𝑡𝛽−1𝑒𝑡
𝛽
) 𝑒− 𝑙𝑛(𝜆𝑡

𝜃+1)+𝛼(1−𝑒𝑡
𝛽
)             (56) 

Taking the natural log of the likelihood function and 

simplify it by turning products into sums, we have 

ℓ𝑓(𝜔) = ∑ 𝑙𝑛𝑛
𝑖=1  𝑓(𝑡𝑖)               (57) 

ℓ𝑓(𝜔) = ∑ [ln
(
𝜆𝜃𝑡𝑖

𝜃−1

𝜆𝑡𝑖
𝜃+1

+ αβ𝑡𝑖
𝛽−1𝑒𝑡𝑖

𝛽
)

− 𝑙𝑛(𝜆𝑡𝑖
𝜃 + 1) + 𝛼(1 − 𝑒𝑡𝑖

𝛽
 

]𝑛
𝑖=1    (59) 

We can derive the score equations by taking the partial 

derivatives of (59) with respect to 𝜆, 𝜃, α, and 𝛽 and 

equate to zero, which eventually produce MLEs (𝜆̂, 𝜃, α̂, 

𝛽̂) of (𝜆, 𝜃, α, 𝛽). Yet, the score equations from (59) may 

not lead to closed-form solutions, and hence in this 

research, we recommend using any of the statistical 
software available like R package to maximize the log-

likelihood function in (59) 

 

RESULTS AND DISCUSSION 

In this session, we present the empirical evaluation of the 

proposed HDG model using well-known datasets 

representing failure times and survival times data. The 

objective is to assess the flexibility and reliability of the 

proposed model in capturing data patterns characterized 

by bathtub-shaped failure rates. Each dataset is analyzed 

and compared with other existing models previously 
discussed in the literature. The comparison is based on 

model selection criteria, including Log-likelihood, 

Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), and Corrected Akaike 

Information Criterion (AICc). The model with the 

smallest values across these criteria is considered the 

best-fitting model. In addition to numerical comparison, 

graphical tools such as histograms and Total Time on Test 
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(TTT) plots are used to examine the shape of the failure 

rate and validate model suitability. 

Modalities of the Simulation Studies 

In this part, we perform a Monte Carlo simulation to 

evaluate the performance of maximum likelihood 
estimation (MLE) for the proposed HDG distribution. 

First, the probability density function (PDF) of the 

distribution is specified, from which the cumulative 

distribution function (CDF) is obtained numerically by 

integration. An inverse CDF (quantile function) is then 

constructed using interpolation, allowing random sample 

generation from the distribution. Samples are generated 

for different sample sizes (30, 60, 90, and 120) using 

fixed true parameter values (λ = 0.2, θ = 2, α = 0.2, β = 

1.0), and each experiment is replicated 100 times for 

statistical stability. For each simulated dataset, the 

parameters are estimated through MLE by minimizing the 

negative log-likelihood function using the nlminb 

optimization routine under specified bounds. The 
estimated values are compared with assumed true 

parameters to compute the bias and mean squared error 

(MSE) for each parameter across replications. The results 

are summarized in three matrices; Esti (mean estimates), 

Biass (biases), and Meansq (MSEs), which show how 

estimation accuracy and precision improve as the sample 

size increases. This approach provides a comprehensive 

numerical assessment of the estimators’ performance for 

the proposed model. 

 

 Table 1 Estimators’ performance based on Average mean, Bias and MSE of the HDE parameters at four distinct 

sample size. 

Table 1 presents the results of a Monte Carlo simulation 

conducted to assess the performance of the Maximum 

Likelihood Estimators (MLEs) for the parameters λ = 0.2, 

θ = 1.8, α=0.3, and β = 0.15 of the proposed distribution 

under varying sample sizes (n = 30, 60, 90, 120). The 

estimated means, biases, and mean squared errors (MSEs) 

are reported for each parameter. As the sample size 

increases, the estimated means of all parameters move 

closer to their true values, while both the bias and MSE 

values generally decrease, indicating improved 

estimation accuracy and consistency. For smaller 
samples, such as n = 30, larger biases and MSEs are 

observed, particularly for θ and α, suggesting greater 

variability and slight overestimation. However, with 

larger samples (n = 90, 120), the estimates stabilize, and 

the biases become minimal, confirming that the MLEs are 

asymptotically unbiased and efficient. Furthermore, the 

results demonstrate that the Maximum Likelihood 

Estimation method performs well for the HDG model, 

providing reliable parameter estimates that improve with 

increasing sample size. 

Applications 

In this section, we utilized some existing real-life data sets 

to evaluate the flexibility of our proposed HDG 

distribution. 

 

Early Cable-Joint Failure Data 

Table 2 presents 16 early cable-joint failure (ECJF) times. 

The data was reported by Tang et al. (2015) and was 

utilized by several authors as a benchmark for testing 

lifetime distributions with bathtub-shaped or non-

monotonic failure rate (FR) functions, owing to its clear 

reflection of early failure behaviour. Figure 4 shows that 
the data exhibits a bathtub-shaped failure rate, confirming 

that models allowing for non-monotonic FR functions 

(e.g., HDE, OCE, hybrid models) are more appropriate 

than the simple exponential distribution. 

Sampl

e Size 
𝜆 = 

0.2 

𝜃 =
 1.8 

𝛼 = 

0.3 

𝛽 = 

0.15 

𝜆 = 

0.2 

𝜃 =
 1.8 

𝛼 = 

0.3 

𝛽 = 

0.15 

𝜆 = 

0.2 

𝜃 =
 1.8 

𝛼 = 0.3 𝛽 = 

0.15 

Estimated Means Bias MSE 

30 0.210

5 

1.969

6 

0.187

1 

1.074

3 

0.010

5 

0.169

6 

-

0.112

9 

0.9243 0.002

0 

0.211

9 

0.0143 0.873

3 

60 0.217

3 

1.971

1 

0.194

2 

1.043

3 

0.017

3 

0.171

2 

-

0.105

8 

0.8933 0.001

9 

0.195

0 

0.0125 0.873

3 

90 0.215

7 

1.988

5 

0.192

1 

1.023

9 

0.015

7 

0.177

5 

-1079 0.8739 0.002

0 

0.195

5 

0.0127 0.773

2 

120 0.210
4 

1.926
5 

0.190
2 

1.035
9 

0.010
4 

0.126
5 

-
0.109

8 

0.8859 0.001
9 

0.162
5 

0.0131 0.793
1 
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Table 2 Early cable-joint failure times data 

5 43 65 194 259 262 354 620 968 2100 2629 2676 2676 2744 4254 4254 

 

Figure 5 Empirical Scaled TTT-transform plot for ECJF data. 

Figure 6 Histogram of ECJF data

Figure 6 shows the histogram of early cable-joint failure 

data with a high concentration of failures at the beginning 

(0–500), reflecting infant mortality due to initial defects, 

followed by a period of reliability with few failures, and 

then a resurgence of failures around 2000–3000 and  

beyond 4000, indicating wear-out.  
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Table 3 Descriptive statistics for ECJF data.

 

N Min. 1st Qu. Median Mean Sd. 3rd Qu. Max. 

16 5.0 242.8 794.0 1506.4 1520.59 2676.0 4254.0 

Table 3 reveals that the dataset consists of 16 

observations with failure times ranging from 5.0 to 

4254.0. The first quartile (242.8) and median (794.0) 
indicate that half of the failures occur relatively early, 

while the mean (1506.4) is much larger, reflecting the 

influence of later failures. The third quartile (2676.0) and 

maximum (4254.0) show that some joints last much 

longer, creating a wide spread in the data, as confirmed 

by the large standard deviation (1520.6). Overall, the data 
suggest a mix of early and late failures with high 

variability. 

Table 4 Parameters estimation of the HDG distribution and the five other existing distributions for the infected cases 

data. 

Model Parameters 

HDG 𝜆̂ = 0.0075 𝜃 = 0.9464 α̂ = 0.0002 β̂ = 0.0132  

AGW α̂ =  0.6492 ɤ̂ = 0.0006 𝜆̂ = 0.1669 𝜃 = 709.20  

FACG ɤ̂ = 0.1781 α̂ = 0.0241 𝜃 = 0.705.30 𝜆̂ = 0.9464  

AMW ɤ̂ = 7.7e-5 α̂ = 0.0140 𝜆̂ = 0.0351 𝜃 = 0.5611 β̂ = 149.30 

INMW α̂ = 0.0005 β̂ = 8.6-5 ɤ̂ = 0.5925 𝜃 = 0.5.387 𝜆̂ = 0.0118 

Table 5 Goodness-of-fit test results of the HDG distribution and the four other existing distributions for the ECJF 

dataset. 

MLE, -LL, AIC, AICc and BIC for the trained models on the ECJF dataset 

Model -L AIC AICc BIC 

HDG 108.03 224.06 227.14 227.62 

AGW 121.59 251.18 254.82 254.27 

FACG 122.04 252.09 255.72 254.27 

AMW 124.52 259.05 265.05 262.91 

INMW 129.09 268.18 274.18 272.04 

Table 5 above shows the MLEs of the models’ 

parameters, along with the log-likelihood, AIC, AICc, 

and BIC statistics. It is observed that the HDG model has 

the smallest values for AIC, AICc, and BIC among the 
competing models, indicating that the HDG distribution 

provides the best fit for the dataset. 

 

Survival times data for bladder cancer among 128 

individuals 

Table 6 presents the remission periods in months for 

bladder cancer among 128 individuals and used by many 

researchers including Marshal-Olkin (1997), Karakas and 

Bulut (2019) among others. Figure 7 shows the Total 

Time on Test (TTT) plot, which is used to visualize the 

nature of the failure rate (hazard function) in reliability 
analysis. The diagonal line represents a constant failure 

rate, while the purple curve represents the empirical TTT 

transform based on the observed data. Since the curve lies 

slightly below the diagonal in the early part and above it 

in the latter part, it suggests a decreasing failure rate at the 

beginning followed by an increasing failure rate later on, 

which is characteristic of a bathtub-shaped FR function. 

 

 

26 



 
A New Four Parameter Hybrid of … Usman et al. 

 

 

JOBASR2026 4(1): 18-30 

 

   

Table 6 Survival times data for bladder cancer among 128 individuals. 

0.08 0.2 0.4 0.5 0.51 0.81 0.9 1.05 1.19 1.26 1.35 1.4 

1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26 2.46 2.54 2.62 2.64 

2.69 2.69 2.75 2.83 2.87 3.02 3.25 3.31 3.36 3.36 3.48 3.52 

3.57 3.64 3.7 3.82 3.88 4.18 4.23 4.26 4.33 4.34 4.4 4.5 

4.51 4.87 4.98 5.06 5.09 5.17 5.32 5.32 5.34 5.41 5.41 5.49 

5.62 5.71 5.85 6.25 6.54 6.76 6.93 6.94 6.97 7.09 7.26 7.28 

7.32 7.39 7.59 7.62 7.63 7.66 7.87 7.93 8.26 8.37 8.53 8.65 

8.66 9.02 9.22 9.47 9.74 10.06 10.34 10.66 10.75 11.25 11.64 11.79 

11.98 12.02 12.03 12.07 12.63 13.11 13.29 13.8 14.24 14.76 14.77 14.83 

15.96 16.62 17.12 17.14 17.36 18.1 19.13 20.28 21.73 22.69 23.63 25.74 

25.82 26.31 32.15 34.26 36.66 43.01 46.12 79.05         

 
Figure 7 Empirical Scaled TTT-transform plot for bladder cancer among 128 individuals. 

 

Figure 8 Histogram data for bladder cancer among 128 individuals. 
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Figure 8 shows the survival times of 128 individuals with 

bladder cancer, where the x-axis represents time (t) and 

the y-axis represents density. The distribution is highly 

right-skewed, with the majority of individuals 

experiencing relatively short survival times clustered 
between 0 and 20 units, and very few surviving beyond 

40 units. This indicates that most patients had early 

failures or short survival durations, while a small fraction 

experienced much longer survival, creating a long tail in 

the distribution. Such a pattern suggests the presence of 

early high risk of death followed by a decreasing FR over 
time. 

Table 7 Descriptive statistics for the 128 bladder cancer survival times 

N Min. 1st Qu. Median Mean Sd. 3rd Qu. Max. 

128 0.080 3.348 6.395 9.66 10.51 11.838 79.050 

 

Table 7 presents the summary statistics of the 128 bladder 

cancer survival times showing a wide variation in survival 

durations. The minimum survival time is very short 

(0.08), while the maximum extends to 79.05, indicating a 

long right tail. The first quartile (3.35) and median (6.40) 

suggest that at least half of the patients survived less than 

7 months, indicating a concentration of early death. The 

mean survival time (9.66) is higher than the median, 

reflecting the skewness caused by a few individuals with 

much longer survival. The standard deviation (10.51) is 

relatively large compared to the mean, emphasizing high 

variability in the data. Overall, most individuals had short 

survival durations, but a small subset survived 

significantly longer, consistent with the skewed 

histogram pattern. 

 

Table 8 Parameters estimation of the HDG distribution and the three other existing distributions for the infected 
cases data. 

Model Parameters 

HDG 𝜆̂ = 0.0305 𝜃 = 1.7014 α̂ = 0.0251 β̂ = 0.0008 

MOPG â = 0.1068 b̂ = 0.000001 ĉ = 1.5194 d̂ = 0.1098 

MOG â = 0.1068 b̂ = 0.000001 - d̂ = 0.9999 

PG â = 0.0939 b̂ = 0.000001 ĉ = 1.0478 - 

 

 

Table 9 Goodness-of-fit test results of the HDG distribution and the three other existing distributions for the for 

bladder cancer among 128 individuals. 

 

Model L AIC AICc BIC 

HDG 818.7800 826.7800 827.1050 835.2088 

MOPG 820.5461 828.5461 828,8713 839.9542 

MOG 828.6841 834.6841 834.8792 843.2402 

PG 1084.1740 10901740 1090.3691 1098.7300 

Table 9 presents four fitted models (HDG, MOPG, MOG, 

and PG) with their respective information criteria values 
(AIC, AICc, and BIC). Lower values of these statistics 

indicate a better fit, accounting for model complexity. 

Among the models, HDG distribution yield the smallest 

AIC (818.78), AICc (826.78), and BIC (835.21), 

confirming that it provides the best fit to the bladder 

cancer survival data  

CONCLUSION 

In this article, we presented the empirical evaluation 

newly proposed HDG lifetime distribution developed 

using an additive methodology. The study assessed the 

flexibility and performance of the model using real-life 
datasets representing bathtub-shaped failure rate pattern 

(i.e. Decreasing, Constant and Increasing). The 

parameters of the proposed model were estimated using 

the Maximum Likelihood Estimation (MLE) method, and 

its goodness-of-fit was compared with that of existing 

lifetime models using the Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC), and 

Corrected Akaike Information Criterion (AICc). The 

empirical results revealed that the proposed HDG model 

outperformed the existing distributions across all datasets 

considered. For the Early Cable-Joint Failure (ECJF) 
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dataset, the HDG distribution provided the best fit, 

outperforming the AGW, FACG, AMW, and INMW 

models, confirming its strength in handling engineering 

data with early-life failures. For the Bladder Cancer 

dataset, which exhibited a non-monotonic failure rate, the 
HDG distribution again achieved the best fit among 

competing models such as MOPG, MOG, and PG, 

thereby demonstrating its suitability for biomedical 

survival data characterized by early mortality and long-

term survivorship. Furthermore, the findings indicate that 

the HDG distribution is highly flexible and reliable model 

capable of accurately describing a broad range of lifetime 

behaviors. Its superior goodness-of-fit across the two 

datasets underscores its robustness and practical utility in 

reliability engineering, industrial maintenance, and 

biomedical survival analysis. 

Future research can investigate additional properties of 

the proposed HDG model such as Mean Residual 

Lifetime (MRL) to enhance understanding of the models’ 

behavior. Alternative estimation techniques such as 
Bayesian, least squares, or percentile estimation may 

yield complementary insights. 
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