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ABSTRACT 

In nigeria, which has one of the world's highest hiv burdens, pneumonia is a 

leading cause of mortality among immune-compromised individuals. This 

bidirectional relationship where hiv increases susceptibility to pneumonia and 

pneumonia accelerates hiv progression is poorly captured by traditional models 

that ignore real world time delays. We develop a delay differential equation (dde) 

model incorporating critical delays: pneumonia incubation, treatment initiation, 

and immune recovery. The basic reproduction number (ℛ0) is derived, and the 

disease-free equilibrium is shown to be locally and globally stable when ℛ0 <
1. Model solutions are proven to be positive and bounded. Sensitivity analysis 

reveals that transmission rates are the most influential parameters. Numerical 

simulations demonstrate that time delays significantly elevate infection peaks 

and prolong epidemic duration. Longer diagnostic and treatment delays increase 

hiv and pneumonia prevalence by 15% and 25-30%, respectively, while 

combined delays result in the highest overall burden and slowest convergence to 

equilibrium. Our findings underscore that reducing delays in diagnosis and 

treatment is critical for outbreak control. This delay based model provides a more 

realistic framework for understanding hiv-pneumonia coinfection dynamics and 

offers validated insights for guiding public health intervention strategies in 

Nigeria. 

 
 

INTRODUCTION 

Human Immunodeficiency Virus (HIV) continues to be 

one of the major public health concerns across the world. 

According to UNAIDS (2025), more than 38 million 

people are currently living with HIV, with sub-Saharan 

Africa accounting for over two-thirds of these cases. 

Nigeria remains one of the most affected countries, with 

about 1.9 million people living with HIV and an adult 

prevalence rate of around 1.3% (Onovo et al., 2023; 

Lawal et al., 2024). Although the introduction of 

antiretroviral therapy (ART) has greatly reduced HIV 

related deaths worldwide (Bassey et al., 2023), the 

infection continues to cause significant illness and death, 

especially in Nigeria where late diagnosis and poor 

treatment adherence are still common (Omololu et al., 

2024). 

Pneumonia is one of the most frequent secondary 

infections found in people living with HIV. This includes 

community acquired pneumonia (CAP), hospital 

acquired pneumonia, and Pneumocystis jirovecii 

pneumonia (PJP).  

 

 

 

 

 

 

 

Many studies have shown that people with HIV are more 

likely to get pneumonia, and when they do, it tends to be 

more severe than in those without HIV. The risk of 

hospital admission and death rises sharply as CD4 (helper 

cells) counts drop (Benito et al., 2012; Crothers et al., 

2011; Feldman et al., 2022). In Nigeria, pneumonia 

remains a major cause of respiratory illness and death 

among HIV positive patients, especially in hospitals 

where diagnosis and treatment are often delayed 

(Onyedum et al., 2011; Omololu et al., 2024). 

The connection between HIV and pneumonia works in 

both directions. HIV weakens the immune system by 

affecting white blood cells that help fight infections, 

making the body more open to pneumonia causing germs 

(Benito et al., 2012; NIH, 2024). At the same time, 

repeated pneumonia infections can make HIV progress 

faster by increasing inflammation and putting more stress 

on the immune system (Crothers et al., 2011). This creates 

a cycle where a weak immune system leads to more 

infections, and more infections make the immune system 

even weaker.  
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Understanding this relationship is important for 

improving treatment and prevention strategies. 

Mathematical models have long helped scientists 

understand how diseases spread and behave. These 

models, often written as ordinary differential equations 

(ODEs), help estimate key values such as the basic 

reproduction number (ℛ0), predict outbreak patterns, and 

test the impact of control measures (Diekmann et al., 

1990; van den Driessche&Watmough, 2002). However, 

ODE models assume that changes between stages happen 

instantly, which is not realistic for HIV–pneumonia cases 

where there are delays in incubation, diagnosis, 

treatment, and immune recovery (Hale &VerduynLunel, 

1993; McCluskey, 2010). Research shows that such 

delays can affect the stability of the disease system and 

may lead to waves or recurring infections (Beretta 

&Kuang, 2002; Zhou, 2009). In Nigeria, where diagnosis 

and treatment often take time, these delays play a key role 

in how the disease behaves. 

HIV remains one of the most serious global health 

problems. It weakens the immune system, making people 

more likely to develop other infections. Among these, 

lung infections such as pneumonia are among the most 

common. In Nigeria, HIV continues to affect millions of 

people, many of whom have limited access to consistent 

treatment. Respiratory diseases remain major causes of 

hospital admissions, particularly among individuals with 

weakened immunity. Although many studies have 

examined HIV and tuberculosis together, research that 

focuses on HIV and pneumonia coinfection remains 

limited. 

Although this study focuses on pneumonia, the literature 

on HIV and tuberculosis provides useful insight because 

both affect the lungs and share similar health system 

challenges. A meta-analysis by Reward, Ike, Muo, Soga-

Oke, and Mbaawuaga (2020) found that about 25.8% of 

people with tuberculosis in Nigeria were also living with 

HIV. Regional differences were observed, with the North 

Central zone recording the highest rate (34.3%) and the 

Southeast the lowest (19.3%). Similarly, a five year 

retrospective study in Enugu State by Nwoga, Igweagu, 

and Umeh (2024) reported a coinfection rate of 29.0% 

among tuberculosis patients. Occupation and place of 

residence were found to influence infection rates, with 

urban residents showing lower prevalence. An earlier 

hospital based study by Iliyasu and Babashani (2009) also 

recorded a 10.5% coinfection rate among HIV patients 

with active tuberculosis. 

There are fewer published studies that examine 

pneumonia or other lung infections among people living 

with HIV in Nigeria. A review of respiratory admissions 

at the Federal Medical Centre, Owo, showed that 

pneumonia accounted for 21.1% of respiratory cases. 

Additionally, 17.5% of pulmonary tuberculosis cases 

were HIV positive (Annals of Medical & Health Sciences 

Research, 2023). This pattern highlights that lung 

infections, including pneumonia, contribute significantly 

to the disease burden among HIV infected individuals. 

Mathematical modeling helps to understand how diseases 

spread and to evaluate possible control measures. Several 

models have been developed in Nigeria to study HIV 

transmission and related diseases. Musa and Udoaka 

(2024) developed a model to examine HIV spread and 

control strategies in different regions of Nigeria, finding 

that wider access to treatment and preventive measures 

reduced infection levels. Another study, 'Understanding 

the Transmission Dynamics and Control of HIV 

Infection: A Mathematical Model Approach' (2024), 

emphasized that delays in treatment significantly affect 

control outcomes. Chibuisi et al. (2020) demonstrated 

how delay differential equations can be used to capture 

the real life time delays in disease spread and recovery 

processes. 

 

MATERIALS AND METHODS 

Research Design 

This study uses a deterministic mathematical approach to 

study how HIV and pneumonia interact within the 

Nigerian population. Instead of focusing only on the 

present state of infection, the model also considers the 

effect of time delays for example, the time between 

infection, showing symptoms, getting diagnosed, starting 

treatment, and recovering. 

These delays are included using delay differential 

equations (DDEs) because, in real life, diseases like HIV 

and pneumonia do not progress instantly. It takes time 

before symptoms appear or treatment begins. 

A deterministic design is suitable because it helps identify 

general trends, such as when the disease will die out or 

persist, without focusing on random variations. 

 Model Formulation 

The model divides the population into five groups 

susceptible, HIV only, pneumonia only, coinfected, and 

recovered. People move between these groups according 

to infection, recovery, and death rates. 

These delays make the system more realistic and help 

explain why infections sometimes rise and fall in waves 

instead of settling quickly. 
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Figure 1 Schematic Diagram for HIV-Pneumonia Coinfection 

𝑑𝑆

𝑑𝑡
= 𝜆 − 𝜆𝐻(𝑡)𝑆(𝑡) − 𝑆(𝑡)𝜆𝑝(𝑡 − 𝜏𝑝) – 𝜇𝑆(𝑡) (1) 

𝑑𝐻

𝑑𝑡
= 𝜆𝐻(𝑡)𝑆(𝑡) − 𝛼𝑃𝐻(𝑡)𝜆𝑝(𝑡 − 𝜏𝑝) − (𝜇 + 𝛿𝐻)𝐻(𝑡)

               (2)                                    

𝑑𝑃

𝑑𝑡
= 𝑆(𝑡)𝜆𝑝(𝑡 − 𝜏𝑝) − 𝛼𝐻𝑃(𝑡)𝜆𝐻(𝑡) − (𝛾𝑝 + 𝜇 +

𝛿𝑝)𝑃(𝑡)      (3)                                    

𝑑𝐶

𝑑𝑡
= 𝛼𝑃𝐻(𝑡)𝜆𝑝(𝑡 − 𝜏𝑝) + 𝛼𝐻𝑃(𝑡)𝜆𝐻(𝑡) − (𝛾𝐶(𝑡) +

𝜇 + 𝛿𝐶)𝐶(𝑡)     (4) 

𝑑𝑅

𝑑𝑡
= 𝛾𝑝𝑃(𝑡 − 𝜏𝑑) + 𝛾𝐶𝐶(𝑡 − 𝜏𝑑) − 𝜇𝑅(𝑡) − 𝜒𝜆𝑝(𝑡 −

𝜏𝑟)𝑅(𝑡)      (5)                           

2.2.1 Forces of infection (with interaction modifiers ϕ,η 

∈ [0,1] 

λ𝐻(t)= 𝛽𝐻
 H(t)+ϕ C(t)

N(t)
,                                                     (6) 

    λ𝑝(𝑡) = 𝛽𝑃
P(t)+η C(t)

N(t)
    (7) 

 

 

 

 

Notations 

Table 1: Parameter descriptions 

Parameters Descriptions 

S(t) Susceptible individuals. 

H(t) Infected individuals with HIV 

P(t)  Infected individuals with pneumonia 

C(t) Coinfected individuals  

R(t)  Recovered individuals from pneumonia/coinfection 

N(t) Total population size 

λ𝐻(t) The force of infection for acquiring HIV 
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𝜆𝑃(𝑡) The force of infection for acquiring pneumonia 

Λ Recruitment rate into susceptible  

𝜇 Natural mortality rate 

𝛽𝐻 Contact rate for HIV transmission. 

𝛽𝑝 Contact rate for pneumonia transmission. 

Φ Modification factor for the infectiousness of Coinfected individuals C 

relative to HIV only. 

𝜒 Modification factor for the infectiousness of coinfected individuals ‘C’ 

relative to pneumonia only. 

𝛼𝐻 Enhancement factor for a pneumonia only individual P to acquire HIV.  

 

𝛼𝑝 Enhancement factor for an HIV only individual H to acquire pneumonia.  

 

𝛾𝑃 Recovery rate from pneumonia only infection. 

𝛾𝐶 Recovery rate from pneumonia for coinfected individuals. 

𝛿𝐻 Disease induced mortality rate due to HIV. 

𝛿𝑝 Disease induced mortality rate due to pneumonia. 

𝛿𝑐 Excess mortality rate due to coinfection 

Χ Reduction factor for susceptibility to pneumonia after recovery.  

𝜏𝑃 Pneumonia Incubation Delay.  

𝜏𝑑 Diagnosis/Treatment Delay.   

𝜏𝑟 Immune Recovery Delay.  

Positivity and Boundedness 

Theorem: Positivity and Boundedness of the Solutions 

Let 𝑁(𝑡) = 𝑆(𝑡) + 𝐻(𝑡) + 𝑃(𝑡) + 𝐶(𝑡) + 𝑅(𝑡) be the 

total population. Then the solution trajectories are 

uniformly positive and bounded in the region 

Proof: Sum all equations of the system:   
𝑑𝑁

𝑑𝑡
=
𝑑𝑆

𝑑𝑡
+
𝑑𝐻

𝑑𝑡
+
𝑑𝑃

𝑑𝑡
+
𝑑𝐶

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
 

𝑑𝑁

𝑑𝑡
= 𝜆 − 𝜇𝑁 − 𝛿𝐻𝐻(𝑡) − 𝛿𝑃𝑃(𝑡) − 𝛿𝐶𝐶(𝑡)        (8) 

𝑠𝑖𝑛𝑐𝑒 𝛿𝐻,𝛿𝑃, 𝛿𝐶 ≥ 0, the inequality holds: 

−𝛿𝐻 − 𝛿𝑃 − 𝛿𝐶 ≤ 0 
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Thus, we can write  

𝑑𝑁

𝑑𝑡
≤ 𝜆 − 𝜇𝑁(𝑡)    (9) 

This inequality tells us that the growth rate is at most 𝜆 −

𝜇𝑁(𝑡)
𝑑𝑁

𝑑𝑡
+ 𝜇𝑁(𝑡) ≤ 𝜆 

𝑑𝑁

𝑑𝑡
+ 𝜇𝑁(𝑡) = 𝜆    (10) 

Using integrating factor method 𝐼𝐹 = 𝑒∫𝜇𝑑𝑡 = 𝑒𝜇𝑡, 
multiply both sides of (10) by the IF 

𝑒𝜇𝑡 (
𝑑𝑁

𝑑𝑡
+ 𝜇𝑁(𝑡)) = 𝜆𝑒𝜇𝑡𝑒𝜇𝑡

𝑑𝑁

𝑑𝑡
+ 𝜇𝑒𝜇𝑡𝑁(𝑡) = 𝜆𝑒𝜇𝑡  

𝑑

𝑑𝑡
(𝑁(𝑡)𝑒𝜇𝑡) ≤ 𝜆𝑒𝜇𝑡    (11) 

Integrating both side from 0 to t: 

𝑁(𝑡) − 𝑁(0) ≤ ∫ 𝜆𝑒𝜇𝑠
𝑡

0
𝑑𝑠  (12) 

∫ 𝜆𝑒𝜇𝑠
𝑡

0

𝑑𝑠 = 𝜆∫ 𝑒𝜇𝑠
𝑡

0

𝑑𝑠 

∫ 𝑒𝜇𝑠
𝑡

0

𝑑𝑠 = 𝜆[
1

𝜇
𝑒𝜇𝑠]0

𝑡  

= 𝜆(
1

𝜇
𝑒𝜇𝑡 −

1

𝜇
𝑒𝜇∗0) 

=
𝜆

𝜇
(𝑒𝜇𝑡 − 1) 

𝑁(𝑡)𝑒𝜇𝑡 − 𝑁(0) ≤ ∫ 𝜆𝑒𝜇𝑠
𝑡

0
𝑑𝑠 =

𝜆

𝜇
(𝑒𝜇𝑡 − 1) 

     (13)                                                               

Solve for N(t): 

𝑁(𝑡) ≤ 𝑁(0)𝑒𝜇𝑡 +
𝜆

𝜇
+ (1 − 𝑒−𝜇𝑡) 

𝑁(𝑡) ≤
𝜆

𝜇
+ (𝑁(0) −

𝜆

𝜇
) 𝑒−𝜇𝑡  

𝑁(0) ≤
𝜆

𝜇
    (14) 

 (𝑁(0) −
𝜆

𝜇
) 𝑒−𝜇𝑡 

𝑁(𝑡) ≤
𝜆

𝜇
 

𝑁(𝑡) >
𝜆

𝜇
 

 (𝑁(0) −
𝜆

𝜇
) 𝑒−𝜇𝑡                (16) 

is positive but decreases exponentially to 0 as 𝑡 →

∞. 𝑡ℎ𝑢𝑠 𝑁(𝑡) decays towards 
𝜆

𝜇
 from above. 

In both cases, N(t) is bounded for all 𝑡 ≥ 0 and 

approaches 
𝜆

𝜇
 as 𝑡 → ∞. 

Hence the system is positive and bounded above by 
𝜆

𝜇
 

Disease free Equilibrium 

Theorem: Disease-Free Equilibrium (DFE) 

The disease free equilibrium (DFE) of the given system 

exists and is given by: 

𝐸∗ = 𝑆∗, 𝐻∗, 𝑃∗, 𝐶∗, 𝑅∗=(
𝜆

𝜇
, 0,0,0,0)              (17) 

Provided that the forces of infection 𝜆𝐻
∗ , 𝜆𝑃

∗   vanish when 

all infected compartments H, P, C is zero. 

 Proof: 

Define the DFE Condition: 

A disease-free equilibrium is a steady state where no 

disease is present. Thus: 

𝐻∗ = 0,𝑃∗ = 0, 𝐶∗ = 0 

From the definitions:  

λ𝐻(t)= 𝛽𝐻
 H(t)+ϕ C(t)

N(t)
,    λ𝑝(𝑡) = 𝛽𝑃

P(t)+η C(t)

N(t)
 

Substituting  

𝐻∗ = 0, 𝑃∗ = 0, 𝐶∗ = 0𝜆𝐻
∗ = 0, 𝜆𝑃

∗ = 0 
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At equilibrium, all derivatives are zero. Substituting 

 𝜆𝐻
∗ = 0 and 𝜆𝑃

∗ = 0. 

Equation for S: 

  𝑆∗ = 𝜆 − 𝜆𝐻
∗ (𝑡)𝑆(𝑡) − 𝑆(𝑡)𝜆𝑃

∗ (𝑡 − 𝜏𝑝) − 𝜇𝑆(𝑡) = 0 

         (18)                              

𝜆 = 𝜇𝑆(𝑡) 

𝜇𝑆(𝑡) = 𝜆 

𝑆∗ =
𝜆

𝜇
          (19) 

Equation for H 

𝐻∗ = 𝜆𝐻
∗ (𝑡)𝑆∗ − 𝛼𝑃𝐻

∗(𝑡)𝜆𝑃
∗ (𝑡 − 𝜏𝑝) − 

(𝜇 + 𝛿𝐻)𝐻
∗ = 0                                                 (20)                                                 

𝐻∗ = 0.         (21)                                                                                                                       

Equation for P: 

𝑆∗𝜆𝑝
∗ (𝑡 − 𝜏𝑝) − 𝛼𝐻𝑃

∗(𝑡)𝜆𝑃
∗ (𝑡) − 

(𝛾𝑝 + 𝜇 + 𝛿𝑝)𝑃
∗ = 0    

               (22) 

𝑃∗ = 0          (23) 

Equation for C: 

𝐶∗ = 𝛼𝑃𝐻
∗(𝑡)𝜆𝑃

∗ (𝑡 − 𝜏𝑝) + 𝛼𝐻𝑃
∗(𝑡)𝜆𝐻

∗ − 

(𝛾𝐶(𝑡) + 𝜇 + 𝛿𝐶)𝐶
∗ = 0        (24) 

𝐶∗ = 0          (25) 

Equation for R: 

𝑅∗ = 𝛾𝑝𝑃
∗(𝑡 − 𝜏𝑑) + 𝛾𝐶𝐶

∗(𝑡 − 𝜏𝑑) − 𝜇𝑅
∗(𝑡) −

𝜒𝜆𝑃
∗ (𝑡 − 𝜏𝑟)𝑅

∗(𝑡) = 0 (26) 

⇒ 𝑅∗ = 0         (27) 

𝐸∗ = 𝑆∗, 𝐻∗, 𝑃∗, 𝐶∗, 𝑅∗=(
𝜆

𝜇
, 0,0,0,0) 

Satisfies all equilibrium equations when 𝜆𝐻
∗ = 0 and𝜆𝑃

∗ =
0. Hence, it is a disease free equilibrium. 

 Basic reproduction number via Next Generation 

Matrix 

Basic reproduction number is the process of determining 

the secondary infection, that is either the disease will die 

out or it will spread nationwide or even globally. 

At DFE only susceptible individuals are present that is 

𝑆∗ =
𝜆

𝜇
 , 𝐻∗ = 0, 𝑃∗ = 0, 𝐶∗ = 0, 𝑅∗ = 0 

Also, the total population is: 

𝑁∗ = 𝑆∗ =
𝜆

𝜇
 

Next generation matrix is the product of F and 𝑉−1 

𝐹𝑉−1 =

(
𝛽𝐻 0 𝛽𝐻𝜙
0 𝛽𝑃 𝛽𝑃𝜂
0 0 0

)

(

 
 

1

𝜇+𝛿𝐻
0 0

0
1

𝛾𝑝+𝜇+𝛿𝑝
0

0 0
1

𝛾𝐶+𝜇+𝛿𝐶)

 
 

(28) 

𝐾 = 𝐹𝑉−1 =

(

 

𝛽𝐻

𝜇+𝛿𝐻
0

𝛽𝐻𝜙

𝛾𝐶+𝜇+𝛿𝐶

0
𝛽𝑃

𝛾𝑝+𝜇+𝛿𝑝

𝛽𝑃𝜂

𝛾𝐶+𝜇+𝛿𝐶

0 0 0 )

   

 (29) 

 Basic Reproduction number 𝓡𝟎 

Since K is an upper triangular, its eigenvalues are the 

diagonal entries: 

𝜆1 = ℛ0𝐻 =
𝛽𝐻

𝜇+𝛿𝐻
 , 𝜆2 = ℛ0𝑃 = 

𝛽𝑃

𝛾𝑝+𝜇+𝛿𝑝
, 𝜆3 = 0      (30) 

Thus, the basic reproduction number is  

ℛ0 = max {ℛ0𝐻 =
𝛽𝐻

𝜇+𝛿𝐻
 , ℛ0𝑃 =

𝛽𝑃

𝛾𝑝+𝜇+𝛿𝑝
}             (31) 

 Local Stability around DFE Using Jacobian Method 

To establish local stability, we analyze the system without 

delays (that is  𝜏𝑝 = 𝜏𝑑 = 𝜏𝑟 = 0) 
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The local stability condition at the DFE requires that all 

the eigenvalues must have negative real parts to be 

asymptotically stable. 

• 𝜆1 = −𝜇                                                                     (32) 

• 𝜆2 = −𝜇                                                        (33) 

• 𝜆3 = 𝛽𝐻 − (𝜇 + 𝛿𝐻)we have to ascertain to be 

negative that is 𝛽𝐻 − (𝜇 + 𝛿𝐻) < 0 ⇒ 𝛽𝐻 <
(𝜇 + 𝛿𝐻) thus its negative. since  

•  ℛ0𝐻 =
𝛽𝐻

𝜇+𝛿𝐻
< 1                                              (34) 

• 𝜆4 = 𝛽𝑃 − (𝛾𝑃 + 𝜇 + 𝛿𝑃) < 0 ⇒ 𝛽𝑃 < (𝛾𝑃 +
𝜇 + 𝛿𝑃) its negative since 

•  ℛ0𝑃 =
𝛽𝑃

𝛾𝑝+𝜇+𝛿𝑝
< 1                                     (35) 

• 𝜆5 = −(𝛾𝐶 + 𝜇 + 𝛿𝐶)                                   (36) 

Hence the disease free equilibrium (DFE) is 

locally asymptotically stable. 

 

 Global Stability around DFE (using Lyapunov 

functional) 

To analyze global stability using Lyapunov functional, 

the ℛ0  must be strictly < 1 and assume a constant total 

population. It is for the purpose of analytical tractability 

in the global stability proof. 

To maintain a constant population let 𝑁(𝑡) = 𝑆(𝑡) +
𝐻(𝑡) + 𝑃(𝑡) + 𝐶(𝑡) = 1, 𝜆 = 𝜇                         (37) 

Lyapunov function: 𝑉 = 𝑃(𝑡) + 𝐻(𝑡) + 𝑐(𝑡) +

𝛽𝑝 ∫ [𝑃(
𝑡

𝑡−𝜏𝑝
𝜃) + 𝜂𝐶(𝜃)]𝑑𝜃            (38) 

This account for the delay 𝜏𝑝 in 𝜆𝑝(𝑡 − 𝜏𝑝). 

𝑑𝑉

𝑑𝑡
=
𝑑𝐻

𝑑𝑡
+
𝑑𝑃

𝑑𝑡
+
𝑑𝐶

𝑑𝑡
+ 𝛽𝑝[𝑃(𝑡) + 𝜂𝐶(𝑡) − (𝑃(𝑡 − 𝜏𝑝) +

𝜂𝐶(𝑡 − 𝜏𝑝))]                (39) 

Substitute the equations for 
𝑑𝐻

𝑑𝑡
,
𝑑𝑃

𝑑𝑡
,
𝑑𝐶

𝑑𝑡
: 

Thus, the term becomes: 𝛽𝑝 [𝑃(𝑡) + 𝜂𝐶(𝑡) − (𝑃(𝑡 −

𝜏𝑝) + 𝜂𝐶(𝑡 − 𝜏𝑝))] = 𝛽𝑝[𝑃(𝑡) + 𝜂𝐶(𝑡)] − 𝜆𝑝(𝑡 − 𝜏𝑝)

  

Substitute back: 
𝑑𝑉

𝑑𝑡
= 𝜆𝐻𝑆 + 𝜆𝑝𝑆(𝑡 − 𝜏𝑝) − (𝜇 +

𝛿𝐻)𝐻 − (𝛾𝑝 + 𝜇 + 𝛿𝑝)𝑃 − (𝛾𝑝(𝑡) + 𝜇 + 𝛿𝐶)𝐶 +

+𝛽𝑝[𝑃(𝑡) + 𝜂𝐶(𝑡)] − 𝜆𝑝(𝑡 − 𝜏𝑝)   

   (40) 

Thus: 

𝑑𝑉

𝑑𝑡
≤ 𝛽𝐻(𝐻 + 𝜙𝐶) − (𝜇 + 𝛿𝐻)𝐻 − (𝛾𝑝 + 𝜇 + 𝛿𝑝)𝑃 −

(𝛾𝑝(𝑡) + 𝜇 + 𝛿𝐶)𝐶 + 𝛽𝑝[𝑃(𝑡) + 𝜂𝐶(𝑡)]                        (41) 

Rearrange: 

𝑑𝑉

𝑑𝑡
≤ 𝐻(𝛽𝐻 − (𝜇 + 𝛿𝐻)) + 𝑃(𝛽𝑝 − (𝛾𝑝 + 𝜇 + 𝛿𝑝))  (42) 

Global stability condition  

For 
𝑑𝑉

𝑑𝑡
≤ 0, the coefficients must be negative: 

𝛽𝐻 < 𝜇 + 𝛿𝐻                (43) 

𝛽𝑝 < 𝛾𝑝 + 𝜇 + 𝛿𝑝                             (44) 

𝛽𝐻𝜙 + 𝛽𝑃 < 𝜇 + 𝛿𝐶 + 𝛾𝐶               (45) 

If these hold,
𝑑𝑉

𝑑𝑡
≤ 0 with 𝐻 = 𝑃 = 𝐶 = 0.By LaSalle’s 

invariance principle, the infected compartment approach 

zero. The system reduces to: 

𝑑𝑉

𝑑𝑡
= 𝜇 − 𝜇𝑆,

𝑑𝑅

𝑑𝑡
= −𝜇𝑅,               (46) 

Which converge 𝑆 = 1 and 𝑅 = 0. thus the DFE globally, 

asymptotically stable. 

 Sensitivity analysis 

Consider the HIV-Pneumonia model whose disease free 

equilibrium yields the component reproduction numbers 

ℛ0𝐻 =
𝛽𝐻

𝜇+𝛿𝐻
 , ℛ0𝑃 =

𝛽𝑃

𝛾𝑝+𝜇+𝛿𝑝
 

Proof 

The normalized sensitivity index of a quantity Q(θ) with 

respect to a parameter θ is 

For  ℛ0𝐻 =
𝛽𝐻

𝜇+𝛿𝐻
∶ 

𝛤𝛽𝐻
ℛ0𝐻 =

Əℛ0𝐻

Ə𝛽𝐻
=

𝛽𝐻

𝜇+𝛿𝐻
∗

𝜃

𝑄(𝜃)
= 

1

𝜇+𝛿𝐻
∗

𝛽𝐻
𝛽𝐻
𝜇+𝛿𝐻

= 1     (47) 

𝛤𝜇
ℛ0𝐻 =

Əℛ0𝐻

Ə𝜇
∗

𝜃

𝑄(𝜃)
= −

𝛽𝐻

(𝜇+𝛿𝐻)
2 ∗

𝜇
𝛽𝐻
𝜇+𝛿𝐻

= −
𝜇

𝜇+𝛿𝐻
  (48) 
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𝛤𝛿𝐻
ℛ0𝐻 =

Əℛ0𝐻

Ə𝛿𝐻
∗

𝜃

𝑄(𝜃)
= −

𝛽𝐻

(𝜇+𝛿𝐻)
2 ∗

𝛿𝐻
𝛽𝐻
𝜇+𝛿𝐻

= −
𝛿𝐻

𝜇+𝛿𝐻
   (49) 

For ℛ0𝑃 =
𝛽𝑃

𝛾𝑝+𝜇+𝛿𝑝
: 

𝛤𝛽𝐻
ℛ0𝑃 =

Əℛ0𝐻

Ə𝛽𝑃
∗

𝜃

𝑄(𝜃)
=

1

𝛾𝑝+𝜇+𝛿𝑝
∗

𝛽𝑃
𝛽𝑃

𝛾𝑝+𝜇+𝛿𝑝

= 1         (50) 

𝛤(𝛾𝑝
ℛ0𝑃 =

Əℛ0𝐻

Ə𝛾𝑝
∗

𝜃

𝑄(𝜃)
= −

𝛽𝑃

(𝛾𝑝+𝜇+𝛿𝑝)
2 ∗

𝛾𝑝
𝛽𝑃

𝛾𝑝+𝜇+𝛿𝑝

=

−
𝛾𝑝

𝛾𝑝+𝜇+𝛿𝑝
                           (51) 

𝛤𝜇
ℛ0𝑃 =

Əℛ0𝐻

Ə𝜇
∗

𝜃

𝑄(𝜃)
= −

𝜇

(𝛾𝑝+𝜇+𝛿𝑝)
2 ∗

𝜇
𝛽𝑃

𝛾𝑝+𝜇+𝛿𝑝

=

−
𝜇

𝛾𝑝+𝜇+𝛿𝑝
              (52) 

𝛤𝛿𝑝
ℛ0𝑃 =

Əℛ0𝐻

Ə𝜇
∗

𝜃

𝑄(𝜃)
= −

𝛿𝑝

(𝛾𝑝+𝜇+𝛿𝑝)
2 ∗

𝛿𝑝
𝛽𝑃

𝛾𝑝+𝜇+𝛿𝑝

=

−
𝛿𝑝

𝛾𝑝+𝜇+𝛿𝑝
                           (53) 

The detailed mathematical derivations of sensitivity 

indices are presented in the Model Formulation as part of 

the comprehensive model analysis, demonstrating that 

transmission parameters have the strongest positive 

influence (Γ = 1) while mortality and recovery rates have 

negative influences proportional to their relative 

magnitudes. This sensitivity analysis framework enables 

identification of critical intervention points and informs 

public health strategies by highlighting which parameters, 

if modified through interventions, would have the 

greatest impact on reducing disease transmission in the 

HIV-pneumonia Coinfection system. 

 

RESULTS AND DISCUSSION 

Numerical Simulation of Results 

 Baseline Dynamics without Delays 

Without any delay, the system gradually reaches a steady 

condition within about 15 to 20 years. HIV infection 

stabilizes first, followed by pneumonia, which mainly 

affects individuals whose immune systems have already 

been weakened by HIV. 

 
Figure 2: Time Series without Delays 

Table 2: Baseline Dynamics without Delays 

Compartment Description  Long term trend Time to stabilize Key observation 

HIV (H(t)) Individuals 

infected with HIV 

only 

Reaches a stable 

equilibrium 

Stabilizes first The primary driver of 

coinfection system 

Pneumonia (P(t)) Individuals 

infected with 

pneumonia only 

Reaches a stable 

equilibrium 

Stabilizes after HIV Mainly affects 

individuals already 

immunocompromised by 

HIV. 

Coinfection (C(t) Individuals with 

both HIV & 

pneumonia 

Reaches a stable 

equilibrium 

Follows 

HIV/pneumonia 

trend 

Dependent on the 

prevalence of the single 

infections. 

Over roll system  All population 

compartment 

Reaches a steady 

state 

15-20 years The model predicts a 

stable endemic state 

under baseline 

parameters.  
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This table summarizes the long-term behavior of the 

system when no time delays are considered. 

 Effect of Pneumonia Incubation Delay 

Introducing a pneumonia incubation delay of 0.019 years 

(about 7 days) causes a temporary increase in pneumonia 

cases, which later declines and approaches a steady state 

after about 10 years. The highest increase occurs around 

year five, when pneumonia prevalence rises between 0.04 

and 0.12. 

 

 
                              

 Figure 3 Effect of pneumonia incubation delay. 

Table 3: Effect of Pneumonia Incubation Delay (τₚ) 

Aspect Impact Magnitude/time 

frame 

Pneumonia 

prevalence 

Temporary 

increase, then 

decline 

Peaks around 5 

years 

Peak level Rise in 

prevalence 

Increases between 

0.04 and 0.12 

Long term 

outcome 

Returns to a 

steady state 

Reached after 10 

years 

Key 

implication 

The delay 

causes a short-

term surge but 

does not 

change the 

long-term 

endemic level. 

 

This table shows the impact of a 7-day delay between 

pneumonia exposure and becoming infectious. 

 Impact of Diagnostic and Treatment Delay Effects 

When the diagnostic or treatment delay of 0.055 years 

(around 20 days) is included, both infections take longer 

to stabilize. Peak HIV prevalence increases by about 

15%, while pneumonia prevalence rises by approximately 

25–30% compared with the baseline scenario. 

Figure 4 Impact of diagnostic and treatment delay 

 

Table 4: Impact of Diagnostic/Treatment Delay (𝝉𝒅) 

 

Metric Impact 

compared to 

baseline (no 

delay) 

Approximate 

change 

Time to 

stabilize 

Takes 

significantly 

longer 

Increased 

duration 

Peak HIV 

prevalence 

Higher 

maximum level 

15% increase 

Peak 

pneumonia 

prevalence 

Higher 

maximum level 

25-30% increase 

Public health 

insight 

Delays in the 

treatment 

significantly 

worsen 

outbreak and 

prolong the 

epidemic 

 

 

This table shows the consequences of a 20-day delay from 

symptom onset to treatment. 

 Influence of Immune Recovery Delay Analysis 

When immune recovery takes around 0.25 years (three 

months), the number of recovered individuals increases 

more slowly. As a result, more people remain susceptible 

for longer periods, which slightly raise the chances of 

reinfection. 
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Figure 5 Influence of immune recovery delay on 

infection and recovery rates. 

Table 5: Influence of Immune Recovery Delay (τᵣ) 

 

Aspect Impact Consequence 

Recovery rate 

(R(t)) 

Slower increase 

in recovered 

individuals 

Smaller 

recovered 

population 

Susceptible 

(S(t)) 

Larger 

population 

remains 

susceptible for 

longer  

Extended 

window of 

vulnerability  

Reinfection 

risk 

Increased 

probability 

Slight rise in 

overall infection 

rates 

Key 

implication 

Slow immune 

recovery 

undermines 

herd immunity 

and allows for 

persistent 

disease 

circulation. 

 

This table outlines the effect of a 3-month delay for the 

immune system to recover after treatment. 

 Combined Delay Effects 

When all three delays are considered together, the model 

shows a gradual increase in infection before reaching 

stability after about ten years. The disease peaks later, and 

the overall number of infections is higher compared with 

when delays are ignored. 

 
                       

Figure 6 Combined effects of all three delays on overall 

disease dynamics. 

 

Table 6: Combined Delay Effects 

 

Aspect Behavior with 

combined 

delays  

Comparison to 

no delay 

scenario 

Infection trend Gradual 

increase, then 

stabilization 

Reaches stability 

later 

Peak timing Disease peak 

occur later 

Delayed peak 

Infection 

magnitude  

Higher overall 

number of 

infection 

More severe 

outbreak 

System 

dynamics 

More complex 

wave like 

patterns before 

setting 

Simpler, direct 

path to 

equilibrium. 

 

This table describes the system behavior when all three 

delays (incubation, diagnosis, immune recovery) act 

together. 

  Sensitivity Analysis Results 

Sensitivity analysis was conducted to identify which 

parameters most influence disease transmission. The HIV 

reproduction number (ℛ0𝐻) is most affected by the 

transmission rate (positive influence) and HIV-induced 

death rate (negative influence of −0.77). The pneumonia 

reproduction number (ℛ0𝑃) is mainly affected by 

pneumonia transmission (+1.0) and recovery rate (−0.99). 

Among the delay parameters, the incubation delay 

slightly changes how quickly infections rise, while 

diagnostic delay strongly affects how high infection 

levels become. The immune recovery delay mainly 

influences long-term recovery and population immunity. 

An increase in HIV enhancement factor raises coinfection 

by about 35%, while pneumonia enhancement factor 

increases it by 28%. 
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Figure 7 Sensitivity analysis showing parameter 

influence on ℛ0. 

 

Table for Figure 3.6: Sensitivity Analysis on 𝓡𝟎 

 

Parameter Sensitivi

ty index ( 

Γ) 

Reproducti

on number 

affected  

Influence 

descriptio

n 

𝛽𝐻 (HIV 

transmission 

rate) 

+1.0 ℛ0𝐻 Strongest 

positive 

driver of 

HIV 

spread 

𝛽𝑃 

(Pneumonia 

transmission 

rate) 

+1.0 ℛ0𝑃 Strongest 

positive 

driver of 

pneumoni

a spread 

𝛿𝐻(HIV 

death rate) 

-0.77 ℛ0𝐻 Strong 

negative 

influence; 

reduces 

HIV 

persistenc

e  

𝛾𝑃(pneumon

ia recovery 

rate) 

-0.99 ℛ0𝑃 Strongest 

control 

measure 

against 

pneumoni

a 

μ(natural 

mortality 

rate) 

-0.23 ℛ0𝐻 Moderate 

negative 

influence 

 

This table ranks parameters by their influence on the 

basic reproduction numbers, based on sensitivity indices. 

 Discussion 

The findings show that HIV is the main factor driving 

coinfection, while pneumonia mostly affects those 

already living with HIV. Over time, about 24% of the 

population becomes HIV-positive, 6% develop 

pneumonia, and 4% experience both diseases. Delays in 

diagnosis and treatment increase these numbers by 

extending how long people remain infectious. 

Shorter diagnosis time and faster immune recovery 

significantly reduce the number of cases. Delays longer 

than a month tend to worsen disease outcomes, while 

even small improvements can bring meaningful health 

benefits. 

The model aligns with real world data patterns observed 

across Africa. However, it assumes a uniform population 

and fixed parameters, which may vary locally. Further 

studies could include more realistic factors such as age, 

region, and healthcare access levels. 

For effective control, public health programs should 

target both HIV and pneumonia together. Strategies like 

improving diagnosis speed, ensuring continuous 

treatment, and raising awareness can have a strong 

positive effect. This also supports the use of delay-based 

mathematical models in planning health interventions. 

CONCLUSION 

This study demonstrates that HIV is the primary driver of 

HIV-pneumonia coinfection dynamics in Nigeria, with 

pneumonia prevalence being largely dependent on the 

population of immune-compromised individuals. Our 

delay differential equation model reveals that time delays 

in diagnosis, treatment, and immune recovery 

significantly elevate the disease burden increasing peak 

infection levels by 15-30% and prolonging epidemic 

duration. The sensitivity analysis confirms that reducing 

these delays is as crucial as controlling transmission rates 

for effective outbreak management. 

These findings emphasize the necessity of integrated 

public health strategies that combine HIV and pneumonia 

control while prioritizing the reduction of diagnostic and 

treatment delays. Strengthening healthcare infrastructure 

for faster diagnosis, ensuring treatment continuity, and 

promoting early symptom presentation through public 

awareness are essential interventions. This modeling 

approach provides a realistic framework for designing 

targeted control strategies against coinfection in resource 

limited settings like Nigeria. 
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