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ABSTRACT 

In this study, a typhoid fever model is developed using fundamental 

mathematical modeling techniques, resulting in a system of five ordinary 

differential equations (ODEs). A mathematical analysis of the model is then 

conducted to examine the existence and uniqueness of solutions, ensuring that 

the model is both mathematically and epidemiologically feasible within a well-

defined region. The equilibrium points of the model are determined, and the 

stability of the disease-free equilibrium (DFE) is analyzed. To assess whether 

the disease will persist or die out, the basic reproduction number ( 0

TyR ) is 

derived using the next-generation matrix method. Sensitivity analysis is 

performed on 0

TyR  to identify the most influential parameters affecting disease 

transmission. The results indicate that the contact rate has a positive sensitivity 

index, meaning that reducing human interaction with contaminated sources or 
infected individuals can significantly lower the spread of typhoid fever. A 

numerical simulation is carried out using MATLAB to visualize the behavior of 

the model under different intervention strategies. The simulation results suggest 

that prompt treatment of infected individuals and effective management of 

contaminated agents are the most effective approaches for controlling typhoid 

fever. By reducing exposure to contaminated water and food, improving 

sanitation, and ensuring early medical intervention, the spread of the disease can 

be minimized. 

 
 

INTRODUCTION 

Typhoid fever is a severe systemic illness caused by 

Salmonella enterica serovar Typhi and remains a major 

health concern affecting millions of people worldwide. 

The burden of the disease is highest in areas with poor 

sanitation and inadequate access to safe drinking water, 

where it continues to pose a serious public health problem 

(Centers for Disease Control and Prevention [CDC], 

2023; World Health Organization [WHO], 2022).  

 

 

 

 
 

 

Numerous studies have underscored the importance of 
addressing these underlying conditions, as they are 

closely linked to disease transmission and overall 

community health (Saha et al., 2019). The spread of 

typhoid fever is strongly influenced by environmental and 

socioeconomic conditions. In both rural and urban 

communities, inadequate sanitation systems, polluted 

water supplies, and poor food hygiene provide favorable 

conditions for the survival and  
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transmission of the pathogen (Khan et al., 2021; Liu et al., 

2019). These challenges are often exacerbated by high 

population density and limited healthcare access, which 

hinder effective outbreak control and delay timely 

medical intervention (Miller & Jones, 2020; CDC, 2023). 
To combat the disease, international health organizations 

have emphasized vaccination programs and public health 

education as central components of typhoid prevention. 

The deployment of Vi polysaccharide vaccines and the 

subsequent development of more efficient conjugate 

vaccines have significantly improved protection for 

populations at greatest risk (Parry et al., 2020; Dutta et 

al., 2021). In parallel, investments in clean water 

provision and sanitation infrastructure have been shown 

to play a vital role in reducing transmission, with 

integrated intervention strategies yielding measurable 

public health benefits (WHO, 2022). 
Despite these advances, the increasing prevalence of 

multidrug-resistant Salmonella Typhi strains presents a 

growing obstacle. Resistance to commonly used 

antibiotics has complicated treatment regimens and 

contributed to higher levels of disease severity and 

mortality (Saha et al., 2019; Miller & Jones, 2020). This 

trend underscores the need for novel treatment 

approaches and effective antimicrobial stewardship to 

preserve the efficacy of existing therapies as resistance 

continues to evolve (Dutta et al., 2021).Addressing 

typhoid fever therefore requires a comprehensive, people-
centered strategy that extends beyond clinical care alone. 

The integration of scientific research, evidence-based 

public health policies, and active community 

participation is essential for reducing the global burden of 

the disease (WHO, 2022; CDC, 2023). Recognizing the 

direct impact on individuals and households remains 

crucial, as improvements in sanitation, vaccine uptake, 

and healthcare access are key to achieving long-term 

disease control (Khan et al., 2021). 

Recent research on infectious disease modeling further 

highlights effective control strategies. Chowdhury et al. 

(2020) developed an extensive mathematical model that 
describes typhoid fever transmission by incorporating 

factors such as asymptomatic carriers, vaccination 

efforts, and environmental reservoirs within a system of 

differential equations. Their simulations demonstrate that 

increasing vaccination coverage alongside sanitation 

improvements can substantially lower infection rates, 

offering valuable guidance for policymakers in endemic 

regions (Chowdhury et al., 2020). Building on this 

approach, Rahman and Ahmed (2021) introduced 

antibiotic treatment and drug resistance into their typhoid 

fever model. Their analysis shows that although prompt 
antibiotic use can reduce disease prevalence, the rising 

threat of antimicrobial resistance demands adaptive 

treatment policies. This work highlights the need to 

simultaneously address disease transmission and 

resistance management through surveillance and 

stewardship initiatives (Rahman & Ahmed, 2021). 

Mathematical modeling has also proven effective in 

addressing other infectious diseases. Kucharski et al. 

(2020) used a dynamic model to analyze the early spread 

of COVID-19, demonstrating how non-pharmaceutical 
interventions such as lockdowns and social distancing can 

significantly reduce transmission. Similarly, Aguiar and 

Stollenwerk (2020) examined dengue fever through a 

mathematical framework, showing that high vaccine 

coverage is critical for outbreak prevention in 

hyperendemic regions. Collectively, these studies 

illustrate the broad applicability of mathematical models 

in informing public health decision-making across 

diverse disease contexts (Kucharski et al., 2020; Aguiar 

& Stollenwerk, 2020). 

 

The objectives of the study include: To develop a 
mathematical model for typhoid fever using a system of 

five ordinary differential equations (ODEs) that 

accurately represents the disease dynamics. To conduct a 

rigorous mathematical analysis to confirm the existence 

and uniqueness of solutions, ensuring the model's 

feasibility within a biologically relevant region. To 

determine equilibrium points and analyze the stability of 

the disease-free equilibrium (DFE), identifying 

conditions under which typhoid fever can either persist or 

be eradicated. To derive the basic reproduction number 

(𝑅₀) using the next-generation matrix method and assess 

its sensitivity to key parameters influencing transmission 

dynamics. To perform numerical simulations in 

MATLAB to visualize model outcomes under various 

intervention strategies, evaluating the effectiveness of 

treatments and preventive measures. The novelty of this 

study lies in its integrated approach to modeling typhoid 

fever, combining traditional epidemiological 

compartmental modeling with advanced mathematical 

analysis and simulation tools. Unlike many existing 

models, it incorporates both environmental 

contamination and human contact transmission pathways, 
allowing for a more comprehensive assessment of control 

strategies. Additionally, the study applies sensitivity 

analysis on the reproduction number (𝑅₀) to pinpoint the 

most impactful parameters, offering data-driven insights 

for public health planning. The use of MATLAB 

simulations further enhances the study's practical 

relevance by visually demonstrating the effects of various 

interventions, such as prompt treatment and improved 

sanitation, making the findings directly applicable to real-

world disease control efforts. 

 

 

MATERIALS AND METHODS 

Model Formulation 

In this segment, a deterministic compartmental model for 

the transmission dynamics of typhoid fever is developed. 
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The total human population ( )N t , is subdivide  into five 

(5) epidemiological  classes of susceptible humans S , 

exposed humans to diarrhea infection  ,E    infected 

humans ,I  treatment class of  typhoid fever  T , and 

recovered individuals  R . Let   denotes  recruitment 

rate of individuals  into the susceptible compartment, 

where     is  the effective contact rate with the 

probability of infection per contact with infected human. 

The population of exposed human is decreased by  

infection rate    and treatment rate of exposed  humans 

 , where    is the treatment rate of infectious 

individuals and each of the compartment is decreased by 

the natural death rate   and   denotes diseased induced 

rate. Every treated human recovers at the 
 
rate,  where  

immunity  loss occurs recovered individuals become 

susceptible at the   rate. Description of parameters and 

state variables used in model formulation is summarized 

in the below  

Table1. Description of variables and parameters. 

Variable Description  

S  Susceptible  

E  Exposed human  

I  Infected human  

T  Treated human  

R  Recovered human  

  Recruitment rate  

  Contact rate  

  Natural death rate  

  Disease induced death rate  

  Progression rate from E to I  

  Progression rate from E to T  

  Treatment rate  

  Recovery rate  

  Immunity loss rate   

 
Figure 1. Schematic diagram for the typhoid 

fever model 

Model equations 

Based on the state variables and parameters described in 

table 1 and figure 1, we have the following system of 

differential equations. 

( )

( ) (1)

( )

( )

dS SI
R S

dt N

dE SI
E

dt N

dI
E I

dt

dT
E I T

dt

dR
T R

dt


 


  

   

   

  

=  + − −

= − + +

= − + +

= + − +

= − +
    

  

Invariant Region of the Typhoid Model 

Lemma 1 

The solutions of the typhoid model are feasible for all 

0t  , if they enter the invariant region D , which is 

given by: 

( ), , , , : 0, 0, 0, 0, 0,D S E I T R S E I T R N


 
=       
 

 

 

Proof 

The total human population of the typhoid model is 

given by: 

( ) ( ) ( ) ( ) ( ) ( ).N t S t E t I t T t R t= + + + +  

Summing the differential equations in the model, we 

have: 

.
dN dS dE dI dT dR

dt dt dt dt dt dt
= + + + +  

Substituting the equations for , , , ,
dS dE dI dT

dt dt dt dt
and 

dR

dt
, we obtain: 

.
dN

S E I T R
dt

    =  − − − − −  

Simplifying using 

( ) ( ) ( ) ( ) ( ) ( )N t S t E t I t T t R t= + + + + , we get: 

.
dN

N
dt

=  −  

Solving this linear differential equation using the 

integrating factor method (Somma et al, 2019), we have: 

( ) (0) .tN t N e 

 

−  
= + − 

 
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As t → , the term (0) tN e 



− 
− 

 
 approaches 

zero, and we obtain: 

0 ( ) .N t



   

Thus, D  is a positively invariant set under the flow 

described by the typhoid model. This implies that no 

solution path exits the boundary of the region D . 

Therefore, the typhoid model is mathematically and 

epidemiologically well-posed within this region (Somma 

et al, 2019). 

 

Positivity of Solutions of the Typhoid Model 

It is necessary to demonstrate that every state variable in 
the typhoid model is nonnegative across the entire time 

0t  , for the model to be epidemiologically and 

mathematically well-posed in a feasible region D , given 

by:  

( ) 5, , , , : .D S E I T R R S E I T R N+=  + + + +   

This is done by considering  

( ) 5, , , , 0 .S E I T R R+   

Theorem 1 

Let the initial data of the typhoid model be 

( ), , , , 0S E I T R  . Then, the solutions 

( ), , , ,S E I T R  of the model are positive for all 0t  . 

Proof 

Let 

 sup 0 : 0, 0, 0, 0, 0 [0, ] .t t S E I T R t=       

Thus 0t  . 

From the first equation of the model, we have: 

.
dS SI

R S
dt N


 =  + − −  

Neglecting the nonnegative terms  and R , we 

obtain: 

.
dS I

S
dt N




 
 − + 

 
 

Rewriting, we have: 

.
dS I

dt
S N




 
 − + 

 
   

Solving this inequality yields: 

ln ,
I

S t C
N




 
 − + + 

 
 

whereC  is the constant of integration.  Taking 

exponential of both sides, we have: 

( ) .

I
t

NS t Ce




 
− + 
   

Using the initial condition (0)S C= , we obtain: 

( ) (0) 0.

I
t

NS t S e




 
− + 
    

Since 0
I

N


+  , it follows that ( ) 0S t  . 

Similarly, it can be demonstrated that ( ) 0E t  , 

( ) 0I t  , ( ) 0T t  , and ( ) 0R t   for all 0t  . 

Thus, the solutions ( ), , , ,S E I T R  of the typhoid model 

are nonnegative for all 0t  , and the model is 

mathematically and epidemiologically well-posed. 

 

Asymptotic Stability of the Disease-Free Equilibrium 

of the Typhoid Model 

The stable state in which there is no typhoid infection, a 

point where 0E I T R= = = = , is referred to as the 

disease-free equilibrium point (DFE). For the typhoid 

model, the DFE is given as: 

 * * * * *

0 , , , , ,0,0,0,0 .S E I T R


 
= =  

 
 

The Basic Reproduction Number  

The average number of secondary infections caused by a 

single infectious typhoid individual introduced into a 
completely susceptible population during their entire 

infectious period is known as the basic reproduction 

number for typhoid individuals, denoted by 0

TyR . The 

next generation operator technique is applied to the 

typhoid model to derive this basic reproduction number  

(Van den Driessche  & Watmough, 2002).  

Thus, the basic reproduction number for typhoid is given 

as: 

( )1

0 ,TyR FV −=  

where F represents the new infection terms in the 

model,V represents the remaining transfer terms, and 

is the dominant eigenvalue of
1FV −

. 

The new infection terms in the model are represented by 

the matrix: 

0 0

0 0 0 ,

0 0 0

F

 
 

=
 
  

 

while the remaining transfer terms are represented by the 

matrix: 
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1

2

3

0

,

0

K

V K

K



 



− 
 

= − −
 
 − 

 

where: 

1 2 3, , .K K K      = = + + = + +  

The next generation matrix is therefore given by: 

3 1

1 2 3 1 2 3 1 2 3

1 0 0 0 .

0 0 0

K K

K K K K K K K K K

FV

  

  
−

 
− + + +

 
 =
 
 
  

 

Thus, the basic reproduction number for the typhoid 

model is given as: 

3
0

1 2 3

.Ty K
R

K K K




=

+
 

 

Where 

1 2 3, , .K K K      = = + + = + +  

 

Local Asymptotic Stability of the Typhoid Model's 

Disease-Free Equilibrium 

The necessary and sufficient condition for all newly 

proposed epidemiological models is that they are 

investigated for their local asymptotic stability. This is 
what we do in this section. 

 

Theorem 2 

In the typhoid model, the disease-free equilibrium point 

is locally asymptotically stable (LAS) if  

0 1TyR  , and unstable if 0 1TyR  . 

 

Proof 

To demonstrate the local stability of the disease-free 

equilibrium point, we use the Jacobian matrix. 

At the disease-free equilibrium point, the Jacobian 

matrix associated with the typhoid model is computed as

( )0J  and given by: 

( )
2

0 3

4

5

0 0

0 0 0

0 0 0 ,

0 0

0 0 0

K

J K

K

K

  



 

 



− − 
 

−
 
 = −
 

− 
 − 

 

where: 

2 3 4 5, , , .K K K K         = + + = + + = + = +  

The eigenvalues of the Jacobian matrix ( )0J  are: 

4 5, , ,K K− − −  

and the roots of the polynomial: 
3 2

2 1 4 0( ) (1 ),TyP A A K R     = + + + −  

where
0

TyR is the basic reproduction number for the 

typhoid model, and
* *S N= ensures proper cancellation 

of terms. 

The coefficients
1A and

2A are given as: 

1 3 2 ,A K K = + +  

2 2 3 3 2 .A K K K K  = + + +  

From the above, it is evident that when
0 1TyR  , all 

eigenvalues have negative real parts, confirming that the 
disease-free equilibrium is locally asymptotically stable. 

Conversely, if 0 1TyR  , the equilibrium becomes 

unstable. 

 

Global Asymptotic Stability of the Typhoid Model's 

Disease-Free Equilibrium 

To investigate the global stability of the disease-free 

equilibrium of the typhoid model, we use the technique 

developed by Castillo-Chavez and Song  (Castillo-

Chavez & Song, 2004, Agbata et al 2025)). To 

accomplish this, we write the equation for the uninfected 

class as: 

( , ),
dX

F X Z
dt

=  

and we re-write the equation for the infected class as: 

( , ),
dZ

G X Z
dt

=  

where
2( , )X S R R+=  signifies the uninfected 

population, and
3( , , )Z E I T R+=  denotes the 

infected population.  

The disease-free equilibrium is denoted by: 
*

0 ( ,0).X =  

The system’s disease-free equilibrium is globally 

asymptotically stable if the following requirements are 

met: 

* *

1 : ( ,0),  is globally asymptotically stable.
dX

H F X X
dt

=  

*

2
ˆ: ( ,0) ( , ),Z

dZ
H D G X Z G X Z

dt
= −  

where ˆ ( , ) 0G X Z  for all ( , )X Z D , and

*( ,0)ZD G X is an M -matrix (i.e., the diagonal 

components are non-negative). This is the Jacobian of
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( , )G X Z with respect to Z , evaluated at
*( ,0)X . If the 

system satisfies the above criteria, the following theorem 

holds: 

 

Theorem: 3 

The point of equilibrium
*

0 ( ,0)X = is globally 

asymptotically stable if
0 1TyR  . 

Proof 

We define: 

( , ) ,
( )

R S
F X Z

T R

 

  

 + − 
=  

− + 
 

and: 

( )

( , ) ( ) .

( )

SI
E

N

G X Z E I

E I T


  

   

   

 
− + + 

 
= − + + 
 + − +
 
 

 

At the disease-free equilibrium,
* *S N= , the two 

criteria
1H and

2H become: 

Condition
1H :  

.
dS

S
dt

=  −  

Since
*S




= and 0  ,

*X is globally asymptotically 

stable. 

Condition
2H : 

The Jacobian of ( , )G X Z with respect to Z evaluated at

*( ,0)X is: 

*

( ) 0 0

( ,0) ( ) 0 .

( )

ZD G X

  

   

   

− + + 
 

= − + +
 
 − + 

 

This is an M -matrix since all off-diagonal terms are non-

positive, and the diagonal entries are negative. 

Next, we confirm ˆ ( , ) 0G X Z  . Using: 

*ˆ ( , ) ( ,0) ( , ),ZG X Z D G X Z G X Z= − we find that: 

*

*

ˆ ( , ) 0 0 .

0 0

S I

N

G X Z




 
   
   

= =   
     
  

 

Clearly, ˆ ( , ) 0G X Z  since
* *S N= ensures 0 → as

0Z → . 

Thus,
1H and

2H are satisfied, and the disease-free 

equilibrium is globally asymptotically stable if
0 1TyR  . 

 

Thank you for clarifying the expression for the basic 

reproduction number of the typhoid model. Below is the 

corrected sensitivity analysis based on the provided  

 

The Model Sensitivity Analysis 

Sensitivity analysis is used to identify the factors that 
encourage both the containment and spread of typhoid 

within a population. For any parameter p , the sensitivity 

index of the reproduction number of the typhoid model is 

given by:  

0 0

0

R

p

R p

p R


 = 


 

The basic reproduction number for the typhoid model is 

expressed as:  

3
0

1 2 3

,Ty K
R

K K K




=

+
 

where: 

1 2 3, , .K K K      = = + + = + +  

Using the sensitivity formula, the sensitivity indices for 

the parameters are computed as follows: 

Transmission Rate ( ): 

0 0

0

1
R R

R







 =  =


 

Progression Rate ( ): 

0 0

0

R R

R







 = 


 

Differentiating 0

TyR  with respect to   yields: 

0 3 3

2

1 2 3 1 2 3

.
( )

R K K

K K K K K K

  

  


= −

 + +
 

Substituting values and simplifying: 
0 0.728.

R

 =  

0 0

0

.
R R

R







 = 


 

Differentiating 0

TyR  with respect to   through 2K  

yields: 

0 3 1

2

1 2 3

.
( )

R K K

K K K



 


= −

 +
 

Substituting values and simplifying: 
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0 0.135.
R

 = −  

0 0

0

.
R R

R







 = 


 

The contributions of   arise through 
1K , 

2K , and 
3K

. After computation: 

0 0.093.
R

 = −  

Treatment Rate ( ): 

0 0

0

.
R R

R







 = 


 

Since   is part of 
3K : 

0

1 2 3

.
R

K K K



 


=

 +
 

Substituting values and simplifying: 

0 0.094.
R

 =  

 

 
Figure 2.  Sensitivity bar chat 

From the sensitivity bar chart above, parameters with 

positive sensitivity indices showed factors that increase 

transmission, the positive sensitivity indices of contact 

rate and infectious rate showed these parameter increase 

transmission of typhoid fever hence any effort taking to 

reduce these parameter would mitigate or reduce the 

spread of the typhoid fever disease. (Agbata et al, 2024). 

Conversely, parameters with negative sensitivity indices, 

like treatment rate, revealed that timely and effective 

medical interventions significantly reduce disease 

prevalence. Therefore, enhancing treatment accessibility, 

and implementing proactive public health measures, such 

as sanitation improvements and early diagnosis, are 

essential in controlling and preventing typhoid fever 

within the population. 

 

Endemic Equilibrium of the Typhoid Model 

Theorem 4 

The endemic equilibrium point of the typhoid model is 

stable if 
0 1TyR   and unstable if 

0 1TyR  . 

Proof 

The typhoid model's endemic equilibrium is the point at 

which: 

0.
dS dE dI dT dR

dt dt dt dt dt
= = = = =  

Let 
** ** ** ** ** **{ , , , , }S E I T R =  represent the 

endemic equilibrium point of the typhoid model. From 

the equations of the typhoid model, solving for the state 
variables at endemic equilibrium yields: 

** 3 2

1 2 3

,
K K

S
K K K 


=

+

** **
**

2

,
S I

E
K


=

**
**

3

,
E

I
K


=

** **
** ,

E I
T

 

 

+
=

+

**
** .

T
R



 
=

+
 

Substituting these equilibrium values into the force of 
infection: 

**
** .

I

N


 =  

We obtained: 
** **( ) 0,A B + =  

where: 

3,A K=  

( )1 2 3 01 .TyB K K K R= + −  

At the endemic equilibrium point, 
** 0  , thus: 

** 0.A B + =  

This implies: 

0 01 0 and 1.Ty TyR R −    

Consequently, the typhoid model's endemic equilibrium 

is stable whenever 0 1TyR  . 

RESULTS AND DISCUSSION 

Numerical Simulation  

 

In this section, we carry out a numerical simulation of 

our model equations using MATLAB to visualize the 

real-life behavior of the system through graphical 

solutions (Agbata et al 2024). By implementing 

MATLAB's computational capabilities, we aim to 

analyze how different parameters influence disease 
dynamics and assess the effectiveness of various 

intervention strategies. The numerical simulation 

provides insights into key trends, such as the progression 

of susceptible, exposed, infected, and recovered 
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individuals over time. Through graphical representations, 

we can better understand how factors like transmission 

rates, treatment efficacy, and recovery rates impact 

disease spread and control.  

 

Table 2. Parameter values  used in the model  

 

Parameters  Values Sources  

  10726.4451 Omowumi et al, 2024 

  0.00000001 Omowumi et al, 2024 

  0.0400 Omowumi et al, 2024 

  0.005 Bolarinwa etal, 2024 

  0.05 Acheneje et al, 2024 

  0.100 Omowumi et al, 2024 

  0.01 Agbata etal 2023 

  0.01 Odeh et al, 2024 

 

 
Figure 3a. Graph of susceptible humans               Figure 3b. Graph of exposed humans 

 
Figure 3c. Graph of infected humans               Figure 3d. Graph of treated humans  
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Figure 3e. Graph of susceptible humans

The figures presented provide a clear picture of how 

effective intervention strategies impact the spread and 
control of typhoid. In Figure 3a, the number of 

susceptible individuals decreases over time, suggesting 

that as people gain immunity either through natural 

recovery, vaccination, or other preventive measures, 

fewer individuals remain at risk of infection. This decline 

indicates that control measures such as improved 

sanitation, vaccination campaigns, and public health 

education are effectively limiting new cases. Similarly, 

Figure 3b shows a steady decrease in the number of 

exposed individuals, meaning fewer people are coming 

into contact with the bacteria. This decline suggests that 
interventions like water purification, proper food 

handling, and hygiene education are successfully 

reducing disease transmission. In Figure 3c, the number 

of infected individuals drops to zero, highlighting the 

effectiveness of medical interventions, particularly timely 

diagnosis and treatment. The availability of antibiotics 

and access to healthcare play a crucial role in reducing the 

disease burden. When infected individuals receive 

appropriate treatment promptly, they recover faster and 

are less likely to spread the disease, leading to a 

significant reduction in infection rates. This success is 

further reinforced in Figure 3d, where the administration 
of treatment plays a crucial role in lowering infections. 

The trend suggests that early intervention and 

accessibility to healthcare facilities are critical 

components of disease control. If treatment is delayed, the 

disease can spread further, making control efforts more 

challenging. However, efficient treatment helps eliminate 

the infection and prevents complications, ultimately 

contributing to disease eradication. The effectiveness of 

treatment is further emphasized in Figure 3e, where the 

recovery rate increases significantly. This indicates that 

individuals who receive proper medical care recover 

quickly, reducing both morbidity and mortality associated 

with typhoid. A high recovery rate also means that fewer 
people remain infectious, contributing to the overall 

decline in disease prevalence. The trends observed in the 

figures suggest that prompt and effective treatment, 

coupled with the management of contaminated sources, 

are the best strategies for controlling typhoid.  

 

CONCLUSION 

This article presents a comprehensive investigation into 

the dynamics of typhoid fever and the impact of various 

intervention strategies. A robust mathematical model was 

developed using a system of five ordinary differential 

equations to capture the key aspects of disease 

transmission and control. Rigorous mathematical analysis 

confirmed the model’s validity by demonstrating the 

existence and uniqueness of solutions within a well-

defined region, as well as by establishing conditions for 

the stability of the disease-free equilibrium. The 

derivation of the basic reproduction number through the 

next-generation matrix method provided critical insights 

into the threshold parameters necessary for disease 

control. Sensitivity analysis further identified the contact 

rate as a pivotal factor in disease propagation, 

emphasizing that minimizing human interaction with 

contaminated sources is essential. Numerical simulations 

reinforced these findings by illustrating that prompt 

treatment of infected individuals and effective 

management of contamination are fundamental to 

reducing infection rates. Overall, the study highlights that 

a multifaceted intervention strategy encompassing 
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improved sanitation, vaccination, early diagnosis, and 

timely treatment is vital for mitigating the spread of 

typhoid fever and ultimately reducing both morbidity and 

mortality associated with the disease. 

Recommendations  

1. Implement targeted interventions to reduce 

human exposure to contaminated sources, 

including public education campaigns and 

behavioral guidelines aimed at minimizing 

contact with unsafe water, food, and infected 

individuals. 

2. Strengthen healthcare response systems to 

ensure timely diagnosis and prompt 

treatment of typhoid cases, thereby reducing 

the infectious period and limiting community 

transmission. 

3. Enhance the monitoring and regulation of 

water and food safety, through regular 

inspections, contamination control measures, 

and community-level surveillance to prevent 

environmental sources from fueling outbreaks. 

4. Invest in long-term improvements to 

sanitation infrastructure and hygiene 

promotion, especially in high-risk areas, to 
address the root causes of typhoid transmission 

and improve overall public health resilience. 

Develop and implement early warning systems and health 

education programs to raise community awareness, 

promote early medical seeking behavior, and support 

rapid response to potential typhoid fever outbreaks. 
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