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ABSTRACT

In this study, a typhoid fever model is developed using fundamental
mathematical modeling techniques, resulting in a system of five ordinary
differential equations (ODES). A mathematical analysis of the model is then
conducted to examine the existence and uniqueness of solutions, ensuring that
the model is both mathematically and epidemiologically feasible within a well-
defined region. The equilibrium points of the model are determined, and the
stability of the disease-free equilibrium (DFE) is analyzed. To assess whether

the disease will persist or die out, the basic reproduction number (ng) is
derived using the next-generation matrix method. Sensitivity analysis is
performed on ng to identify the most influential parameters affecting disease

transmission. The results indicate that the contact rate has a positive sensitivity
index, meaning that reducing human interaction with contaminated sources or
infected individuals can significantly lower the spread of typhoid fever. A
numerical simulation is carried out using MATLAB to visualize the behavior of
the model under different intervention strategies. The simulation results suggest
that prompt treatment of infected individuals and effective management of
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Equ_ations (ODE_S), contaminated agents are the most effective approaches for controlling typhoid
Basic reproduction fever. By reducing exposure to contaminated water and food, improving
Number, sanitation, and ensuring early medical intervention, the spread of the disease can

Sensitivity analysis be minimized.

INTRODUCTION

Typhoid fever is a severe systemic illness caused by
Salmonella enterica serovar Typhi and remains a major
health concern affecting millions of people worldwide.
The burden of the disease is highest in areas with poor
sanitation and inadequate access to safe drinking water,
where it continues to pose a serious public health problem
(Centers for Disease Control and Prevention [CDC],
2023; World Health Organization [WHO], 2022).

Numerous studies have underscored the importance of
addressing these underlying conditions, as they are
closely linked to disease transmission and overall
community health (Saha et al., 2019). The spread of
typhoid fever is strongly influenced by environmental and
socioeconomic conditions. In both rural and urban
communities, inadequate sanitation systems, polluted
water supplies, and poor food hygiene provide favorable
conditions for the survival and
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transmission of the pathogen (Khan et al., 2021; Liuetal.,
2019). These challenges are often exacerbated by high
population density and limited healthcare access, which
hinder effective outbreak control and delay timely
medical intervention (Miller & Jones, 2020; CDC, 2023).
To combat the disease, international health organizations
have emphasized vaccination programs and public health
education as central components of typhoid prevention.
The deployment of Vi polysaccharide vaccines and the
subsequent development of more efficient conjugate
vaccines have significantly improved protection for
populations at greatest risk (Parry et al., 2020; Dutta et
al., 2021). In parallel, investments in clean water
provision and sanitation infrastructure have been shown
to play a vital role in reducing transmission, with
integrated intervention strategies yielding measurable
public health benefits (WHO, 2022).

Despite these advances, the increasing prevalence of
multidrug-resistant Salmonella Typhi strains presents a
growing obstacle. Resistance to commonly used
antibiotics has complicated treatment regimens and
contributed to higher levels of disease severity and
mortality (Saha et al., 2019; Miller & Jones, 2020). This
trend underscores the need for novel treatment
approaches and effective antimicrobial stewardship to
preserve the efficacy of existing therapies as resistance
continues to evolve (Dutta et al., 2021).Addressing
typhoid fever therefore requires a comprehensive, people-
centered strategy that extends beyond clinical care alone.
The integration of scientific research, evidence-based
public health policies, and active community
participation is essential for reducing the global burden of
the disease (WHO, 2022; CDC, 2023). Recognizing the
direct impact on individuals and households remains
crucial, as improvements in sanitation, vaccine uptake,
and healthcare access are key to achieving long-term
disease control (Khan et al., 2021).

Recent research on infectious disease modeling further
highlights effective control strategies. Chowdhury et al.
(2020) developed an extensive mathematical model that
describes typhoid fever transmission by incorporating
factors such as asymptomatic carriers, vaccination
efforts, and environmental reservoirs within a system of
differential equations. Their simulations demonstrate that
increasing vaccination coverage alongside sanitation
improvements can substantially lower infection rates,
offering valuable guidance for policymakers in endemic
regions (Chowdhury et al., 2020). Building on this
approach, Rahman and Ahmed (2021) introduced
antibiotic treatment and drug resistance into their typhoid
fever model. Their analysis shows that although prompt
antibiotic use can reduce disease prevalence, the rising
threat of antimicrobial resistance demands adaptive
treatment policies. This work highlights the need to
simultaneously address disease transmission and
resistance management through surveillance and
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stewardship initiatives (Rahman & Ahmed, 2021).
Mathematical modeling has also proven effective in
addressing other infectious diseases. Kucharski et al.
(2020) used a dynamic model to analyze the early spread
of COVID-19, demonstrating how non-pharmaceutical
interventions such as lockdowns and social distancing can
significantly reduce transmission. Similarly, Aguiar and
Stollenwerk (2020) examined dengue fever through a
mathematical framework, showing that high vaccine
coverage is critical for outbreak prevention in
hyperendemic regions. Collectively, these studies
illustrate the broad applicability of mathematical models
in informing public health decision-making across
diverse disease contexts (Kucharski et al., 2020; Aguiar
& Stollenwerk, 2020).

The objectives of the study include: To develop a
mathematical model for typhoid fever using a system of
five ordinary differential equations (ODEs) that
accurately represents the disease dynamics. To conduct a
rigorous mathematical analysis to confirm the existence
and uniqueness of solutions, ensuring the model's
feasibility within a biologically relevant region. To
determine equilibrium points and analyze the stability of
the disease-free equilibrium (DFE), identifying
conditions under which typhoid fever can either persist or
be eradicated. To derive the basic reproduction number
(Ro) using the next-generation matrix method and assess
its sensitivity to key parameters influencing transmission
dynamics. To perform numerical simulations in
MATLAB to visualize model outcomes under various
intervention strategies, evaluating the effectiveness of
treatments and preventive measures. The novelty of this
study lies in its integrated approach to modeling typhoid
fever, combining traditional epidemiological
compartmental modeling with advanced mathematical
analysis and simulation tools. Unlike many existing
models, it incorporates  both  environmental
contamination and human contact transmission pathways,
allowing for a more comprehensive assessment of control
strategies. Additionally, the study applies sensitivity
analysis on the reproduction number (Ro) to pinpoint the
most impactful parameters, offering data-driven insights
for public health planning. The use of MATLAB
simulations further enhances the study's practical
relevance by visually demonstrating the effects of various
interventions, such as prompt treatment and improved
sanitation, making the findings directly applicable to real-
world disease control efforts.

MATERIALS AND METHODS

Model Formulation

In this segment, a deterministic compartmental model for
the transmission dynamics of typhoid fever is developed.
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Model equations
Based on the state variables and parameters described in
(5) epidemiological classes of susceptible humansS, table 1 and figure 1, we have the following system of

exposed humans to diarrhea infection E, infected differential equations.
humans |, treatment class of typhoid fever T, and d_S =A+wR _ﬁ_ﬂs

recovered individuals R. Let Adenotes recruitment dt
rate of individuals into the susceptible compartment, dE _ ABSI

: . : — —(a+60+u)E
where S is the effective contact rate with the  (t N (@+0+u)

probability of infection per contact with infected human. ]
The population of exposed human is decreased by — =aE—(o+¢+ )l @
infection rate « and treatment rate of exposed humans dt
| infectious AT
_9,_ Yvhere ¢ is the treatment rate of infectious 0T _ oo Bl —(p + )T
individuals and each of the compartment is decreased by
the natural deathrate 4z and o denotes diseased induced
rate. Every treated human recovers at the / rate, where E =yT —(0+u)R
immunity loss occurs recovered individuals become
susceptible at the @ rate. Description of parameters and
state variables used in model formulation is summarized

The total human population N (t) , issubdivide into five

Invariant Region of the Typhoid Model
Lemmal

;[‘;QIZ lljeI[c))szcri tion of variables and parameters The solutions of the typhoid model are feasible for all
Variaﬁle Description P : t > 0, if they enter the invariant region D, which is
S Susceptible given by: A

D=<(S,E,I,T,R):S>0,E>0,1 >0,T >0,R>0,N <—
E Exposed human {( ) ﬂ}
| Infected human
T Treated human Proof _ . _
R Recovered human The total human population of the typhoid model is
i given by:
A Recruitment rate N(t) =S(t)+E(t)+1(t)+T(t)+R().
B Contact rate Summing the differential equations in the model, we
u Natural death rate have: N dS dE dIl dT dR
o Disease induced death rate DT R R S
a Progression rate from Eto | dt dt dt C:jts ddé dldt 4T
0 Progression rate from E to T Substituting the equations for — ,— ,—,—, an
¢ Treatment rate dt dt dt dt
14 Recovery rate E we obtain:
7 -
Immunity loss rate . dN

E=A—,u8—,uE—,ul —ul —uR.
Simplifying using
N(@)=S{H)+E@®)+1(t)+T(t)+R(t), we get:

) T
N I
u o 6 ¢ dN
, u —=A—uN.
dt "
T
I
u

R — Solving this linear differential equation using the
integrating factor method (Somma et al, 2019), we have:

Iz A A
. o . N(t) ==+ N(0)-— |e™.
Figure 1. Schematic diagram for the typhoid Y7, Y7,

fever model
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A
As t — oo, the term (N (0)— —j e ** approaches
7

zero, and we obtain:

o<Nm <
7

Thus, D is a positively invariant set under the flow
described by the typhoid model. This implies that no
solution path exits the boundary of the region D.
Therefore, the typhoid model is mathematically and
epidemiologically well-posed within this region (Somma
et al, 2019).

Positivity of Solutions of the Typhoid Model
It is necessary to demonstrate that every state variable in
the typhoid model is nonnegative across the entire time

t >0, for the model to be epidemiologically and
mathematically well-posed in a feasible region D, given
by:
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(B,
S(t) > Ce o
Using the initial condition S(0) = C , we obtain:
(B,
S(t)>S(0)e [ N
ya

Since W+,u >0, it follows that S(t) >0.

“+so

Similarly, it can be demonstrated that E(t) >0,
I(t)>0, T(t)>0,and R(t) >0 forall t>0.
Thus, the solutions (S, E,I,T, R) of the typhoid model

are nonnegative for all t>0, and the model is
mathematically and epidemiologically well-posed.

Asymptotic Stability of the Disease-Free Equilibrium
of the Typhoid Model
The stable state in which there is no typhoid infection, a

point where E=1=T =R =0, is referred to as the

D= {(S, EIT, R) c Rf S+ E+1 +T + Rlisegde-free equilibrium point (DFE). For the typhoid

This is done by considering
{(S.E.I,T,R)20eR}.

Theorem 1
Let the initial data of the typhoid model be

(S, E,IT, R) > 0. Then, the solutions
(S, E,IT, R) of the model are positive forall t > 0.

Proof

Let

t=sup{t>0:5>0,E>0,1>0,T >0,R>0¢€[0,t]}.
Thus t > 0.

From the first equation of the model, we have:

d—S=A+a)R—ﬁ—,uS.
dt N

Neglecting the nonnegative terms A and @R, we

obtain:
ds pl
—2>—=—+u|S.
at (N H ]
Rewriting, we have:
ds Bl
—2—|| —+ t.
S
Solving this inequality yields:

InS z—(%wjuc,

where C is the constant of integration. Taking
exponential of both sides, we have:

model, the DFE is given as:

& =1{S",E, |*,T*,R*}={§,o,o,o,o}.
y7]
The Basic Reproduction Number
The average number of secondary infections caused by a
single infectious typhoid individual introduced into a
completely susceptible population during their entire
infectious period is known as the basic reproduction

number for typhoid individuals, denoted by ng. The

next generation operator technique is applied to the
typhoid model to derive this basic reproduction number
(Van den Driessche & Watmough, 2002).

Thus, the basic reproduction number for typhoid is given
as:

Ry =p(FV?),
where F represents the new infection terms in the
model,V represents the remaining transfer terms, and p
is the dominant eigenvalue of FV .

The new infection terms in the model are represented by
the matrix:

B 0 0
F=(0 0 0|,
000

while the remaining transfer terms are represented by the
matrix:
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K, - 0
V=l-aa K, —-¢]|,
0 v K,
where:
Ki=u K,=a+0+u, K,=c+¢+u
The next generation matrix is therefore given by:
PakK, BoK, _ By
KKKy +day KKK, +day KKK +gay
FV™= 0 0 0
0 0 0

Thus, the basic reproduction number for the typhoid
model is given as:

Ty _ PaK,
° KKK, +gay
Where
K=y K,=a+0+u, K,=c+¢+u

Local Asymptotic Stability of the Typhoid Model's
Disease-Free Equilibrium

The necessary and sufficient condition for all newly
proposed epidemiological models is that they are
investigated for their local asymptotic stability. This is
what we do in this section.

Theorem 2
In the typhoid model, the disease-free equilibrium point
is locally asymptotically stable (LAS) if

Ry’ <1, and unstable if R}’ >1.

Proof

To demonstrate the local stability of the disease-free
equilibrium point, we use the Jacobian matrix.

At the disease-free equilibrium point, the Jacobian
matrix associated with the typhoid model is computed as

J (80)and given by:

-4 0 -5 0 0]
S -K, 0 0 0
J(&)= 0 a -K; O 0 |,
0o @0 o -K, 0
0 0 0 y K

where:

K,=a+0+u, K,=c+¢+u, K, =w+u, K =0+pu
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The eigenvalues of the Jacobian matrix J (&, ) are:
_/’ll - K4| - K51
and the roots of the polynomial:

P(1)=A*+ A A%+ Ad+ BaK,w(1-RY),

where ngis the basic reproduction number for the

typhoid model, and S” = N ensures proper cancellation
of terms.

The coefficients A and A, are given as:
A=K;+K;,+ 5,
A =K,K, + K, +ab0+K,p.

From the above, it is evident that when ng <1, all

eigenvalues have negative real parts, confirming that the
disease-free equilibrium is locally asymptotically stable.

Conversely, ingy >1, the equilibrium becomes
unstable.

Global Asymptotic Stability of the Typhoid Model's
Disease-Free Equilibrium

To investigate the global stability of the disease-free
equilibrium of the typhoid model, we use the technique
developed by Castillo-Chavez and Song (Castillo-
Chavez & Song, 2004, Agbata et al 2025)). To
accomplish this, we write the equation for the uninfected
class as:

dXx
—=F(X,2),
m (X,2)
and we re-write the equation for the infected class as:
dz
—=0G(X,2),
o (X,2)

where X = (S, R) e R signifies the uninfected

population, andZ = (E, I,T) € Rf denotes the

infected population.
The disease-free equilibrium is denoted by:

g =(X",0).

The system’s disease-free equilibrium is globally
asymptotically stable if the following requirements are
met:

H, :O:T)t( =F(X",0), X" is globally asymptotically stable.
. dz * 2
H, e =D,G(X ,0)Z -G(X,2),

where G(X,Z) > Ofor all(X,Z2)eD,
D,G(X",0)is anM -matrix (i, the diagonal
components are non-negative). This is the Jacobian of

and
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G(X,Z) withrespectto Z , evaluated at (X, 0) . If the

system satisfies the above criteria, the following theorem
holds:

Theorem: 3
The point of equilibrium &, = (X", 0) is globally

asymptotically stable if R}’ <1.

Proof
We define:
[ A+oR-uS
F(X,2)=| 2TOnTH
LT —(o+ )R
and:
[ S|

T—(a+9+,u)E_
G(X,Z2)=| aE—(c+¢+ )l

OE + ol — (v + u)T

At the disease-free equilibrium,S™ =N", the two
criteria H, and H, become:
Condition H, :

ds

S _ A s
dt H

* A *
SinceS =—and >0, X is globally asymptotically
Y7,
stable.

Condition H,:
The Jacobian of G( X, Z) with respect to Z evaluated at

(X7,0)is:

—(a+6+p) 0 0
D,G(X",0) = a —(o+d+p) 0
0 ¢ —(y +u)

Thisisan M -matrix since all off-diagonal terms are non-
positive, and the diagonal entries are negative.

Next, we confirm G(X, Z) > 0. Using:
G(X,Z)= D,G(X",0)Z —G(X,Z), we find that:

a1
N B

G(X,Z)=| 0 |=]|0|
0 0
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Clearly, G(X,Z) > Osince S = N ensures B — O as

Z—0.
Thus, H, and H , are satisfied, and the disease-free

equilibrium is globally asymptotically stable if ng <1.

Thank you for clarifying the expression for the basic
reproduction number of the typhoid model. Below is the
corrected sensitivity analysis based on the provided

The Model Sensitivity Analysis

Sensitivity analysis is used to identify the factors that
encourage both the containment and spread of typhoid
within a population. For any parameter p , the sensitivity
index of the reproduction number of the typhoid model is
given by:

0
Sio = ;RO X b

ap R
The basic reproduction number for the typhoid model is
expressed as:

Ty _ paK,

° KKK, +gay

where:

K=y, K,=a+0+u, K,=c+¢+u.

Using the sensitivity formula, the sensitivity indices for
the parameters are computed as follows:

Transmission Rate (5 ):

3y = R, by
g R
Progression Rate (¢ ):
350 = % &
Jda R,
Differentiating ng with respectto « vyields:
R, PK, PaKpy

oa KK K; +gay B (KK Ky +gay)®
Substituting values and simplifying:

3P =0.728.
o Ry 0
00 R,
Differentiating ng with respect to € through K,
yields:
IR _ PaK;K,

00 (K K;K; +gay)?
Substituting values and simplifying:

193




Mathematical Analysis of Typhoid Fever with ...
3 =-0.135.
<Ro — % X ﬂ .

# o ou R,

The contributions of x arise through K, K,, and K,
. After computation:

3% =-0.093.
Treatment Rate (0 ):
~r, ORy O

0=
7 0o R,

Since o ispart of K,:

oR, Pa

oo KKK, +day
Substituting values and simplifying:
3% =0.094.

1.2r

o
o]
:

Sensitivity Index
o o
"’5 (o2}

o
N

o

-0.2

1 2 3 4 5
Parameters
Figure 2. Sensitivity bar chat

From the sensitivity bar chart above, parameters with
positive sensitivity indices showed factors that increase
transmission, the positive sensitivity indices of contact
rate and infectious rate showed these parameter increase
transmission of typhoid fever hence any effort taking to
reduce these parameter would mitigate or reduce the
spread of the typhoid fever disease. (Agbata et al, 2024).
Conversely, parameters with negative sensitivity indices,
like treatment rate, revealed that timely and effective
medical interventions significantly reduce disease
prevalence. Therefore, enhancing treatment accessibility,
and implementing proactive public health measures, such
as sanitation improvements and early diagnosis, are
essential in controlling and preventing typhoid fever
within the population.
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Endemic Equilibrium of the Typhoid Model
Theorem 4

The endemic equilibrium point of the typhoid model is
stable if R;” >1 and unstable if R}’ <1.

Proof

The typhoid model's endemic equilibrium is the point at
which:

s _dE_di _dT _dR_,
dt  dt dt dt dt

Let & ={ST,E",I7,T7,R"} represent the

endemic equilibrium point of the typhoid model. From

the equations of the typhoid model, solving for the state
variables at endemic equilibrium yields:

g AKK, Eﬂ_ﬁs”l”
KKK, +day K,

OB g OETHPIT e T
K, v+ u o+ u

Substituting these equilibrium values into the force of
infection:

PR L
N
We obtained:
(A" +B)A” =0,
where:
A= paK,,

B = K,K,K;+gay (1-R)").

At the endemic equilibrium point, A~ % 0, thus:

AL” +B=0.
This implies:

=R’-1>0 and R} >1.
Consequently, the typhoid model's endemic equilibrium
is stable whenever R}’ >1.
RESULTS AND DISCUSSION

Numerical Simulation

In this section, we carry out a numerical simulation of
our model equations using MATLAB to visualize the
real-life behavior of the system through graphical
solutions (Agbata et al 2024). By implementing
MATLAB's computational capabilities, we aim to
analyze how different parameters influence disease
dynamics and assess the effectiveness of various
intervention strategies. The numerical simulation
provides insights into key trends, such as the progression
of susceptible, exposed, infected, and recovered
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individuals over time. Through graphical representations, Y2 0.0400 Omowumi et al, 2024
we can better understand how factors like transmission o 0.005 Bolarinwa etal. 2024
rates, treatment efficacy, and recovery rates impact : - ’
disease spread and control. @ 0.05 Acheneje et al, 2024
12 0.100 Omowumi et al, 2024

Table 2. Parameter values used in the model ¢ 0.01 Agbata etal 2023

Parameters | Values Sources % 0.01 Odeh et al, 2024

A 10726.4451 | Omowumi et al, 2024

yij 0.00000001 | Omowumi et al, 2024
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The figures presented provide a clear picture of how
effective intervention strategies impact the spread and
control of typhoid. In Figure 3a, the number of
susceptible individuals decreases over time, suggesting
that as people gain immunity either through natural
recovery, vaccination, or other preventive measures,
fewer individuals remain at risk of infection. This decline
indicates that control measures such as improved
sanitation, vaccination campaigns, and public health
education are effectively limiting new cases. Similarly,
Figure 3b shows a steady decrease in the number of
exposed individuals, meaning fewer people are coming
into contact with the bacteria. This decline suggests that
interventions like water purification, proper food
handling, and hygiene education are successfully
reducing disease transmission. In Figure 3c, the number
of infected individuals drops to zero, highlighting the
effectiveness of medical interventions, particularly timely
diagnosis and treatment. The availability of antibiotics
and access to healthcare play a crucial role in reducing the
disease burden. When infected individuals receive
appropriate treatment promptly, they recover faster and
are less likely to spread the disease, leading to a
significant reduction in infection rates. This success is
further reinforced in Figure 3d, where the administration
of treatment plays a crucial role in lowering infections.
The trend suggests that early intervention and
accessibility to healthcare facilities are critical
components of disease control. If treatment is delayed, the
disease can spread further, making control efforts more
challenging. However, efficient treatment helps eliminate
the infection and prevents complications, ultimately
contributing to disease eradication. The effectiveness of
treatment is further emphasized in Figure 3e, where the
recovery rate increases significantly. This indicates that
individuals who receive proper medical care recover

quickly, reducing both morbidity and mortality associated
with typhoid. A high recovery rate also means that fewer
people remain infectious, contributing to the overall
decline in disease prevalence. The trends observed in the
figures suggest that prompt and effective treatment,
coupled with the management of contaminated sources,
are the best strategies for controlling typhoid.

CONCLUSION

This article presents a comprehensive investigation into
the dynamics of typhoid fever and the impact of various
intervention strategies. A robust mathematical model was
developed using a system of five ordinary differential
equations to capture the key aspects of disease
transmission and control. Rigorous mathematical analysis
confirmed the model’s validity by demonstrating the
existence and uniqueness of solutions within a well-
defined region, as well as by establishing conditions for
the stability of the disease-free equilibrium. The
derivation of the basic reproduction number through the
next-generation matrix method provided critical insights
into the threshold parameters necessary for disease
control. Sensitivity analysis further identified the contact
rate as a pivotal factor in disease propagation,
emphasizing that minimizing human interaction with
contaminated sources is essential. Numerical simulations
reinforced these findings by illustrating that prompt
treatment of infected individuals and effective
management of contamination are fundamental to
reducing infection rates. Overall, the study highlights that
a multifaceted intervention strategy encompassing
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improved sanitation, vaccination, early diagnosis, and
timely treatment is vital for mitigating the spread of
typhoid fever and ultimately reducing both morbidity and
mortality associated with the disease.

Recommendations

1. Implement targeted interventions to reduce
human exposure to contaminated sources,
including public education campaigns and
behavioral guidelines aimed at minimizing
contact with unsafe water, food, and infected
individuals.

2. Strengthen healthcare response systems to
ensure timely diagnosis and prompt
treatment of typhoid cases, thereby reducing
the infectious period and limiting community
transmission.

3. Enhance the monitoring and regulation of
water and food safety, through regular
inspections, contamination control measures,
and community-level surveillance to prevent
environmental sources from fueling outbreaks.

4. Invest in long-term improvements to
sanitation infrastructure and hygiene
promotion, especially in high-risk areas, to
address the root causes of typhoid transmission
and improve overall public health resilience.

Develop and implement early warning systems and health
education programs to raise community awareness,
promote early medical seeking behavior, and support
rapid response to potential typhoid fever outbreaks.

REFERENCE

Acheneje, G. O., Omale, D., Agbata, B. C., Atokolo, W.,
Shior, M. M., & Bolawarinwa, B. (2024).Approximate
solution of the fractional order mathematical model on the
transmission dynamics of the co-infection of COVID-19
and monkeypox using Laplace—Adomian decomposition
method. IJMSS, 12(3), 17-51.

Agbata, B. C., Asante-Mensa, F., Abah, E., Kwabi, P. A.,
Amoah-Mensah, J., Shior, M. M., Meseda, P. K., Topman,
N. N., & Obeng-Denteh, W.Published in Journal of Basics
and Applied Sciences Research, 3(3), 215-226, 2025.
DOI: https://dx.doi.org/10.4314/jobasr.v3i3.23

Agbata, B. C., Shior, M. M., Obeng-Denteh, W.,
Omotehinwa, T. O., Paul, R. V., Kwabi, P. A, &
Asante-Mensa, F. (2023) A mathematical model of
COVID-19 transmission dynamics with effects of
awareness and vaccination program. Journal of
Global Scientific Academy, 21(2), 59-61.

Shior et al.

JOBASR2026 4(1): 188-198

Agbata, B. C., Obeng-Denteh, W., Amoah-Mensah, J.,
Kwabi, P. A., Shior, M. M., Asante-Mensa, F., &
Abraham, S. (2024). Numerical solution of fractional
order model of measles disease with double dose
vaccination. DUJOPAS, 10(3b), 202-217.

Agbata, B. C., Obeng-Denteh, W., Dervish, R., Kwabi, P.
A., Aal-Rkhais, H. A., Asante-Mensa, F., Ezugorie, I. G.,
& Arivi, S. S, (2024). Mathematical modeling and
analysis of monkeypox transmission dynamics with
treatment and quarantine interventions. DUJOPAS,
10(4b), 78-96.

Aguiar, M., & Stollenwerk, N. (2020).The impact of
dengue vaccination: Mathematical modelling and future
directions. PLOS Neglected Tropical Diseases,
14(7), e0008515.
https://doi.org/10.1371/journal.pntd.0008515

Bolarinwa, B. T., Onoja, T., Agbata, B. C., Omede, B. I.,
& Odionyenma, U. B. (2024). Dynamical analysis of
HIV-TB coinfection in the presence of treatment for TB.
Bulletin of Biomathematics, 2(1), 21-56.

Castillo-Chavez, C., & Song, B. (2004). Dynamical
models of tuberculosis and their applications.
Mathematical Biosciences and Engineering, 1(2), 361-
404. https://doi.org/10.3934/mbe.2004.1.361

Centers for Disease Control and Prevention. (2023).
Typhoid fever. Retrieved from
https://www.cdc.gov/typhoid/

Chowdhury, F. M., Rahman, A., & Uddin, M. (2020). A
mathematical model of typhoid fever transmission
dynamics and its control. Journal of Theoretical Biology,
500, 110345. https://doi.org/10.1016/j.jtbi.2020.110345

Dutta, S., Walia, K., & Ghosh, S. (2021). Antimicrobial
resistance in typhoid fever. PLOS Neglected
Tropical Diseases, 15(2), €0009001.
https://doi.org/10.1371/journal.pntd.0009001

Khan, M., Ali, S., & Hossain, M. (2021). Socio-economic
determinants of typhoid fever outbreaks.
International Journal of Infectious Diseases, 103, 45-52.
https://doi.org/10.1016/}.ijid.2020.11.144

Kucharski, A. J., Russell, T. W., Diamond, C., Liu, Y.,
Edmunds, J., Funk, S., ... & Eggo, R. M. (2020). Early
dynamics of transmission and control of COVID-19: A
mathematical modelling study. The Lancet
Infectious Diseases, 20(5), 553-558.
https://doi.org/10.1016/S1473-3099(20)30144-4

197



https://doi.org/10.1371/journal.pntd.0008515
https://doi.org/10.3934/mbe.2004.1.361
https://www.cdc.gov/typhoid/
https://doi.org/10.1016/j.jtbi.2020.110345
https://doi.org/10.1371/journal.pntd.0009001
https://doi.org/10.1016/j.ijid.2020.11.144
https://doi.org/10.1016/S1473-3099(20)30144-4

Mathematical Analysis of Typhoid Fever with ...

Liu, Y., Zhang, T., & Wang, L. (2019). Environmental
factors influencing typhoid fever transmission.
Environmental Health Perspectives, 127(3), 034001.
https://doi.org/10.1289/EHP4503

Miller, R., & Jones, S. (2020). Urban sanitation and the
re-emergence of typhoid fever. Journal of Public
Health, 42(4), 715-722.
https://doi.org/10.1093/pubmed/fdaa039

Omowumi, F. L., Tunde, T. Y., & Afeez, A. (2024). On
mathematical modelling of optimal control of typhoid
fever with efficiency analysis. Journal of the
Nigerian Society of Physical Sciences, 6(3), 2057.
https://journal.nsps.org.ng/index.php/jnsps/article/view/
2057

Odeh, J. O., Agbata, B. C., Ezeafulukwe, A. U,
Madubueze, C. E., Acheneje, G. O., & Topman, N. N.
(2024). A mathematical model for the control of
chlamydia disease with treatment strategy. Journal
of Mathematical Analysis and Research, 7(1), 1-20.

Parry, C. M., Wijedoru, L., & Baker, S. (2020). Advances
in typhoid fever vaccines and control strategies. The
Lancet Infectious Diseases, 20(5), €200-208.
https://doi.org/10.1016/S1473-3099(20)30160-8

Shior et al.

JOBASR2026 4(1): 188-198

Rahman, M., & Ahmed, S. (2021). Modeling the impact
of vaccination and antibiotic treatment on typhoid fever
outbreaks. Infectious Disease Modelling, 6, 205-
218. https://doi.org/10.1016/].idm.2021.04.003

Saha, S., Pervin, M., Mitra, A., & Rahman, M. (2019).
The global burden of typhoid fever: A systematic review.
The Lancet Infectious Diseases, 19(5), 520-530.
https://doi.org/10.1016/S1473-3099(18)30723-0

Somma, S. A., Akinwande, N. I., & Chado, U. D. (2019).
A mathematical model of monkeypox virus transmission
dynamics. Ife Journal of Science, 21(1), 195-204.
https://doi.org/10.4314/ijs.v21i1.17

Van den Driessche, P., & Watmough, J. (2002).
Reproduction numbers and sub-threshold endemic
equilibria  for compartmental models of disease
transmission. Mathematical Biosciences, 180(1-2),
29-48. https://doi.org/10.1016/S0025-5564(02)00108-6
World Health Organization. (2022).
Typhoid. Retrieved from
https://www.who.int/news-room/fact-
sheets/detail/typhoid

198



https://doi.org/10.1289/EHP4503
https://doi.org/10.1093/pubmed/fdaa039
https://journal.nsps.org.ng/index.php/jnsps/article/view/2057
https://journal.nsps.org.ng/index.php/jnsps/article/view/2057
https://doi.org/10.1016/S1473-3099(20)30160-8
https://doi.org/10.1016/j.idm.2021.04.003
https://doi.org/10.1016/S1473-3099(18)30723-0
https://doi.org/10.4314/ijs.v21i1.17
https://doi.org/10.1016/S0025-5564(02)00108-6
https://www.who.int/news-room/fact-sheets/detail/typhoid
https://www.who.int/news-room/fact-sheets/detail/typhoid

