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ABSTRACT 

The generalized Sundman transformation is a mathematical technique designed 

to simplify the integration of differential equations, particularly in fields like 

dynamical systems and celestial mechanics. This powerful method helps 

transform complicated dynamical equations into forms that are easier to analyze 

or solve numerically, especially when dealing with challenging singularities. 

Among the various nonlinear second-order differential equations, the general 

modified Emden equation (GMEE) is notable for its frequent appearance across 

multiple areas of applied mathematics and physics. This equation is a variation 

of the classic Emden-Fowler equation, which is commonly used to model 

thermodynamics, stellar structure, and other physical phenomena. Its nonlinear 

nature allows it to effectively represent the complexities found in real-world 

systems across diverse fields, making it highly versatile. This study examines 

the generalized modified Lane-Emden equation derived from the general Lane-

Emden differential equation. Using the generalized Sundman transformation 

approach, exact solutions are obtained for the second-order general modified 

Lane-Emden differential equation through analytical linearization. Additionally 

taken into consideration were a few particular instances of the modified Lane-

Emden differential equations and their solutions. 

 
 

INTRODUCTION 

One of the most intricate and thoroughly studied 

nonlinear dynamic equations in the literature is the 

Emden differential equation. It has applications across a 

range of fields including celestial mechanics, fluid 

dynamics, stellar structure, isothermal gas spheres, 

thermionic currents, and so on (Orverem et al., 2021). In 

a separate study, approximate analytical solutions for 

nonlinear Emden-Fowler type equations were derived 

using the differential transform method (DTM) (Kartak, 

2011). The DTM serves as both a numerical and 

analytical technique for solving integral equations, as 

well as ordinary and partial differential equations. 

In another study, the authors aimed to find solutions for 

the Lane-Emden equation, a well-known and challenging 

nonlinear dynamic equation given by 𝑦′′(𝑥) +
2

𝑥
𝑦′(𝑥) +

𝑦𝑛 = 0for 𝑛 = 0, 1, 2, 3, 4 and 5, using the relatively 

new exact series technique called the differential 

transform method (DTM). The Lane-Emden equation 

models various phenomena in theoretical physics and 

astrophysics (Mukherjee et al., 2011).  

 

 

 

 

 

Additionally, singular initial value problems related to a 

new class of Lane-Emden or Emden-Fowler type 

equations were explored in (Biles et al., 2008). 

A specific second-order Lane-Emden differential 

equation was solved using various methods, including 

He’s variational iteration method, the adomian 

decomposition method, the homotopy analysis method, 

the homotopy perturbation method, and the finite 

difference method (Yuksel & Gozukizil, 2023). The 

solutions obtained from these methods were compared to 

evaluate which one provides the most accurate and 

practical results. 

The modified Emden equation plays a significant role in 

analyzing heat distribution within spherical objects, 

which is especially relevant in fields like plasma physics 

and astrophysics. It models how heat is conducted and 

how temperature varies within such bodies. In 

thermodynamic systems exhibiting spherical symmetry 

particularly those involving irreversible processes that 

generate entropy, the equation also helps describe entropy 

distribution.  

 

 

 

 

 

 

 

 
ISSN (print): 3026-9091, ISSN (online): 1597-9962 

 

DOI: https://dx.doi.org/10.4314/jobasr.v3i4.22            

 

 193 Orverem J. M. & Nworah C. Using the Generalized Sundman Transformation to 

Achieve Linearization of the General Modified Second-Order Lane-Emden Differential Equation. 

 3(4), 193-197. https://dx.doi.org/10.4314/jobasr.v3i4.22 

mailto:orveremjoel@yahoo.com
https://dx.doi.org/10.4314/jobasr.v3i4.6
https://dx.doi.org/10.4314/jobasr.v3i4.22


 
Using the Generalized Sundman … Orverem & Nworah 

 

JOBASR2025 3(4): 193-197 

 

   

Additionally, certain cosmological models that address 

the universe’s evolution incorporate this equation. Under 

particular assumptions about how matter and energy are 

distributed, it contributes to understanding the dynamics 

of the universe’s expansion. 

Motsa & Shateyi, (2012) suggested a novel way to solve 

singular initial and boundary value problems of the Lane-

Emden type using the successive linearization method. 

The results of previous approaches in the literature and 

precise analytical answers were compared in order to 

show the dependability of the suggested approach. It was 

discovered that the approach works better than some 

numerical techniques, is simple to use, and produces 

accurate results. 

Another article examines how to solve singular Initial 

Value Problems (IVPs) of the Lane-Emden type in 

second-order Ordinary Differential Equations using the 

Differential Transformation Method (DTM) to get both 

exact and approximate solutions (Merdan & Yildirim, 

2011). The method is straightforward to apply to a wide 

range of linear and nonlinear problems, significantly 

reducing computational effort while yielding series 

solutions with a rapid convergence rate. In some cases, 

exact solutions can be derived directly from the series 

form. The findings demonstrate that DTM is an efficient, 

reliable, user-friendly, and accurate approach. 

The general modified Emden equation is frequently used 

in diffusion models for porous media, especially when 

diffusion is driven by variations in temperature, pressure, 

or concentration. It effectively describes diffusion 

processes within spherical environments, such as in gas 

adsorption scenarios. In catalytic reactors that contain 

spherical catalysts, the equation is instrumental in 

analyzing how the reaction rate depends on both the 

concentration of reactants and their diffusion into the 

catalyst material. Moreover, the equation is applied in the 

investigation of gravitational collapse, where massive 

celestial bodies like stars collapse under the force of their 

own gravity. It helps explain the distribution of mass and 

pressure during such events, offering valuable 

understanding of the formation of neutron stars and black 

holes. 

Using the Mittag-Leffler kernel and the Atangana-

Baleanu-Caputo (ABC) fractional derivative, this work 

examines the dynamics of HIV/AIDS transmission. To 

prove the existence and uniqueness of the model's 

solution, the Picard-Lindelöf approach was used 

(Ezugorie & Micheal, 2024). 

 Orhan et al., (2020) demonstrated that arbitrary 

coefficients 𝛼 and 𝛽 have invariant solutions in the 

modified Emden equation. First, they showed that it is 

possible to linearize the modified Emden equation. Once 

this equation is linearized, a workable approach can be 

used to determine the symmetries of the equation. With 

the use of these symmetries and a new algorithm, the 

exact solutions to the problem were obtained. 

Furthermore, determining solutions was categorized 

according to the arbitrary coefficients' physical meaning. 

Lastly, all of the solution visualizations were displayed 

using Matlab and Mathematica. 

A study's objective was to present a new model based on 

the nonlinear singular second order delay differential 

equation of the Lane–Emden type that was successfully 

solved numerically using the heuristic technique by Sabir 

et al., (2021). This paper presented four different 

examples, namely genetic algorithms (GA), sequential 

quadratic programming (SQP), and GA-SQP, which were 

numerically resolved using artificial neural networks 

optimized by the global search, local search, and their 

hybrid combinations, respectively, and based on the 

designed model. The performance and accuracy of the 

suggested heuristic technique were demonstrated by 

comparing the numerical results of the constructed model 

with the exact/explicit outcomes. Additionally, statistical 

analyses and evaluations were provided about the 

precision and effectiveness of the model that was created 

using heuristic methods. 

The equation can be used to forecast population dynamics 

in mathematical biology when nonlinear growth and 

interaction factors are present. It describes how 

populations fluctuate over time while taking into 

consideration growth rates that are impacted by both 

population density and outside factors. The general 

modified Emden equation can be used to characterize the 

behavior of some nonlinear oscillatory systems. Both 

mechanical and electrical engineering can benefit from 

systems that exhibit oscillations with amplitudes and 

frequencies that change over time. It can be applied to the 

study of chaotic systems, in which nonlinear interactions 

cause complex, unpredictable behaviors over time. 

The boundary value approach was used by Okunuga et 

al., (2012) to resolve Lane-Emden type second order non-

linear ordinary differential equations. The multistep 

collocation technique was used to derive a class of second 

derivative backward differentiation formulas from certain 

continuous multistep schemes. The method transforms 

the numerical methods into a set of non-linear equations 

represented as a tridiagonal matrix, allowing numerical 

solutions to be found simultaneously on the whole range 

of integration. Both the stability properties and general 

properties of the numerical approach were shown. To 

illustrate the method's effectiveness, a few Lane-Emden 

type equations were solved. 

Previously, Duarte, Moreira, and Santos used the 

Laguerre form to examine the linearization problem of a 

second-order ordinary differential equation via the 

generalized Sundman transformation (Nakpim & 

Meleshko, 2010). The authors demonstrated that the 

Laguerre form of linearization 𝑢′′ = 0 is not sufficient. 

From the perspective of the generalized Sundman 

transformation, the linearization of a class of nonlinear 

second-order ordinary differential equations of Liénard 
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type was considered. The generalized Sundman 

transformation that linearizes the class of equations was 

built (Johnpillai & Mahomed, 2013). A novel description 

of S-linearizable equations using one auxiliary function 

and the ODE coefficients. By explicitly obtaining the 

general solutions for the first integral using this new 

criterion, a direct alternative method for building the first 

integrals and Sundman transformations is provided 

(Mustafa et al., 2013). 

This study is the first to use the generalized Sundman 

transformation (GST) to linearize the general modified 

Emden differential equation of second order. The many 

uses of the general modified Emden differential equation 

serve as the driving force behind this study. This work 

uses the generalized Sundman transformation strategy to 

linearize the second-order generalized modified Emden 

differential equation. 

 

MATERIALS AND METHODS 

 

The Generalized Sundman Transformation (GST) 

 A nonpoint transformation given as                                            

𝑢(𝑡) = 𝐹(𝑥, 𝑦), 𝑑𝑡 = 𝐺(𝑥, 𝑦)𝑑𝑥, 𝐹𝑦𝐺 ≠ 0,            (1) 

is known as the generalized Sundman transformation. 

The necessary format for an ordinary differential 

equation of second order 𝑦′′ = 𝜇(𝑥, 𝑦, 𝑦′),  that can be 

linearized to become a linear ordinary differential 

equation 

 𝑢′′ + 𝛽𝑢′ + 𝛼𝑢 = 𝛾,                                                 (2) 

by means of the transformation (1), is provided by  

 𝑦′′ + 𝜇2𝑦′2
+ 𝜇1𝑦′ + 𝜇0 = 0,                                  (3) 

where in equation (2), 𝛼(𝑡), 𝛽(𝑡) and 𝛾(𝑡)  represent 

various functions.  

Consider the case 𝜇3 ≠ 0 and 𝜇5 ≠ 0, where 

 𝜇3 = 𝜇1𝑦 − 2𝜇2𝑥,  𝜇4 = 2𝜇0𝑦𝑦 − 2𝜇1𝑥𝑦 + 2𝜇0𝜇2𝑦 −

𝜇1𝑦𝜇1 + 2𝜇0𝑦𝜇2 + 2𝜇2𝑥𝑥 and  

𝜇5 = 𝜇2𝑥𝑥 + 𝜇2𝑥𝜇1 + 𝜇3𝑥 + 𝜇1𝜇3.  
The following prerequisites must be met in order for 

equation (3) to be linearizable by (1):  

 𝜇0𝑥𝜇3 = 2𝜇0(𝜇5 − 𝜇1𝜇3),                                         (4) 

       

 𝜇2𝑥𝑥𝑦𝜇3 = −𝜇2𝑥𝑦𝜇1𝜇3 − 𝜇3𝑥𝑦𝜇3 − 2𝜇2𝑥
2 𝜇3 − 2𝜇2𝑥𝜇3

2 −

𝜇3𝑦𝜇1𝜇3 + 𝜇3𝑦𝜇5,                                                       (5) 

𝜇2𝑥𝑥𝑥𝜇3 = −𝜇3𝑥𝑥𝜇3 − 𝜇1𝑥𝜇2𝑥𝜇3 − 𝜇1𝑥𝜇3
2 + 𝜇2𝑥𝜇1

2𝜇3 +
𝜇1

2𝜇3
2 − 2𝜇1𝜇3𝜇5 + 𝜇5(𝜇3𝑥 + 𝜇5),                              (6) 

and  

𝜇3𝜇5(6𝜇0𝑦𝜇2𝑥 + 2𝜇2𝑥𝑦𝜇0 + 4𝜇2𝑥𝜇0𝜇2 + 2𝜇3𝑦𝜇0 +

4𝜇0𝜇2𝜇3 + 𝜇1𝜇5) − 𝜇3
2(6𝜇2𝑥

2 𝜇0 + 12𝜇2𝑥𝜇1𝜇3 −

6𝜇0𝑦𝜇5 + 6𝜇0𝜇3
2) − 𝜇4𝜇5

2 − 2𝜇5
3 = 0.                       (7)                

The following equations must be solved in order to obtain 

the 𝐹 and 𝐺 functions: 

𝐹𝑥 = 0,                                                                     (8) 

   𝐹𝑦𝑦 =
𝐹𝑦𝐺𝑦+𝜇2𝐹𝑦𝐺

𝐺
,                                                      (9)  

𝐺𝑥 =
𝐺(𝜇2𝑥𝑥+𝜇2𝑥𝜇1+𝜇3𝑥)

𝜇3
,                                              (10)     

𝐺𝑦 =
𝐺𝜇3(𝜇2𝑥+𝜇3)

𝜇5
.                                                        (11) 

The following equations can be used to find the constants 

𝛼, 𝛽, and 𝛾 from equation (2): 

𝛼 =
𝐺(𝜇0𝑦+𝜇0𝜇2)−𝐺𝑦𝜇0

𝐺3 ,                                                 (12) 

 𝛽 =
𝐺𝑥+𝐺𝜇1

𝐺2 ,                                                                (13)      

𝛾 =
𝛼𝐹𝐺2−𝐹𝑦𝜇0

𝐺2 .                                                            (14)  

 

RESULTS AND DISCUSSION 

According to Berkovic (1997), the generic second-order 

Lane-Emden equation is 

𝑦′′ + 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 + 𝑓(𝑥)𝑦𝑛 = 0, 𝑛 ≠ 0, 𝑛 ≠ 1.            
                             (15) 

Assuming that the coefficients in (15) are 

𝑎1(𝑥) = 𝛼𝑦, 𝑎0(𝑥) = 0, 𝑓(𝑥) = 𝛽, 𝑛 = 3,                 (16)   

we have that  

 𝑦′′ + 𝛼𝑦𝑦′ + 𝛽𝑦3 = 0,                                              (17) 

as the general modified Lane- Emden differential 

equation. 

From equation (17), the coefficients of the general 

modified Lane-Emden equation are: 

𝜇0 = 𝛽𝑦3, 𝜇1 = 𝛼𝑦, 𝜇2 = 0 

and  

𝜇3 = 𝜇1𝑦 − 2𝜇2𝑥 = 𝛼 ≠ 0, 

 𝜇4 = 2𝜇0𝑦𝑦 − 2𝜇1𝑥𝑦 + 2𝜇0𝜇2𝑦 − 𝜇1𝑦𝜇1 + 2𝜇0𝑦𝜇2

+ 2𝜇2𝑥𝑥 = 12𝛽𝑦 − 𝛼2𝑦, 
 𝜇5 = 𝜇2𝑥𝑥 + 𝜇2𝑥𝜇1 + 𝜇3𝑥 + 𝜇1𝜇3 = 𝛼2𝑦 ≠ 0. 

One now checks to see if 𝜇0, 𝜇1, 𝜇2, 𝜇3,  𝜇4 and  𝜇5 satisfy 

equations (4) to (7). From equation (4) we see that 

 𝜇0𝑥𝜇3 = 0 and    

2𝜇0(𝜇5 − 𝜇1𝜇3) = 2𝛽𝑦3(𝛼2𝑦 − 𝛼2𝑦) = 0. 
That is, equation (4) is satisfied. From equation (5),  

𝜇2𝑥𝑥𝑦𝜇3 = −𝜇2𝑥𝑦𝜇1𝜇3 − 𝜇3𝑥𝑦𝜇3 − 2𝜇2𝑥
2 𝜇3 − 2𝜇2𝑥𝜇3

2

− 𝜇3𝑦𝜇1𝜇3 + 𝜇3𝑦𝜇5 = 0, 

 and from (6), 𝜇2𝑥𝑥𝑥𝜇3 = 0 and the right-hand side  

−𝜇3𝑥𝑥𝜇3 − 𝜇1𝑥𝜇2𝑥𝜇3 − 𝜇1𝑥𝜇3
2 + 𝜇2𝑥𝜇1

2𝜇3 + 𝜇1
2𝜇3

2

− 2𝜇1𝜇3𝜇5 + 𝜇5(𝜇3𝑥 + 𝜇5)
= 𝛼4𝑦2 − 2𝛼4𝑦2 + 𝛼4𝑦2 = 0. 

Thus, equation (6) is also satisfied.  

From equation (7), one has that  

𝜇3𝜇5(𝜇1𝜇5) − 𝜇3
2(−6𝜇0𝑦𝜇5 + 6𝜇0𝜇3

2) −  𝜇4𝜇5
2 − 2𝜇5

3

= 0. 
This becomes  

𝛼6𝑦3 − 𝛼2(−12𝛼2𝛽𝑦3) − 12𝛼4𝛽𝑦3 + 𝛼6𝑦3 − 2𝛼6𝑦3

= 0. 
Since all the four equations above are satisfied, the 

general modified Emden equation (17) through the 

generalized Sundman transformation (GST), can be 

linearized. 
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Next, one finds expressions for 𝐹 and 𝐺 that will satisfy 

equations (8)-(11), and these expressions are: 

  𝐹 = 𝑦2, 𝐺 = 𝑦.                                                                  (18) 

One now proceeds to find 𝛼, 𝛽 and 𝛾 as given in equations 

(12), (13) and (14). From these equations, one has:  

𝛼 = 2𝛽, 𝛽 = 𝛼 and 𝛾 = 0. With these, the linear 

equation (2) becomes 

    𝑢′′ + 𝛼𝑢′ + 2𝛽𝑢 = 0.                                                           (19) 

The characteristics equation of equation (19) is 

𝑟2 + 𝛼𝑟 + 2𝛽 = 0.                                                         (20) 

Solving equation (20) with the aid of quadratic formula, 

we have 

 𝑟 =
−𝛼±√𝛼2−8𝛽

2
,                                                            (21) 

where 𝑟1 =
−𝛼+√𝛼2−8𝛽

2
, 𝑟2 =

−𝛼−√𝛼2−8𝛽

2
. 

Now, one has three cases depending on the discriminant 

𝐷 = 𝛼2 − 8𝛽: 
Case 1: If 𝐷 = 𝛼2 − 8𝛽 > 0, the roots 𝑟1 and 𝑟2 are real 

and distinct. In this case, equation (19) has the following 

solution: 

𝑢(𝑡) = 𝑐1𝑒
−𝛼+√𝛼2−8𝛽

2
𝑡 + 𝑐2𝑒

−𝛼−√𝛼2−8𝛽
2

𝑡 , 
where the constants 𝑐1 and 𝑐2 are arbitrary.  

Once the generalized Sundman transformation  

𝑢(𝑡) = 𝐹(𝑥, 𝑦), 𝑑𝑡 = 𝐺(𝑥, 𝑦)𝑑𝑥,  (from (18)) is applied,  

𝑦2 = 𝑢(𝑡), 𝑑𝑡 = 𝑦𝑑𝑥 

 

is obtained. 

One now has: 

𝑦2 = 𝑐1𝑒
−𝛼+√𝛼2−8𝛽

2
𝑡 + 𝑐2𝑒

−𝛼−√𝛼2−8𝛽
2

𝑡 , 
so that  

𝑦 = √𝑐1𝑒
−𝛼+√𝛼2−8𝛽

2
ϕ(𝑥) + 𝑐2𝑒

−𝛼−√𝛼2−8𝛽
2

ϕ(𝑥), 

where ϕ(𝑥) is the solution of the equation 𝑑𝑡 = 𝑦𝑑𝑥. 
Case 2: If 𝐷 = 𝛼2 − 8𝛽 = 0, then the roots are real and 

equal, 𝑟1 = 𝑟2 =
−𝛼

2
. In this case, the general solution to 

equation (19) is: 

𝑢(𝑡) = (𝑐1 + 𝑐2𝑡)𝑒
−𝛼
2

𝑡 , 
where 𝑐1 and 𝑐2 are arbitrary constants. 

From case 2, on application of the GST established in 

equation (18), one has that 

𝑦 = √(𝑐1 + 𝑐2𝑡)𝑒
−𝛼
2

ϕ(𝑥), 

where ϕ(𝑥) is the solution of the equation 𝑑𝑡 = 𝑦𝑑𝑥. 
Case 3: If 𝐷 = 𝛼2 − 8𝛽 < 0, then the roots are complex, 

of the form 𝑟 = 𝛼 ± 𝑖𝛽, where: 𝛼 =
−𝛼

2
, 𝛽 =

√8𝛽−𝛼2

2
. In 

this case, the general solution of (19) is  

𝑢(𝑡) = 𝑒
−𝛼
2

𝑡 (𝑐1 cos (
√8𝛽 − 𝛼2

2
𝑡)

+ 𝑐2 sin (
√8𝛽 − 𝛼2

2
𝑡)). 

Lastly, case 3 has the solution on application of the GST 

in (18) as: 
𝑦

= √𝑒
−𝛼
2

ϕ(𝑥) (𝑐1 cos (
√8𝛽 − 𝛼2

2
ϕ(𝑥)) + 𝑐2 sin (

√8𝛽 − 𝛼2

2
ϕ(𝑥))), 

where ϕ(𝑥) is the solution of the equation 𝑑𝑡 = 𝑦𝑑𝑥.  
From the general modified Lane-Emden equation 

established in equation (17), if 𝛼 = 𝛽 = 1, one has that: 

 𝑦′′ + 𝑦𝑦′ + 𝑦3 = 0,                                                             (22) 

with the coefficients: 𝜇0 = 𝑦3, 𝜇1 = 𝑦, 𝜇2 = 0, and one 

finds that 𝜇3 = 1 ≠ 0, 𝜇4 = 11𝑦 and 𝜇5 = 𝑦 ≠ 0.  
Next, one tests to see if these coefficients satisfy the 

linearizability conditions (4) to (7). One can see that all 

the linearizability conditions are satisfied, therefore, 

equation (22) is linearizable using this method of the 

generalized Sundman transformation (GST). Taking 

𝐹 = 𝑦2, 𝐺 = 𝑦, 
one sees that equations (8) through (11) are fully satisfied.  

To obtain 𝛼, 𝛽 and 𝛾 from equations (12) to (14), one has 

that 𝛼 = 2,   𝛽 = 1 and 𝛾 = 0 respectively. The linear 

equation in (2) becomes 

 𝑢′′ + 𝑢′ + 2𝑢 = 0,                                                           (23) 

with the solution  

𝑢(𝑡) = 𝑒−
𝑡
2 (𝑐1 cos

√7

2
𝑡 + 𝑐2 sin

√7

2
𝑡). 

Applying the GST, one obtains that 

𝑦 = [𝑒−
𝑡
2 (𝑐1 cos

√7

2
𝑡 + 𝑐2 sin

√7

2
𝑡)]

1
2

, 

and finally 

𝑦 = [𝑒−
ϕ(𝑥) 

2 (𝑐1 cos
√7

2
𝜙(𝑥) + 𝑐2 sin

√7

2
𝜙(𝑥))]

1
2

, 

where ϕ(𝑥) is the solution of the equation 𝑑𝑡 = 𝑦𝑑𝑥.   
In another instance, Orverem et al., (2021) considered the 

modified Emden equation of the form 

𝑦′′ + 𝑎𝑦𝑦′ +
𝑎2

9
𝑦3 = 0,                                              (24)                                                                                                                                                                                                           

 where 𝛼 = 𝑎, and 𝛽 =
𝑎2

9
.  

In this case, the linearized equation is 

𝑢′′ + 𝑎𝑢′ +
2𝑎2

9
𝑢 = 0,                                                   (25) 

with the general solution 

  𝑢 = 𝑐1𝑒−
𝑎𝑡

3 + 𝑐2𝑒−
2𝑎𝑡

3 .                                                   (26) 

Applying the generalized Sundman transformation 

produced the following outcome 

 𝑦(𝑥) = √𝑐1𝑒−
𝑎

3
𝜙(𝑥)

+ 𝑐2𝑒−
2𝑎

3
𝜙(𝑥).                                   (27) 

A solution to the equation 

𝑑𝑡

𝑑𝑥
= √𝑐1𝑒−

𝑎
3

𝑡 + 𝑐2𝑒−
2𝑎
3

𝑡
 

 is the function 𝑡 = 𝜙(𝑥).     
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CONCLUSION 

This work uses the generalized Sundman transformation 

strategy to linearize the general modified Lane-Emden 

nonlinear second order ordinary differential equation. 

The conventional second order linear homogeneous 

differential equations with constant coefficients, where 

the characteristic equations that emerged from the 

linearization process were solved. The general solution of 

the general modified Emden differential equation can be 

found by applying the generalized Sundman 

transformation. Some specific cases of the modified 

Lane-Emden differential equations and their solutions 

were also considered. 
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