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ABSTRACT 

Diarrhea remains a major public health challenge, particularly in developing 

regions where poor sanitation and limited access to clean water contribute to its 

rapid spread. This study presents a deterministic compartmental model to better 

understand the transmission dynamics of the disease. The model categorizes the 

population into six groups: susceptible, exposed, asymptomatic infected, 

symptomatic infected, treated, and recovered individuals. Key factors such as 

human-to-human and waterborne transmission, treatment effectiveness, and 

recovery rates are incorporated to provide a comprehensive analysis of disease 

spread and control. A mathematical analysis is conducted to examine both local 
and global stability, determining the conditions under which the disease can 

either persist or be eradicated. Sensitivity analysis identifies the most influential 

factors driving transmission, highlighting the crucial role of reducing contact 

rate and improving treatment accessibility. Numerical simulations further 

demonstrate that timely medical intervention and improved sanitation 

significantly reduce infection rate and disease prevalence. 

 
 

INTRODUCTION 

Diarrheal disease continues to pose a major public health 

challenge worldwide, with children under the age of five 
in low- and middle-income countries bearing the greatest 

burden. In 2020, the African region recorded an estimated 

1.01 billion cases of diarrhea and more than 515,000 

associated deaths, highlighting the severity of the 

problem on the continent (Thystrup, et al., 2024). This 

considerable disease burden emphasizes the need for 

strengthened prevention, control, and treatment strategies 

aimed at reducing diarrheal morbidity and mortality. 

Diarrhea arises from a complex interplay of causative 

agents, including bacterial, viral, and parasitic pathogens.  

 

 
 

 

 

 

 

 

Research conducted in Ile-Ife, Nigeria, revealed that 

rotavirus was the leading cause of acute diarrhea among 

children under five, with diarrheagenic Escherichia coli 
ranking next in prevalence (Omotade et al., 2023). These 

findings underscore the prominent contribution of viral 

and bacterial pathogens to pediatric diarrheal infections 

in the region. 

Environmental and socioeconomic conditions play a 

pivotal role in shaping diarrhea incidence. A large-scale 

systematic review covering studies published between 

2013 and 2023 identified poor access to potable water, 

inadequate sanitation infrastructure, and low 

socioeconomic status as major contributors to diarrheal 

disease among African children under five (Shane et al., 

2017).  
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Mitigating these underlying inequities is therefore crucial 

for lowering disease prevalence and improving child 

survival outcomes. Preventive interventions, particularly 

vaccination, have demonstrated significant potential in 

curbing diarrheal disease incidence. Although rotavirus 
vaccines are available, their incorporation into routine 

national immunization programs remains insufficient in 

several African countries, including Nigeria (Omotade et 

al., 2023). Expanding rotavirus vaccine coverage through 

routine immunization schedules could markedly reduce 

cases of rotavirus-related diarrhea. 

Effective diarrhea management relies heavily on early 

intervention, especially rehydration therapy and, where 

appropriate, antimicrobial treatment. The Infectious 

Diseases Society of America recommends reduced-

osmolarity oral rehydration solutions as the primary 

treatment for mild to moderate dehydration resulting from 
acute diarrhea (Shane et al., 2017). Furthermore, 

antimicrobial therapy should be pathogen-specific to 

maximize treatment effectiveness and minimize the 

development of antimicrobial resistance. Mathematical 

modeling has become an essential approach for analyzing 

and controlling infectious diseases, including diarrhea. 

Through the use of mathematical frameworks, 

researchers can examine disease transmission 

mechanisms, assess the effectiveness of intervention 

strategies, and forecast outbreak scenarios. 

Compartmental models such as the Susceptible–
Infectious–Recovered (SIR) model are commonly 

employed to describe transitions between disease states, 

enabling detailed analysis of infection spread and 

recovery dynamics. These models offer several 

advantages, including the estimation of critical 

epidemiological parameters, improved planning for 

resource distribution during outbreaks, and support for 

evidence-based public health decision-making. By 

incorporating factors such as environmental conditions 

and behavioral patterns, mathematical models provide a 

more comprehensive understanding of disease dynamics. 

In diarrheal disease research, modeling techniques have 
been used to evaluate vaccination and treatment 

strategies, demonstrating their effectiveness in lowering 

transmission rates and informing public health 

interventions (Olutimo et al., 2024). 

Several studies have applied mathematical modeling to 

the study of infectious diseases. Olutimo et al. (2024) 

proposed a compartmental framework to investigate 

diarrhea transmission through both direct person-to-

person contact and indirect exposure via contaminated 

water sources. The model differentiates between infants 

and adults, reflecting the increased susceptibility of 
infants to diarrheal infections. By incorporating 

vaccination and treatment components, the study assesses 

how these interventions influence disease prevalence. 

The results indicate that focused vaccination efforts and 

efficient treatment strategies can substantially reduce 

disease transmission, especially in settings with high 

infant mortality. Smith et al. (2023) explored the 

integration of social vulnerability indicators into 

infectious disease models. Their findings reveal that 

communities with limited healthcare access, inadequate 
sanitation, and low socioeconomic standing experience a 

disproportionate burden of infectious diseases, including 

diarrhea. The authors emphasize the importance of 

embedding social determinants into modeling 

frameworks to improve predictive accuracy and to design 

interventions that are both equitable and effective. 

Johnson et al. (2023) developed a mathematical model to 

examine the transmission dynamics of giardiasis, a 

protozoan infection associated with diarrheal illness. The 

model accounts for asymptomatic carriers and evaluates 

intervention strategies such as screening and treatment. 

Sensitivity analysis identified key parameters driving 
transmission, offering valuable insights into effective 

outbreak control measures. Lee et al. (2023) introduced 

an innovative modeling approach using a piecewise 

modified ABC (ABC) fractional derivative to describe 

the spread of acute diarrhea. This method captures both 

classical and fractional dynamics of disease transmission, 

allowing for a more detailed representation of disease 

progression. Analysis of local and global stability around 

the disease-free equilibrium provides important guidance 

for implementing effective control strategies. Thompson 

et al. (2024) highlighted the critical role of mathematical 
models in outbreak preparedness and response. Their 

study demonstrates how models can characterize 

complex transmission patterns and simulate various 

intervention scenarios. When applied to diarrheal 

diseases, such models enable public health authorities to 

anticipate outbreak trends, allocate resources efficiently, 

and ultimately reduce disease-related morbidity and 

mortality. 

The primary aim of this study is to construct a 

deterministic compartmental model that accurately 

represents the transmission dynamics of diarrhea in 

environments characterized by poor sanitation and 
limited access to safe water. The study seeks to conduct 

both local and global stability analyses to determine 

conditions under which the disease persists or is 

eliminated, perform sensitivity analysis to identify key 

parameters influencing transmission—such as contact 

rate and treatment effectiveness—and apply numerical 

simulations to assess the impact of intervention strategies, 

including sanitation improvements and timely treatment, 

on reducing infection rates and controlling disease spread 

 

The novelty of this model lies in its detailed 
compartmentalization of diarrhea transmission dynamics, 

distinguishing between exposed, asymptomatic infected, 

symptomatic infected, treated, and recovered individuals. 

Unlike simpler models, it accounts for asymptomatic 

carriers and their role in disease spread. It also 
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incorporates treatment as a dynamic process with separate 

rates for symptomatic and asymptomatic infections, 

allowing for better evaluation of intervention strategies. 

Additionally, it includes key epidemiological parameters 

such as progression rates, effective contact rates, 
recovery rates, and disease-induced mortality, providing 

a more realistic representation of transmission. 

 

MATERIALS AND METHODS 

Model Formulation 

In this section, a deterministic compartmental model on 

the transmission dynamics of diarrhea  is been 

formulated. The total human population ( )HN t , is 

subdivide  into six (6) epidemiological  classes of 

susceptible humans S , exposed humans to diarrhea 

infection  ,E  asymptomatic  infected humans with 

diarrhea  AI , symptomatic infected humans with diarrhea 

SI , treatment class of  diarrhea  T , and recovered 

individuals  R  from this diarrhea disease. The constant 

recruitment rate of individuals  into the susceptible 

compartment is at the rate  H  so that    denotes  the 

effective contact rate with the probability of infection per 

contact with infected human with diarrhea disease and the 

rate progression rate from exposed class to symptomatic 

class is (1 ) − . The rate at which remaining exposed 

individuals move to asymptomatic class     is given as   

and 
1  

is the symptom gain rate of asymptomatic 

infected individuals. 
2  and 

3 are the treatment rates  of 

SI  and AI  respectively whereas  
1  and 

2  are the 

wining and recovery rates respectively. The natural death 

rate of human in any compartment is given as H  and 

the  disease induced death rate of humans due to diarrhea  

infection is  
 

 

Table 1. Variable/Parameter and  Descriptions 

Variable  Description 

S  Susceptible  

E  Exposed  

AI  Asymptomatic infected  

SI  Symptomatic infected  

T  Treatment class  

R  Recovered  

Parameter Description 

  Recruitment rate  

  Contact rate  

  Progression rate from E to 
AI  

(1 ) −  Progression rate from E to 
SI  

1  Symptom gain rate  

2  Treatment rate of 
sI  

3  Treatment rate of 
AI  

  Natural death rate  

  Disease induced death rate  

2  Recovery rate  

1  Rate at which recovered individuals becomes susceptible  

Table 1 presents descriptions of parameters and 

variables used in the model. The transition of individuals 

from one compartment to another is dependent on the 

rates described in the above table 1.  

Model Assumptions 

The model is formulated based on the following 

mathematical assumptions.   
 

1. The population mixture is homogeneous, age, 

social status or gender does not affect the 

probability of an individual been infected. 

2. The model considered both birth and death rates 

3. The recovered individuals can also be 

susceptible to  diarrhea disease  
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4. The mode of transmission considered in this 

model is direct (from human to human) 

5. There is no inherited immunity   

 

Figure 1. Schematic diagram for the model 

 

Model equations 

From the parameters described in table 1 and the above 

schematic we have the following system of differential 

equations. 

( )

( )

( )

1

1 3

1 2

2 3 2

2 1

( )

    

    

(1 )    (1)

( )       

( )                  

( )

A
A

S
A s

S A

S A

dS
R S

dt

dE
S E

dt

dI
E I

dt

dI
E I I

dt

dT
I I T

dt

dR
T R

dt

I I

N

  

  

   

     

   

  




=  + − +

= − +

= − + +

= − + − + +

= + − +

= − +

+
=

 

 

RESULTS AND DISCUSSION 

Model Analysis 

Let ( )N t be the total population at time t. Hence, the 

total population is expressed as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )A SN t S t E t I t I t T t R t= + + + + +  

Where the state variables have  their usual meaning as 

defined in table 1. 

The differential equation yields  
( )dN t

dt
N=  −                                           (2) 

 

Lemma 1 

( ), , , , ,A SLet S E I I T R be the solution of the model 

(1) with initial conditions in a epidemiological   feasible 

region  D with: 

6, , , , , :A SD S E I I T R R N


+


=                        (3) 

Then D is non-negative invariant  

From the result of Somma et al (2019), we obtain   

0 ( )( ) ( )( ) (0) 1t t

hN t N e e 



− −
  + −                      (4) 

 Therefore, the set D is positively invariant for all t  

  

Asymptotic Stability of the Disease Free Equilibrium 

of the Diarrhea Model 

The disease-free equilibrium (DFE) describes a condition 

in which an infectious disease is entirely eliminated from 

a population, leaving no individuals affected. This 

scenario signifies either the successful eradication of the 

disease or its inability to propagate within the community 

(Van den Driessche & Watmough, 2002). When minor 

disturbances in the system fail to reintroduce the 

infection, the DFE is deemed stable, suggesting that long-

term disease elimination is achievable. The disease free 

equilibrium of our model is given by  

 

 * * * * * *

0 , , , , , ,0,0,0,0,0A SS E I I T R


 
= =  

 
 

 

 Basic Reproduction Number of the Model  

The basic reproduction number is obtained as follows 

( )1

0R FV −=
, 
 is given by dominant eigenvalue of 

1FV −

 where F  and  V matrices are the new infection 

terms and the remaining transfer terms respectively. 

Following the result obtained in (Van den Driessche & 

Watmough, 2002), we have  
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0 0

0 0 0 0

0 0 0 0

0 0 0 0

F

  
 
 =
 
 
 

,

 
( )

1

2

1 3

3 2 4

0 0 0

0 0

1 0

0

P

P
V

P

P



  

 

 
 

−
 =
 − − −
 

− − 

 

 

 

( )( ) ( )2 3 1 2 3 1

2 1 3 3 2 3

1

0

. 0 0 0 0

0 0 0 0

0 0 0 0

P P P P

P P P P P P

F V

      

−

 − − − +
− 
 
 =
 
 
 
 

 

 
( )( )2 3 1 2

0

2 1 3

P P P
R

P P P

  − − −
= −  

 ( )

1

1

0 2

3 2 4

2 5

0 0

0 0 0

0 0 0

0 0 0

0

0

0 0 0

P

J P

P

P

   

 

 

 



− − − 
 

−
 
 = −
 

− 
 − 

 

The reduced Jacobian matrix becomes 

( )
( )

1

2

0

1 3

3 2 4

0

0 0

1 0

0

P

P
J

P

P

 




  

 

− 
 

−
 =
 − −
 

− 

 

The eigenvalues of the reduced Jacobian matrix becomes 

( ) ( )

( )

4 3 2

4 3 2 1 1 2 1 3 1 4 3 2 2 4 3 4

2 4 1 2 3 3 2 1 1 2 4

1 3 4 2 3 4 2 4 2

1 2 3 01

P P P P P P P P P P P P P P P P

P P P P P P P P

P P P P P P P P

PP P R

    

    


  

+ + + + + + + + + + + −

+ − + − + + 
+ 

+ + − − − 

+ −

 

Applying the Routh Hurwitz criterion, we have that  

 ( )01 0R−   

0 1R   , thus the model locally asymptotically 

stable. 

Where ( )1P  = + , ( )2 1 3P   = + + , 

( )3 2P   = + + , 
4 2( )P  = + , s 

 

Global Asymptotic Stability of the Disease-Free 

Equilibrium Point of the Diarrhea Model. 

 

To investigate the global stability of the disease free 

equilibrium, we use the technique implemented by 

Castillo-Chavez and song (2004). 

To do this, we write the equation in the uninfected class 

as  

 ( ),
dX

F X Z
dt

=  

And we re-write the equation in the infected class as  

   ( , )
dZ

G X Z
dt

=  

Where ( ) 2,X S R R +=  denotes the uninfected 

population and  

 ( ) 4, , ,A SE I IZ T R +=  denotes the 

infected population 

 
*

0 ( ,0)X = represent the disease-free 

equilibrium of the system, and it globally asymptotically 

stable if it satisfies the following conditions: 

 ( )* *

1 :   ,0 , 
dX

H F X X
dt

=
 

is globally 

asymptotically stable 

 ( ) ( )*

2 :  ,0 ,ˆ
Z

dZ
H D G X Z G X Z

dt
= −  

( )ˆ , 0G X Z  for all ( ),X Z D and where 

( )*,0ZD G X  is an M- matrix (i.e the diagonal elements 

are no-negative and it is also the Jacobian of 

( )ˆ , 0G X Z   evaluated at 
*( ,0).X  

If the system satisfies the above condition, then the 

theorem below holds. 

 

Theorem 1 

The equilibrium point 
*

0 ( ,0).X =  is globally 

asymptotically stable if 0 1R   
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1

2 5

( )
( , )

R S
F X Z

T P R

  



+ − + 
=  

− 
 , 

1

2

1 3

2 3 4

( , )
(1 )

A

A s

S A

S PE

E P I
G X Z

E I P I

I I PT





  

 

− 
 

−
 =
 − + −
 

+ − 

  

At disease free equilibrium, 

1 :H  

 S
dS

dt
=  −  

 0
dR

dt
=  

2 :H  

1

*
2

1 3

2 3 4

( )S

( ,0)

(1 )

S A

Az

A s

S A

I I
PE

N

E P ID G X Z

E I P I

I I PT





  

 

+ 
− 

 
−=  

 − + −
 

+ −  

 

 

( ) ( ) ( )*, ,0 ,ˆ
ZG X Z D G X Z G X Z= −  

   

 ( )

1

0

0

,

( )

ˆ 0

S A

G X Z

S
I I

N

  

+ −  
  

 


=


 
  

 

Clearly, 1
S

N


 

this implies that ( )ˆ , 0G X Z  .  

Therefore the disease free equilibrium of the diarrhea 

model is globally asymptotically stable. 

 

Endemic Equilibrium Point of the Diarrhea Model 

The endemic equilibrium is the state where disease persist 

in the population. The endemic equilibrium of our model 

is given by  1 , , , , ,A SS E I I T R      =  

 

( ) ( )( )( )
1 2 3 4 5

2 2 3 3 1 2 2 1 1 2 3 4 5 1 2 3 4 51

P P P P P

P P P P P P P P P
S

P P P         

 

− − − +
=

+ + +
 

( ) ( )( )( )
2 3 4 5

2 2 3 3 1 2 2 1 1 2 3 4 5 1 2 3 4 51

P P P P

P P P P P P P P P P P P
E



         

 

− − − +
=

+ + +
 

( ) ( )( )( )
3 4 5

2 2 3 3 1 2 2 1 1 2 3 4 5 1 2 3 4 51
A

P P P

P P P P P P P P P P P
I

P



         

 =


− − − + + + +
 

( )( )
( ) ( )( )

2 1 4 5

2 1 2 1 3 4 5 2 1 2 2 1 2 3 3 1 2 1 2 3 4 5

1
S

P P P

P P P P P P P P P P P
I

    

             


 − +

+ − − + +
=  

( )( )( )
( )( ) ( )( )

1 2 2 2 3 3 5

1 1 2 2 2 2 3 3 1 2 1 2 4 5 1 2 4 5

P P P P
T

P P P P P P P P P P P

     

         


− + + 

− − + + +
=

− +
 

( )( )( )
( )( ) ( )( )

1 2 2 2 3 3 2

1 1 2 2 2 2 3 3 1 2 1 2 4 5 1 2 4 5

P P P

P P P P P P P P P P
R

P

     

         


− + + 

− − + + +
=

− +
 

Substituting into the force of infection for the diarrhea 

model 
( )S AI I

N




+
=  

We obtained 
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1 2 3 4

2 3 3 1 2

2 3 4 5
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P P P P P R

P

P P P P P P P

P P P P R

P

P P P P

P P P

P P P P P P P P

P

          



  

         













  
  
  
   = 
  
 
+ − 
 



−
 =

 
− − + + + + − − − 
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Thus, the endemic equilibrium point of the model is 

stable. 

 Sensitivity Analysis of the Model  

In infectious disease modeling, sensitivity analysis is 

particularly useful for evaluating key epidemiological 

parameters such as transmission rates, recovery rates, and 

intervention effectiveness (Agbata et al, 2025).  The 

sensitivity index of the reproduction number of the model 

with respect to any parameter say x  is given by: 

 0 0

0

R

x

R x

x R


 = 


 

Given that 
( )( )2 3 1 2
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P P P
R

P P P
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1. For : 
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2. For : 
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4. For 2 : 
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7. For : 
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2. For : 

 

 0 4.2944
R

 = −  

 

205 



 
A Mathematical Model for the Transmission … Shior et al. 

 

 

JOBASR2026 4(1): 199-210 

 

   

3. For
1 : 

 

 0

1
1.9231

R

 = −  

 

4. For
2 : 

 

 0

2
0.0014

R

 =  

 

5. For
3 : 

 

 0

3
0.6154

R

 = −  

 

6. For : 

 

 0 4.5792
R

 = −  

 

7. For : 

 

 0 0.5186
R

 = −  

 

8. For : 

 

 0 0.00001
R

 = −

 

 
Figure 2. Bar chat of diarrhea sensitivity Indices

The sensitivity analysis highlights key parameters that 

influence the spread of diarrhea, with positive sensitivity 
indices indicating factors that increase transmission, such 

as human-to-human and waterborne contact. Controlling 

these factors through improved sanitation and reduced 

exposure can help mitigate outbreaks (Agbata et al, 

2024). Conversely, parameters with negative sensitivity 

indices, like treatment rate, showed that timely and 

effective medical interventions significantly reduce 

disease prevalence. Strengthening healthcare systems, 

enhancing treatment accessibility, and implementing 

proactive public health measures, such as sanitation 

improvements and early diagnosis, are essential in 

controlling and preventing diarrhea outbreaks. 

Numerical Simulations  

Numerical simulation is a crucial step in analyzing the 

behavior of mathematical models, particularly in 

infectious disease modeling, where complex differential 

equations govern disease dynamics. In this study, 

MATLAB is used to perform numerical simulations to 

understand the real-life behavior of the formulated model 

equations for diarrhea transmission (Acheneje et al 2024). 

MATLAB is a powerful computational tool that provides 

robust numerical solvers for solving systems of ordinary 
differential equations (ODEs), allowing researchers to 

visualize disease progression under various conditions. 

MATLAB-based numerical simulations allow for a 

comprehensive analysis of the formulated model 

equations, offering valuable predictions about diarrhea 

transmission and control. 
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Table 2. Parameter values used for Simulation 

 

Parameters  Values   Source   

  2000 Olutimo et al, 2024 

  0.500 Olutimo et al, 2024 

  0.700 Olutimo et al, 2024 

  0.100 Olutimo et al,  2024 

1  1.00 Assumed  

2  0.98 Odeh et al, 2024 

3  0.0003 Olutimo et al, 2024 

  0.200 Olutimo et al, 2024 

  O.100 Agbata et al, 2024 

2  0.05 Bolarinwa et al, 2024 

1  0.00045 Assumed  

 

 

 

 
Figure 3a. Graph of susceptible humans               Figure 3b. Graph of exposed humans 
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Figure 3c. Graph infected asymptomatic     Figure 3d. Graph infected symptomatic humans 

humans                                           

 

 
Figure 3d. Graph of treated humans               Figure 3b. Graph of recovered humans

Figure 3a illustrates the graph of susceptible humans 

over time. Initially, the number of susceptible individuals 

increases rapidly; however, it later declines towards zero. 

A similar trend is observed in Figure 3b, where the 

number of exposed individuals sharply increases before 
gradually decreasing to zero. This pattern suggests 

effective disease control, as the population of both 

susceptible and exposed individuals diminishes over 

time. In Figures 3c and 3d, an increase in the contact rate 

between susceptible and infected individuals leads to a 

rise in the number of infected asymptomatic and 

symptomatic individuals, respectively. This observation 

indicates that higher contact rates contribute to the spread 

of the infection. Consequently, reducing the contact rate 

between susceptible and infected individuals could 

significantly curb the transmission of the disease. Figure 

3e highlights the impact of a high treatment rate for 

infected individuals. The data suggest that effective 

treatment plays a crucial role in controlling diarrhea 

infections by reducing the duration and severity of the 

illness. This increased treatment rate directly contributes 

to a higher recovery rate, as depicted in Figure 3f. 
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Overall, the figures emphasize two key strategies for 

controlling the spread of the disease: reducing contact 

rates between susceptible and infected individuals and 

ensuring prompt and effective treatment of infected 

persons.  

 

CONCLUSION 

This study provides a detailed analysis of diarrhea 

transmission dynamics, emphasizing key factors that 

influence its spread and control. The findings highlight 

that reducing contact between susceptible and infected 

individuals is essential in limiting disease transmission. 

An increase in contact rates significantly raises the 

number of infections, both symptomatic and 

asymptomatic, reinforcing the need for strict public 

health measures. Additionally, effective treatment plays a 

crucial role in reducing disease prevalence by shortening 
infection duration and increasing recovery rates. A higher 

treatment rate directly leads to better disease outcomes, 

demonstrating the importance of strengthening healthcare 

systems and ensuring timely medical intervention. 

Sensitivity analysis further confirms that transmission-

related factors, such as human-to-human contact and 

exposure to contaminated water, contribute to disease 

persistence, while improved sanitation and medical 

treatment significantly reduce its impact. Numerical 

simulations support these findings, showing that a 

combination of reduced exposure, enhanced sanitation, 
and prompt treatment can effectively curb diarrhea 

outbreaks. This study underscores the importance of early 

diagnosis, access to healthcare, and proactive public 

health interventions in managing and preventing the 

disease. Strengthening sanitation infrastructure, 

promoting hygiene awareness, and ensuring effective 

medical care are critical steps toward long-term disease 

control. These insights provide a valuable foundation for 

policymakers and health authorities in designing targeted 

strategies to reduce the burden of diarrhea and improve 

public health outcomes. 

Recommendations  

1. Implement Public Health Measures to 

Reduce Contact Rates: Authorities should 

enforce and promote interventions that minimize 

contact between susceptible and infected 

individuals such as isolation of symptomatic 

patients, public education on hygiene, and safe 

community practices to effectively lower 
transmission rates. 

2. Strengthen Healthcare Systems for Timely 

and Effective Treatment: Investments should 

be made in healthcare infrastructure to ensure 

rapid diagnosis and prompt treatment of diarrhea 

cases, which can significantly reduce the 

duration of infection and improve recovery 

rates. 

3. Enhance Sanitation and Clean Water Access: 

Government and non-governmental 
organizations should prioritize the development 

and maintenance of clean water sources and 

sanitation facilities to reduce exposure to 

waterborne pathogens. 

4. Promote Hygiene Education and Community 

Awareness: Public health campaigns must be 

expanded to educate communities on personal 

hygiene practices, safe food and water 

consumption, and the importance of seeking 

early medical care to prevent the spread of 

diarrhea. 

Adopt Data-Driven Strategies for Targeted 

Interventions: Policymakers should utilize sensitivity 

and simulation analysis from models like this study to 

identify high-impact intervention points, enabling the 
efficient allocation of resources and the development of 

tailored responses in vulnerable regions. 
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