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ABSTRACT

Diarrhea remains a major public health challenge, particularly in developing
regions where poor sanitation and limited access to clean water contribute to its
rapid spread. This study presents a deterministic compartmental model to better
understand the transmission dynamics of the disease. The model categorizes the
population into six groups: susceptible, exposed, asymptomatic infected,
symptomatic infected, treated, and recovered individuals. Key factors such as
human-to-human and waterborne transmission, treatment effectiveness, and
recovery rates are incorporated to provide a comprehensive analysis of disease
spread and control. A mathematical analysis is conducted to examine both local
and global stability, determining the conditions under which the disease can
either persist or be eradicated. Sensitivity analysis identifies the most influential
factors driving transmission, highlighting the crucial role of reducing contact
rate and improving treatment accessibility. Numerical simulations further
demonstrate that timely medical intervention and improved sanitation
significantly reduce infection rate and disease prevalence.
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INTRODUCTION Research conducted in lle-Ife, Nigeria, revealed that

Diarrheal disease continues to pose a major public health
challenge worldwide, with children under the age of five
in low- and middle-income countries bearing the greatest
burden. In 2020, the African region recorded an estimated
1.01 billion cases of diarrhea and more than 515,000
associated deaths, highlighting the severity of the
problem on the continent (Thystrup, et al., 2024). This
considerable disease burden emphasizes the need for
strengthened prevention, control, and treatment strategies
aimed at reducing diarrheal morbidity and mortality.
Diarrhea arises from a complex interplay of causative
agents, including bacterial, viral, and parasitic pathogens.

rotavirus was the leading cause of acute diarrhea among
children under five, with diarrheagenic Escherichia coli
ranking next in prevalence (Omotade et al., 2023). These
findings underscore the prominent contribution of viral
and bacterial pathogens to pediatric diarrheal infections
in the region.

Environmental and socioeconomic conditions play a
pivotal role in shaping diarrhea incidence. A large-scale
systematic review covering studies published between
2013 and 2023 identified poor access to potable water,
inadequate  sanitation infrastructure, and low
socioeconomic status as major contributors to diarrheal
disease among African children under five (Shane et al.,
2017).
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Mitigating these underlying inequities is therefore crucial
for lowering disease prevalence and improving child
survival outcomes. Preventive interventions, particularly
vaccination, have demonstrated significant potential in
curbing diarrheal disease incidence. Although rotavirus
vaccines are available, their incorporation into routine
national immunization programs remains insufficient in
several African countries, including Nigeria (Omotade et
al., 2023). Expanding rotavirus vaccine coverage through
routine immunization schedules could markedly reduce
cases of rotavirus-related diarrhea.

Effective diarrhea management relies heavily on early
intervention, especially rehydration therapy and, where
appropriate, antimicrobial treatment. The Infectious
Diseases Society of America recommends reduced-
osmolarity oral rehydration solutions as the primary
treatment for mild to moderate dehydration resulting from
acute diarrhea (Shane et al.,, 2017). Furthermore,
antimicrobial therapy should be pathogen-specific to
maximize treatment effectiveness and minimize the
development of antimicrobial resistance. Mathematical
modeling has become an essential approach for analyzing
and controlling infectious diseases, including diarrhea.
Through the use of mathematical frameworks,
researchers can examine disease  transmission
mechanisms, assess the effectiveness of intervention
strategies, and  forecast  outbreak  scenarios.
Compartmental models such as the Susceptible—
Infectious—Recovered (SIR) model are commonly
employed to describe transitions between disease states,
enabling detailed analysis of infection spread and
recovery dynamics. These models offer several
advantages, including the estimation of critical
epidemiological parameters, improved planning for
resource distribution during outbreaks, and support for
evidence-based public health decision-making. By
incorporating factors such as environmental conditions
and behavioral patterns, mathematical models provide a
more comprehensive understanding of disease dynamics.
In diarrheal disease research, modeling techniques have
been used to evaluate vaccination and treatment
strategies, demonstrating their effectiveness in lowering
transmission rates and informing public health
interventions (Olutimo et al., 2024).

Several studies have applied mathematical modeling to
the study of infectious diseases. Olutimo et al. (2024)
proposed a compartmental framework to investigate
diarrhea transmission through both direct person-to-
person contact and indirect exposure via contaminated
water sources. The model differentiates between infants
and adults, reflecting the increased susceptibility of
infants to diarrheal infections. By incorporating
vaccination and treatment components, the study assesses
how these interventions influence disease prevalence.
The results indicate that focused vaccination efforts and
efficient treatment strategies can substantially reduce
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disease transmission, especially in settings with high
infant mortality. Smith et al. (2023) explored the
integration of social vulnerability indicators into
infectious disease models. Their findings reveal that
communities with limited healthcare access, inadequate
sanitation, and low socioeconomic standing experience a
disproportionate burden of infectious diseases, including
diarrhea. The authors emphasize the importance of
embedding social determinants into  modeling
frameworks to improve predictive accuracy and to design
interventions that are both equitable and effective.
Johnson et al. (2023) developed a mathematical model to
examine the transmission dynamics of giardiasis, a
protozoan infection associated with diarrheal illness. The
model accounts for asymptomatic carriers and evaluates
intervention strategies such as screening and treatment.
Sensitivity analysis identified key parameters driving
transmission, offering valuable insights into effective
outbreak control measures. Lee et al. (2023) introduced
an innovative modeling approach using a piecewise
modified ABC (ABC) fractional derivative to describe
the spread of acute diarrhea. This method captures both
classical and fractional dynamics of disease transmission,
allowing for a more detailed representation of disease
progression. Analysis of local and global stability around
the disease-free equilibrium provides important guidance
for implementing effective control strategies. Thompson
et al. (2024) highlighted the critical role of mathematical
models in outbreak preparedness and response. Their
study demonstrates how models can characterize
complex transmission patterns and simulate various
intervention scenarios. When applied to diarrheal
diseases, such models enable public health authorities to
anticipate outbreak trends, allocate resources efficiently,
and ultimately reduce disease-related morbidity and
mortality.

The primary aim of this study is to construct a
deterministic compartmental model that accurately
represents the transmission dynamics of diarrhea in
environments characterized by poor sanitation and
limited access to safe water. The study seeks to conduct
both local and global stability analyses to determine
conditions under which the disease persists or is
eliminated, perform sensitivity analysis to identify key
parameters influencing transmission—such as contact
rate and treatment effectiveness—and apply numerical
simulations to assess the impact of intervention strategies,
including sanitation improvements and timely treatment,
on reducing infection rates and controlling disease spread

The novelty of this model lies in its detailed
compartmentalization of diarrhea transmission dynamics,
distinguishing between exposed, asymptomatic infected,
symptomatic infected, treated, and recovered individuals.
Unlike simpler models, it accounts for asymptomatic
carriers and their role in disease spread. It also
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incorporates treatment as a dynamic process with separate
rates for symptomatic and asymptomatic infections,
allowing for better evaluation of intervention strategies.
Additionally, it includes key epidemiological parameters
such as progression rates, effective contact rates,
recovery rates, and disease-induced mortality, providing
a more realistic representation of transmission.

MATERIALS AND METHODS

Model Formulation

In this section, a deterministic compartmental model on
the transmission dynamics of diarrhea is been

formulated. The total human population NH (t) is

subdivide into six (6) epidemiological classes of
susceptible humansS, exposed humans to diarrhea
infection E, asymptomatic infected humans with

diarrhea | A » Symptomatic infected humans with diarrhea

| g, treatment class of diarrhea T, and recovered
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individuals R from this diarrhea disease. The constant
recruitment rate of individuals into the susceptible
compartment is at the rate A, sothat /3 denotes the

effective contact rate with the probability of infection per
contact with infected human with diarrhea disease and the
rate progression rate from exposed class to symptomatic
class is @(1— @) . The rate at which remaining exposed

individuals move to asymptomatic class isgivenas G
and ¢, is the symptom gain rate of asymptomatic

infected individuals. &, and o, are the treatment rates of

Is and I, respectively whereas ¢ and ¢, are the
wining and recovery rates respectively. The natural death
rate of human in any compartment is given as £¢, and

the disease induced death rate of humans due to diarrhea
infectionis o

Table 1. Variable/Parameter and Descriptions

Variable Description

S Susceptible

E Exposed

I, Asymptomatic infected

I Symptomatic infected

T Treatment class

R Recovered

Parameter Description

A Recruitment rate

g Contact rate

Bw Progression rate fromE to |,
0(l-w) Progression rate from E to |
o Symptom gain rate

a, Treatment rate of |

o, Treatment rate of |,

H Natural death rate

o Disease induced death rate

@, Recovery rate

&, Rate at which recovered individuals becomes susceptible

Table 1 presents descriptions of parameters and
variables used in the model. The transition of individuals
from one compartment to another is dependent on the
rates described in the above table 1.

Model Assumptions

The model is formulated based on the following
mathematical assumptions.

1. The population mixture is homogeneous, age,
social status or gender does not affect the
probability of an individual been infected.

The model considered both birth and death rates
The recovered individuals can also be
susceptible to diarrhea disease

w
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4. The mode of transmission considered in this
model is direct (from human to human)
5. There is no inherited immunity

T R
i Y I
f I

Figure 1. Schematic diagram for the model

Model equations
From the parameters described in table 1 and the above
schematic we have the following system of differential

equations.
CCII—?:A+¢1R—(2,+#)S

dE

—=AS—-(0+u)E

dl,
EZQCOE—(OK]_-FO%-F,U)lA
dl
E:t9(1—a))E+051IA—(,u—i—a+0¢2)IS
dT
E=a2|5+a3lA_(ﬂ+¢2)T
drR

E:¢ZT_(IL[+¢1)R

L BUg+1)

N

RESULTS AND DISCUSSION

Model Analysis

Let N (t) be the total population at time t. Hence, the
total population is expressed as:

N(t) =S(t) + E(t) + 1 ,(t) + 1(t) + T (t) + R(t)

Where the state variables have their usual meaning as
defined in table 1.
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The differential equation yields
dN (t) _A —/JN

at

@

Lemma 1
Let (S, E. 1, 1g,T, R)be the solution of the model

(1) with initial conditions in a epidemiological feasible
region D with:
A
D=S,E,IA,IS,T,ReRf:NS— 3)
y7]

Then D is non-negative invariant
From the result of Somma et al (2019), we obtain

0 N(®) <N, (O)e 0 + 2 (1-¢ ) @)
Y7,

Therefore, the set D is positively invariant for all t

Asymptotic Stability of the Disease Free Equilibrium
of the Diarrhea Model

The disease-free equilibrium (DFE) describes a condition
in which an infectious disease is entirely eliminated from
a population, leaving no individuals affected. This
scenario signifies either the successful eradication of the
disease or its inability to propagate within the community
(Van den Driessche & Watmough, 2002). When minor
disturbances in the system fail to reintroduce the
infection, the DFE is deemed stable, suggesting that long-
term disease elimination is achievable. The disease free
equilibrium of our model is given by

* * * * * * A
=4S ,E,l,,Ig, TR :{—,0,0,0,0,0}
{ (1) } H
Basic Reproduction Number of the Model
The basic reproduction number is obtained as follows

R, = p( FV ’1) 0 is given by dominant eigenvalue of

FV ™ where F and V matrices are the new infection
terms and the remaining transfer terms respectively.
Following the result obtained in (Van den Driessche &
Watmough, 2002), we have
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08 B0 BO((P,—P,—a,)o—P,)
c_[0 0 0 0] == PPP,
0 0 0O _ _
00 0 0 -4 0 0 - - ¢
90 P 0 0 I(&)=| 0 60 -, 0 0 O
V= 0 0 o «a -P O
-0(1-w) - P, 0 0 0 0 0 ¢ -R
0 -5 —a, R The reduced Jacobian matrix becomes
-R 0 g 5
U(P-P-w)o-R) pRra) polye)-| P00 TR 00
PRP, PP P 01l-@) o -B 0O
FV™= 0 0 00 0 a, a, -P,
0 0 0 01rhe eigenvalues of the reduced Jacobian matrix becomes
0 0 0 0

A*+(P,+P,+P,+R)A° +(Bwd+PP,+PP+PP,+RP,+P,P,+PP,— 50)A*
(Pzﬂa)6’+ P, el — pwOa, + foba, — fwbo, + P,P,P, + PP, P4J/1
+P,R,P,+RP,P,P,-P, 6 -P, 60— p6c,
+P1P2P3(1_ RO)
Z =(E, 1, 15,T)eR", denotes the

Applying the Routh Hurwitz criterion, we have that . ]
infected population

(1-R,)>0 . _

_ &, = (X", 0) represent the disease-free
= R, <1, thus the model locally asymptotically equilibrium of the system, and it globally asymptotically
stable. stable if it satisfies the following conditions:

= = dX * *
Where P, =(0+u), P, =(oy + oy + 1), H,: - F(X ,0),X is globally
P=(u+o+a,), P=(u+¢,),
8 (,u 2) 2= (utd).s asymptotically stable
Z . A
Global Asymptotic Stability of the Disease-Free H, :d— = DZG(X ,O)Z -G (X,Z)
Equilibrium Point of the Diarrhea Model. dt

. . . _ é(X,Z)ZOfor all (X,Z)eDand where
To investigate the global stability of the disease free
equilibrium, we use the technique implemented by D,G (X ,O) is an M- matrix (i.e the diagonal elements
Castillo-Chavez and song (2004).

To do this, we write the equation in the uninfected class are no-negative and it is also the Jacobian of

as é(X,Z)ZO evaluated at (X, 0).
d_X —F (X Z) If the system satisfies the above condition, then the
dt ’ theorem below holds.
And we re-write the equation in the infected class as
dz Theorem 1
ot =G(X,2) The equilibrium point &, = (X", 0). is globally

Where X =(S,R) e R?, denotes the uninfected asymptotically stable if Ry <1

population and
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A+dR—(A+p)S . X
F(X,Z){ 4T PR G(X,Z)=D,G(X",0)Z-G(X,Z)
AS -PE r SV
OwE —P,1, ﬂ(|s+|A)(1_ﬁj
G(X,2)= A
0(l-w)E+al,—PRl, G(X,2)= 0
alg+a,l, —PT 0
At disease free equilibrium, 0
H,: S - -
d—S:A—,uS Clearly,lzﬁ thisimpliesthatG(X,Z)ZO.
dt Therefore the disease free equilibrium of the diarrhea
d_R ~0 model is globally asymptotically stable.
] at Endemic Equilibrium Point of the Diarrhea Model
H,: ) The endemic gquilibrium is th_e state_v_vhgre disease persist
ﬁ(ls + |A) S _PE !n tf.1e populatlo_n. TPE enifmlc:qutlfrluz of *ciur model
N |sg|venby771—{S ETLT TR }
DZG(X*,O)Z = OwE -P,1,
0(1-w)E+al, - PRl
a,ls+al,—PT |
S** — APl PZ P3 F)4 F)5
(_(_az(w_l) P, +w(Psa3 +0£10(2))t9¢2¢1 +RRRF, P5)ﬂ+ PR RP R u
E* ARPPRA
(-(~a(@-1)P, + (P + 0, 1,)) 04,64 + B,P,P,P,P,) A+ BP, PP, P i
| == AP,P,P, A0
A=
(_(_0‘2(6‘)—1) P, +a)(l33a3 +a10‘2))‘9¢2¢1 +RP,RP, Ps)}“"' RRRPR L
|- A(1-®)P, +a,0)0P,RA
i ((60(90{2¢1¢2 +RPP,R-00,64,)P, - 46 00( P, +a1a2))l+ RRRPRRu
e (ea=R)0+PR,)a, + 0, P, ) AOP, A
~4((a,—P,) 0 +P,) 04, Aa, + P,((-w0a,y 4, + PP, P,P,) A+ uP,P,P,R,)
e (. =R) @+ P,)a, + wa; P, ) AOg, A
~4((a,—P) 0+ P,) 04, A, + Py((-wba; ¢, + P,P,P,P.) A+ R P,P,R;)
Substituting into the force of infection for the diarrhea Bl +1,)
model =
N
We obtained
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(((‘“2 P, )Pyt (oy + By )Ry + gy ¢ Ps“s) AES Ps“s‘“laz))“’

6+P PP, P- |2
2345
A =0
+((a2 + P4) P5 +a2¢2) P2
+RPyPaPPs (R 1)
A#0
_ PPoPPyRs (1R
(((‘“2 P )Py (g Ry )Pyt gy + P3"‘3) Py~ Py, ~Pyag ‘“10‘2))“’
0+P,PP, P,
+((a2 +P, )Py +a2¢2) P,
(R,-1)>0 "
[
=Ry >1 SSg:(oz +a +ﬂ)( +o+a,)
Thus, the endemic equilibrium point of the model is 1T & T HRM 2
stable.
Sensitivity Analysis of the Model 5. Foray:
In infectious disease modeling, sensitivity analysis is
particularly useful for evaluating key epidemiological —BOw
parameters such as transmission rates, recovery rates, and SZ‘; =
intervention effectiveness (Agbata et al, 2025). The (g toz+p)(uto+a,)
sensitivity index of the reproduction number of the model
with respect to any parameter say X is given by: 6. For 11
0 X
JP = Ry X —
ox R, =R _ —ﬂH(a)(,u+O'+a2))
ﬂ@((PZ—Ps—al)a)—Pz) Yo (gt )0+ p)(pu+ o+ ay)
Giventhat R) =—
P2 Pl P3 7.Foro:
1.Forf: < _ —j36
SRO _1 ’ (,LI+O'+C(2)
5=
8. Form:

2. For@:
~PRo _ —pO(oy +az+u—(u+o+a,))
¢ (o, +ay+p)(u+o+ay)

(((al+a3+,u)—(,u+(7+a2)—a1)a)—(al+a3+,u))

~Roy —
‘ (o +as+u)(0+p) 1.For 3
. ~Ry _1
3. Foray S =
=R _ —o(u+o+a,) 2.For@:
4 (o, +p)(uto+a,)
P ? 3% =-4.2044
4. Fora,:
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3. Fora,: 6. For ss:

~Ry, _

IR =-1.9231 S =—45792

4. Fora,: 1. Foro:
. 3% =-0.5186

Saz =0.0014
8. Forw:
5. Foray:

% =-0.6154

3% =-0.00001

[
o
o,

Sensitivity Index

i =
o,

(e

Co

1 2

3 4 5 6

7 8

Parameters
Figure 2. Bar chat of diarrhea sensitivity Indices

The sensitivity analysis highlights key parameters that
influence the spread of diarrhea, with positive sensitivity
indices indicating factors that increase transmission, such
as human-to-human and waterborne contact. Controlling
these factors through improved sanitation and reduced
exposure can help mitigate outbreaks (Agbata et al,
2024). Conversely, parameters with negative sensitivity
indices, like treatment rate, showed that timely and
effective medical interventions significantly reduce
disease prevalence. Strengthening healthcare systems,
enhancing treatment accessibility, and implementing
proactive public health measures, such as sanitation
improvements and early diagnosis, are essential in
controlling and preventing diarrhea outbreaks.

Numerical Simulations

Numerical simulation is a crucial step in analyzing the
behavior of mathematical models, particularly in
infectious disease modeling, where complex differential
equations govern disease dynamics. In this study,
MATLAB is used to perform numerical simulations to
understand the real-life behavior of the formulated model
equations for diarrhea transmission (Acheneje et al 2024).
MATLAB is a powerful computational tool that provides
robust numerical solvers for solving systems of ordinary
differential equations (ODEs), allowing researchers to
visualize disease progression under various conditions.
MATLAB-based numerical simulations allow for a
comprehensive analysis of the formulated model
equations, offering valuable predictions about diarrhea
transmission and control.
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Table 2. Parameter values used for Simulation

Parameters Values Source
A 2000 Olutimo et al, 2024
p 0.500 Olutimo et al, 2024
2] 0.700 Olutimo et al, 2024
w 0.100 Olutimo et al, 2024
a 1.00 Assumed
a, 0.98 Odeh et al, 2024
A 0.0003 Olutimo et al, 2024
H 0.200 Olutimo et al, 2024
o 0.100 Agbata et al, 2024
¢2 0.05 Bolarinwa et al, 2024
¢1 0.00045 Assumed
10 3~
—p=02 —p=02
9r —p3=0.4 —p3=0.4
) p=0.6 25
< 8 — B =08 . 1]
5 <
O 7k
] L2 2
= °
s 3
o 5- O 15
) o
= 3
1
2 3 2
0 <
S5 2 L
wn 0.5
1
0 r r [ L [ O
0 20 40 60 80 100 0 20 40 60 80 100
Time Time

Figure 3a. Graph of susceptible humans

Figure 3b. Graph of exposed humans
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Figure 3d. Graph of treated humans
Figure 3a illustrates the graph of susceptible humans
over time. Initially, the number of susceptible individuals
increases rapidly; however, it later declines towards zero.
A similar trend is observed in Figure 3b, where the
number of exposed individuals sharply increases before
gradually decreasing to zero. This pattern suggests
effective disease control, as the population of both
susceptible and exposed individuals diminishes over
time. In Figures 3c and 3d, an increase in the contact rate
between susceptible and infected individuals leads to a
rise in the number of infected asymptomatic and

Figure 3b. Graph of recovered humans
symptomatic individuals, respectively. This observation
indicates that higher contact rates contribute to the spread
of the infection. Consequently, reducing the contact rate
between susceptible and infected individuals could
significantly curb the transmission of the disease. Figure
3e highlights the impact of a high treatment rate for
infected individuals. The data suggest that effective
treatment plays a crucial role in controlling diarrhea
infections by reducing the duration and severity of the
illness. This increased treatment rate directly contributes
to a higher recovery rate, as depicted in Figure 3f.
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Overall, the figures emphasize two key strategies for
controlling the spread of the disease: reducing contact
rates between susceptible and infected individuals and
ensuring prompt and effective treatment of infected
persons.

CONCLUSION

This study provides a detailed analysis of diarrhea
transmission dynamics, emphasizing key factors that
influence its spread and control. The findings highlight
that reducing contact between susceptible and infected
individuals is essential in limiting disease transmission.
An increase in contact rates significantly raises the
number of infections, both symptomatic and
asymptomatic, reinforcing the need for strict public
health measures. Additionally, effective treatment plays a
crucial role in reducing disease prevalence by shortening
infection duration and increasing recovery rates. A higher
treatment rate directly leads to better disease outcomes,
demonstrating the importance of strengthening healthcare
systems and ensuring timely medical intervention.
Sensitivity analysis further confirms that transmission-
related factors, such as human-to-human contact and
exposure to contaminated water, contribute to disease
persistence, while improved sanitation and medical
treatment significantly reduce its impact. Numerical
simulations support these findings, showing that a
combination of reduced exposure, enhanced sanitation,
and prompt treatment can effectively curb diarrhea
outbreaks. This study underscores the importance of early
diagnosis, access to healthcare, and proactive public
health interventions in managing and preventing the
disease.  Strengthening  sanitation infrastructure,
promoting hygiene awareness, and ensuring effective
medical care are critical steps toward long-term disease
control. These insights provide a valuable foundation for
policymakers and health authorities in designing targeted
strategies to reduce the burden of diarrhea and improve
public health outcomes.

Recommendations

1. Implement Public Health Measures to
Reduce Contact Rates: Authorities should
enforce and promote interventions that minimize
contact between susceptible and infected
individuals such as isolation of symptomatic
patients, public education on hygiene, and safe
community practices to effectively lower
transmission rates.

2. Strengthen Healthcare Systems for Timely
and Effective Treatment: Investments should
be made in healthcare infrastructure to ensure
rapid diagnosis and prompt treatment of diarrhea

Shior et al.

JOBASR2026 4(1): 199-210

cases, which can significantly reduce the
duration of infection and improve recovery
rates.

3. Enhance Sanitation and Clean Water Access:
Government and non-governmental
organizations should prioritize the development
and maintenance of clean water sources and
sanitation facilities to reduce exposure to
waterborne pathogens.

4. Promote Hygiene Education and Community
Awareness: Public health campaigns must be
expanded to educate communities on personal
hygiene practices, safe food and water
consumption, and the importance of seeking
early medical care to prevent the spread of
diarrhea.

Adopt Data-Driven  Strategies for Targeted
Interventions: Policymakers should utilize sensitivity
and simulation analysis from models like this study to
identify high-impact intervention points, enabling the
efficient allocation of resources and the development of
tailored responses in vulnerable regions.
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