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ABSTRACT 
This article presents a mathematical model for measles disease incorporating 

double dose vaccination strategies as control measures. The model, developed 

using a system of differential equations, aims to understand the dynamics of 

measles transmission and the impact of vaccination interventions. The basic 

reproduction number, (𝑅0), is obtained using the next-generation operator, 

providing insights into the disease's transmission potential. Analysis of the 

model revealed that the disease-free equilibrium is locally and asymptotically 

stable when 𝑅0 < 1 and unstable otherwise. Numerical simulations revealed a 

progressive reduction of susceptible individuals to zero over time, indicative of 

successful disease control. Sensitivity analysis identified the contact rate of 

infection    as positively influential on disease transmission, emphasizing 

the importance of reducing this parameter. Conversely, the vaccination rate 

 1  exhibited a negative sensitivity index, emphasizing the critical role of 

enhancing vaccination efforts in disease prevention. These findings highlight 

the effectiveness of vaccination campaigns and targeted interventions in 

controlling measles outbreaks. Recommendations include intensifying 

vaccination programs, promoting awareness, and adapting control measures to 
local contexts to sustain disease control efforts and prepare for future 

challenges. This study contributes to the evidence base for informed public 

health policies aimed at reducing measles transmission and improving 

population health outcomes. 
 

INTRODUCTION 

Measles, caused by the measles virus (MeV), is a highly 

contagious viral infection characterized by symptoms 

such as fever, cough, runny nose, red eyes, and a 

distinctive red rash. This disease can lead to severe 

complications, particularly in young children, including 
pneumonia, encephalitis, and even death (WHO 2023). 

Historical records dating back to at least the 9th century 

highlight measles as a longstanding human ailment, with 

large epidemics causing significant global morbidity and 

mortality before the advent of measles vaccination 

(NCDC 2023). The measles virus, classified within the 

Morbillivirus genus of the Paramyxoviridae family,  

 

 

 

 
 

spreads easily through respiratory droplets, surviving 

on surfaces and in the air for several hours, thereby 

facilitating transmission in crowded or poorly 

ventilated environments. Measles transmission occurs 

primarily through airborne particles expelled when 

infected individuals cough or sneeze. Additionally, 
direct contact with infected respiratory secretions or 

contaminated surfaces can contribute to the spread of 

the virus. Diagnosis of measles often relies on clinical 

manifestations, notably the characteristic rash and 

fever, especially in regions where measles is prevalent. 

Laboratory confirmation through blood tests or throat 

swabs may also be performed to confirm diagnosis  
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(WHO 2023). Vaccination stands as the most effective 

means of preventing measles, typically administered as 

part of the measles-mumps-rubella (MMR) or measles-

mumps-rubella-varicella (MMRV) vaccine series. Beyond 

individual protection, vaccination fosters herd immunity, 
reducing disease transmission within communities (APP 

2019). While supportive care is recommended to alleviate 

symptoms such as fever and hydration, no specific 

antiviral treatment exists for measles. Severe cases or 

complications may necessitate hospitalization and 

supportive therapies. Despite global declines in measles 

incidence following vaccination program implementation, 

outbreaks persist, often exacerbated by inadequate 

immunization coverage (NCDC 2021). Measles poses 

significant health risks, particularly to vulnerable 

populations such as young children and individuals with 

compromised immune systems. Complications may 
include pneumonia, encephalitis, blindness, and mortality. 

Even in non-fatal cases, measles can weaken the immune 

system, rendering individuals susceptible to secondary 

infections for weeks to months post-recovery. The 

measles vaccine, administered in two doses typically at 

12-15 months and 4-6 years of age, provides durable 

immunity, offering over 95% protection against measles 

(Agbata et al, 2019). The aim of the study is to 

mathematically model the transmission dynamics of 

measles disease in a population with a focus on the effect 

of double dose vaccination on disease control and 
elimination the objectives include. 

1. Model Development: To develop a mathematical 

model that describes the transmission dynamics 

of measles disease, incorporating parameters 

such as population demographics, contact rates, 

transmission probabilities, and vaccination 

coverage. 

2. Validation: To validate the mathematical model 

using historical measles outbreak data, ensuring 

that the model accurately captures the observed 

patterns of disease spread. 

3. Parameter Estimation: To estimate model 
parameters such as the basic reproduction 

number (R0), vaccine efficacy, and duration of 

vaccine-induced immunity from available 

epidemiological data and literature. 

4. Vaccination Scenarios: To investigate the impact 

of different vaccination strategies, including 

single dose and double dose vaccination 

schedules, on the transmission dynamics of 

measles disease. Compare the effectiveness of 

these strategies in reducing measles incidence 

and achieving disease elimination goals. 
5. Sensitivity Analysis: Perform sensitivity analysis 

to identify key parameters and factors 

influencing the effectiveness of vaccination 

strategies. Determine the robustness of model 

predictions to variations in parameter values 

and assumptions. 

Smith and Shim (2020), provided a detailed 

examination of mathematical modeling's role in 

understanding measles outbreaks and control strategies. 
They stressed the need to integrate data-driven 

methods with mathematical models to enhance 

decision-making in measles control. Their review 

highlights the challenges posed by factors like 

population mixing and vaccine hesitancy, underscoring 

ongoing research's importance in refining models for 

effective public health intervention. 

Yiman et al. (2020), employ mathematical modeling to 

assess the impact of double-dose measles vaccination 

on disease transmission. Their study, utilizing an SEIR 

model, compares single and double dose vaccination 

strategies, finding that the latter significantly boosts 
population immunity and reduces measles outbreak 

risks. Their findings underscore the necessity of high 

vaccination coverage and sustained immunity to 

maintain measles elimination efforts. Some of the 

relevant mathematical models include. (Achneje et al,  

2024; Odeh et al,  2024; Stephen et al, 20214; Vanden-

Driessche and Watmough, 2002; Oko et al, 2023). 

 

MATERIALS AND METHODS 

Model Formulation 

The total population (t)N , is divided into six 

epidemiological groups: susceptible individuals  (S) ,, 

individuals who have received the first dose of 

vaccination but can still be infected due to vaccine 

failure  1(V ) ,, individuals who have completed the 

second dose of vaccine 2(V ) , exposed individuals  

(E) , infected individuals  (I) , and recovered 

individuals (R) . Let    be the constant recruitment 

rate. Suppose   denotes the fraction of individuals 

who refused vaccination before entering the 

population, and  (1 )  represents individuals who 

have taken the first dose of vaccine before entering the 

population, where 1  is the rate at which susceptible  

individuals take the first dose of vaccine, and   

denotes the probability of transmission by an infected 

individual with measles.   is the rate at which those 

who took the first dose of vaccine become exposed due 

to vaccine failure, and  denotes the rate at which 

initially vaccinated individuals become infected due to 

vaccine failure. 2  is the rate of vaccination of 

initially vaccinated individuals, 3  represents the 

recovery rate of vaccinated individuals,  is the rate at 
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which exposed individuals become infected, and f is the 

recovery rate of infected individuals.   represents the 

natural death rate, and    is the disease-induced death 

rate. 

 Model Assumptions 

The model is developed under the following mathematical 

assumptions  

1. Uniform Interaction: The model assumes that 

individuals within the population mix uniformly, 

meaning everyone has an equal likelihood of 

encountering others. 

2. Stable Population Size: Throughout the model, 

the total population remains constant, with 

negligible birth and death rates over the modeled 

period. 
3. First Vaccination Dose Group (V1): These 

individuals have had one dose of the measles 

vaccine but can still be susceptible to 

infection due to vaccine ineffectiveness. 

4. Vaccine Effectiveness and Failures: We 

assumed that individuals receiving the first 

vaccine dose might still become exposed or 
infected due to vaccine failure, indicating that 

the vaccine isn't entirely effective after the 

initial dose. 

5. Duration of Immunity: The model assumes 

that individuals who recover from measles or 

complete the vaccination series (two doses) 

gain immunity for a certain period, with the 

possibility of immunity waning over time. 

Transmission Dynamics: The model follows a 

susceptible-infected-recovered (SIR) framework, with 

individuals transitioning between susceptible, infected, 

and recovered states based on transmission rates and 
probabilities. 

 
Figure: 1 Schematic diagram for the Model 

Figure 1 (Agbata et al, 2024) serves a pivotal role by 

visually representing the structure, interactions, and 

dependencies within a model. This diagram provides a 
clear framework for organizing variables, parameters, and 

equations, helping modelers conceptualize and 

communicate the complexities of the system under study. 

It facilitates the formulation of mathematical relationships 

and the establishment of initial conditions or constraints, 

guiding the development and validation of the model 

against empirical data or theoretical principles (Odeh et 

al, 2024). Additionally, schematic diagram enhances 

transparency and enable effective collaboration among 

researchers by serving as a common visual language to 

discuss and refine model designs across diverse scientific 
disciplines. 
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Variables and Parameters Interpretation 

Table 1. Parameters and variables used. 

Variables Interpretation 

S( )t  Susceptible population 

1V ( )t  
First dose of vaccinated humans 

2V ( )t  
Second dose of vaccinated individuals due to vaccine failure  

E( )t  Exposed individuals  

I( )t  Infected individuals  

R( )t  Recovered humans at time t  

Parameter  Description  

Λ  Constant recruitment rate of susceptible individuals 


 

Rate of unvaccinated individuals  

1 
 

Rate of initial vaccination 

  Contact rate of infection  

1  
Vaccination rate of susceptible individuals  

2  Rate  of second dose vaccination of 1V  

3  
Recovery rate of vaccinated individuals  

  Progression rate from 1V  to E  

  
Progression rate from 1V  to I  

  Natural death rate  

  Disease induced death 

f  Recovery rate of infected individuals  

 

Invariant Region of the Model 

In dynamical system, invariant region  D  refers to a 

subset of the state space of a system where all solutions of 

the system remain within  D  for all t > 0 (Bhatia and 

Szego, 2023). Thus D  is invariant if for every initial 

condition (0) ,x D  the solution ( )x t satisfies 

( )x t D for all t > 0. Invariant region is fundamental for 

analyzing the long-term behavior and stability properties 

of dynamical systems as it provides insights into whether 

trajectories converge, remain bounded, or exhibit specific 

qualitative behavior within the defined region D  

Theorem 1 

The model solutions are feasible for all t > 0, if they are 

contained in the invariant region D, which is given by: 

  6

1 2

1 2

, , , , , :

0,V 0, 0, 0,

0, 0,




 
 
  

     
 
   
  

S V V E I R R

D S V E

I R N

 

Proof: 

The total population of the model is given as 

   1 2N t S V V E I R       

Adding thethe differential equations is 

  ' ' ' ' ' ' '

1 2N t S V V E I R       

On evaluating the algebraic terms, we obtain 

 

 '

1 2( )N t S V V E I R I          

 
'

1( )N t N I      

 
dN

N
dt

    
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Solving the differential equation using the integrating 

factor method, we obtained 

 ( ) (0) tN t N e 

 

  
   

 
 

Applying Birkhoff and Rota’s theorem on the inequality, 

we obtain   

 0 N



   as t   

Therefore, D remains a positively invariant set within the 

trajectory outlined by model (1), ensuring that no solution 

trajectory exits through the boundary of region D. 

Consequently, within this domain, the model can be 

deemed both epidemiologically and mathematically well-

defined . 

 Epidemiological Meaning of the fraction  



 

In the model, the ratio



 holds significance in 

understanding the demographic dynamics of the 

population in relation to the spread of measles. The 

constant recruitment rate ( ) signifies the rate at which 

new individuals are added to the population, either 

through birth or migration. In the case of measles, this 

influx of susceptible individuals into the population could 

contribute to the pool of individuals who are at risk of 
contracting the disease. On the other hand, the natural 

death rate (μ) represents the rate at which individuals in 

the population die due to causes unrelated to measles 

infection. This includes deaths from old age, diseases 

other than measles, accidents, and other non-measles-

related factors (Diekmann & Heesterbeek, 2000). 

Therefore, the ratio 



 indicates the balance between the 

addition of new susceptible individuals to the population 

and the removal of individuals through natural mortality. 

In the context of measles, a higher 



ratio suggests a 

population with a greater influx of susceptible individuals, 

potentially leading to a higher likelihood of measles 

transmission and outbreaks. Conversely, a lower ratio 

indicates a population where natural deaths are more 
prevalent, which may reduce the pool of susceptible 

individuals and thus the potential for measles 

transmission (Gao et al, 2016) 

Understanding the 



 ratio within the measles disease 

model helps assess the population's vulnerability to 

measles outbreaks and aids in designing effective 

vaccination strategies and public health interventions. 

Positivity of Solution of the Model 

Demonstrating the non-negativity of all state variables 

of the model throughout time is essential to establish 

the epidemiological and mathematical validity of the 

model within a feasible region D as defined by:

 
 

 

6

1 2

1 2

,V , , , ,R :
  

  
       

S V E I R
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S V V E I R N
 

This is done by considering, 

   6

1 2,V , , , , 0S V E I R R   

Lemma 1: 

Let the initial data for the model (1) be 

 1 2,V , , , , 0S V E I R  . Then the solutions 

 1 2,V , , , ,S V E I R  of the model (2) are positive for 

all time 0t   

Proof 

Let 
1 2

1

0 : 0,V 0, 0, 0,
sup

0, 0 [0, ]

     
  

   

t S V E
t

I R t

. Thus 0.t   

We have from the first equation that 

 ( )
d
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S
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d
     

 ( )E
dt

S
dS

   

This can also be written as 

 ( )
dS

E dt
S

      

We obtained: 

 (ln )S E t C      

 
)

(
(

)
E t

S t Ce
  

  

Applying the given initial condition; when 

0,  (0)t S C   

Therefore, 
( )( ) (0) 0E tS t S e    

 
since 

( ) 0E    

Similarly, it can be demonstrated that 

1 2V , , , ,V E I R are positive for all 0t   

Asymptotic Stability of the Disease Free 

Equilibrium of the Model 

The concept of "disease-free equilibrium" in 

epidemiological modeling refers to a scenario where 

there are no infected individuals in a population, 

signifying that the disease is not spreading (Bhatia and 

Szego 2023). Disease-free equilibrium occurs when 
interventions like vaccination or isolation have 

effectively halted the transmission of the disease. 

Understanding this equilibrium is essential for 
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assessing the feasibility of disease eradication efforts and 

the impact of public health measures. At this state where 

there is no infection (or absence of disease),  

0E I R   . The disease-free equilibrium model (1) 

denoted 0  is given by  

 
** * * * *

0 1 2

1

2

2 1 2

2 3

,V ,V , , 0
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, ,
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 Basic Reproduction Number ( 0R ) of the Model 

The basic reproduction number 0R  for infected 

individuals represents the average number of secondary 

infections generated by a single infectious individual 

within an entirely susceptible population throughout their 

entire infectious period (Diekmann & Heesterbeek, 2000). 

This metric is determined through the application of the 
next-generation operator to the dynamic system outlined 

in model (1). 

Hence, it follows that 

 1

0R FV   is given by dominant eigen value of 

1FV 
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Therefore the basic reproduction number of the model is 

0

4

R
P








 

where  4 0P   

The basic reproduction number ( 0R ) of an infectious 

disease is a critical epidemiological measure indicating 

the average number of secondary infections generated by 

a single infected individual in a fully susceptible 

population, without any interventions. It depends on 

factors such as the mode of transmission, duration of 
infectiousness, contact rates, and the likelihood of 

transmission per contact. This metric guides public health 

strategies by highlighting the need for interventions like 

vaccination, quarantine, and behavior modification to 

reduce 0R  and mitigate the spread of measles diseases. 

 Local Asymptotic Stability of the DFE of the Model 

Local stability in mathematical modeling, such as in 

epidemiology, refers to how a system behaves near an 

equilibrium point. An equilibrium is a balanced state, 

like when the number of infected people in a disease 
model stops changing (Agbata et al, 2024). Local 

stability means that if this balance is slightly disturbed, 

the system will eventually return to that point. 

Mathematicians study this by simplifying the equations 

around the equilibrium and observing their reactions to 

small changes. This analysis helps predict whether a 

disease outbreak will fade away (if the equilibrium is 

stable) or potentially grow (if it is unstable). 

Understanding local stability is crucial for 

comprehending how diseases spread and how 

interventions can effectively control them. 

Theorem 2 
The disease-free equilibrium point of the is locally 

asymptotically stable (LAS) if 0 1R  , and unstable if 

0 1R  . 

Proof 

Using Jacobian matrix to prove the local stability of the 

disease free equilibrium point 

 

1

1 2

2 3

0

4

5

3 6

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 00

0 0 0

P

P

P
J

P

P

f P










 


 

 



  
 

 
 

 


 
  

 
 
 
 

 
 
Since the diagonal of the first and last column consist 

of only the diagonal element, we can reduce  0J  to 

 

 

1

1 2

1 0

2 3

4

0 0

0 0

0 0

0

P

P
J

P

P










 


 

  
 

 
 

  


 
  

 
 

 

The characteristics polynomial of  1 0J  is 
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Applying Routh-Hurwitz criterion to the Characteristics 

polynomial, we have that 

 01 0R   

 0 1R   

Thus the DFE point of the model is locally asymptotically 

stable. 

Where 

1 1 2 2 3 3 4 5 6( ), ( ), ( ), ( ), ( ),P P P P P f p                          

 

Remark: Epidemiologically, 

0( ) 1i if R   

When 0R  is less than 1, each infected person, on 

average, infects fewer than one other person. This 

suggests that the disease is unlikely to spread 



 

Mathematical  Modelling of  Measles Disease with … Agbata et al.  

 
JOBASR2025 3(3): 199-214 

 

 

206 

extensively and will eventually die out in the population 

without intervention. Actions in this scenario typically 

include: 

 Monitoring and Surveillance: Despite the low R₀, 

continued monitoring and surveillance are 
essential to detect and respond to any potential 

outbreaks. 

 Prompt Case Management: Early detection, 

isolation of cases, and treatment remain 

important to prevent sporadic cases from leading 

to larger outbreaks. 

 Maintaining Population Immunity: Ensuring 

high vaccination coverage and immunity in the 

population can prevent the disease from gaining 

a foothold and spreading (Anderson and May 

1992). 

0( ) 1ii if R   

When 0R equals 1, each infected person, on average, 

infects exactly one other person. In this scenario, the 

disease persists at a stable endemic level within the 

population. Actions typically include: 

 Maintaining Endemic Control: Further research 

is needed to sustain effective control measures 

that keep 0R  stable at 1. Understanding factors 

that maintain endemic stability, such as 

population immunity levels and seasonal 

variations, can guide ongoing public health 

strategies. 

 Sustaining Control Measures: Continual 

vaccination programs and public health 

interventions are necessary to keep 0R  at 1 or 

below and prevent sporadic outbreaks. 

  Enhancing Surveillance: Monitoring disease 

trends and maintaining robust surveillance 

systems to detect any changes in transmission 

dynamics. 

 Adapting Response Strategies: Flexibility in 

response strategies to address changes in disease 
patterns or population immunity over time 

(Diekmann et al, 1990; Diekmann & 

Heesterbeek, 2012).  

 
 0( ) 1iii if R   

When the basic reproduction number (R₀) is greater than 

1, each infected individual, on average, spreads the 

disease to more than one other person. This indicates that 

the disease has the potential to spread rapidly within a 

susceptible population and may lead to outbreaks or 

epidemics. In such cases, proactive measures are crucial: 

 Understanding Transmission Dynamics: Further 

research is essential to investigate deeper into the 

specific factors influencing transmission, such as 
modes of transmission (e.g., respiratory, fecal-

oral), contact patterns, and environmental 

factors that facilitate spread. This knowledge 

can inform more targeted interventions to 

reduce 0R  and prevent large outbreaks. 

 Vaccine Development: Research into 

developing effective vaccines is crucial, 

especially for diseases with high 0R  values 

like measles or influenza. Vaccination plays a 

critical role in reducing susceptibility and 

lowering 0R , thereby preventing widespread 

transmission. 

 Behavioral Studies: Investigating human 

behavior related to disease transmission, such 
as compliance with preventive measures (e.g., 

hand hygiene, mask-wearing), can provide 

insights into strategies for promoting 

behavioral change and reducing 0R

(Heesterbeek and Dretz, 1996) 

Epidemiological Implication of Basic Reproduction 

Less than 1 ( 0 1R  ) 

 When the basic reproduction number  0R  is less 

than 1, it indicates that, on average, each infected 

individual will transmit the measles virus to fewer than 

one other individual during their infectious period. This 
finding holds significant epidemiological implications 

for the dynamics of measles transmission and control 

efforts. A basic reproduction number below 1 suggests 

that the disease is not self-sustaining within the 

population. In other words, the chain of transmission is 

not perpetuated, and the number of new infections 

generated by each existing case is insufficient to 

maintain the disease at endemic levels. Instead, the 

infection tends to die out over time as the number of 

susceptible individuals decreases due to immunity 

acquired through vaccination or recovery from 
previous infection (Fine, 2019). 

From an epidemiological perspective, a basic 

reproduction number below 1 is a promising sign for 

disease control and elimination efforts. It signifies that 

the spread of measles is inherently limited within the 

population, making it more sfeasible to implement 

interventions aimed at reducing transmission and 

preventing outbreaks. With an  0R less than 1, there's 

a reduced risk of widespread measles transmission 

within the community. Control measures such as 

vaccination campaigns, contact tracing, isolation of 

cases, and public health education can be more 

effective in containing the disease and preventing its 

resurgence. Vaccination strategies, in particular, play a 

crucial role in boosting population immunity and 

reducing the pool of susceptible individuals, further 
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lowering the likelihood of measles transmission. (Brauer 

et al, 2019). 

Furthermore, a basic reproduction number below 1 

indicates the potential for achieving measles elimination 

in a given population. Elimination occurs when the 
disease is no longer continuously transmitted within a 

defined geographic area or population group. By 

maintaining high vaccination coverage and implementing 

robust surveillance systems to detect and respond to 

sporadic cases, it becomes possible to interrupt the chain 

of transmission and achieve sustained measles control 

(Britton, 2020). 

A basic reproduction number  0R  less than 1 provides 

valuable information to epidemiologists, health workers, 

and policymakers, assisting them in several key ways: 

Guiding Control Strategies: Epidemiologists rely on the 

 0R   value to assess disease transmission potential and 

devise appropriate control measures. A  0R   below 1 

indicates that the disease is not self-sustaining, guiding 

decisions on the intensity and duration of interventions 

such as vaccination campaigns and case isolation  

(Britton, 2020). 

1. Optimizing Resource Allocation: Health workers 
and policymakers can allocate resources more 

effectively based on the  0R  value. With 

 0R   below 1, resources can be prioritized for 

interventions in areas with the highest risk of 

transmission, ensuring maximum impact. 

2. Informing Vaccination Strategies: For vaccine-

preventable diseases like measles, knowledge of 

 0R   below 1 underscores the importance of 

achieving high vaccination coverage. This 

information guides vaccination strategies and 

coverage targets to interrupt transmission (Fine, 

2019). 

3. Supporting Policy Decisions: Policymakers use 

epidemiological data, including  0R , to make 

informed decisions about public health policies. 

A  0R   below 1 provides evidence of effective 

control measures, supporting continued 
investment in disease prevention programs. 

4. Monitoring Progress towards Goals: 

Epidemiologists monitor progress towards 

disease control and elimination goals using 

 0R  as a metric. Regular surveillance of 

disease dynamics helps detect changes in  0R  

and ensures ongoing progress towards 

elimination targets. 

 

Global Asymptotic Stability of the Disease free 

equilibrium Point of the   Model. 

In mathematical epidemiology, global stability is a 

crucial concept that pertains to the long-term behavior 
of infectious disease models. It centers on the 

equilibrium points of these models, specifically the 

disease-free equilibrium (DFE) and the endemic 

equilibrium (EE) (Braver and Castillo-Chavez 2012). 

The DFE represents a state where there are no infected 

individuals in the population, indicating the disease has 

been eradicated under prevailing conditions. 

Conversely, the EE signifies a stable state where 

infections persist at a steady level over time (Agbata et 

al, 2024). The stability of these equilibria is assessed 

through rigorous mathematical analyses rooted in 

dynamical systems theory. Stability analysis examines 
how small deviations from equilibrium conditions 

influence the system's trajectory over time. A disease-

free equilibrium is deemed globally stable if any 

disruptions from this state lead the system back 

towards the absence of infections asymptotically. 

Similarly, an endemic equilibrium is considered 

globally stable if the system tends to persistently 

maintain a stable level of infections despite 

perturbations . 

The implications of global stability analysis are 

profound for public health strategies. If a disease-free 
equilibrium is globally stable, it suggests that disease 

eradication is achievable through interventions such as 

widespread vaccination or effective containment 

measures (Bolaji et al. 2024). Conversely, if an 

endemic equilibrium is globally stable, it implies that 

the disease will persist unless sustained efforts are 

made to control transmission. This understanding 

guides policymakers and health authorities in 

formulating effective measures to combat outbreaks, 

manage endemic diseases, and potentially eliminate 

infectious diseases from populations (Braver and 

Castillo-Chavez 2012). To investigate the global 
stability of the disease free equilibrium, we apply the 

method implemented by. 

 We write the equation in the uninfected class as  

  ,
dX

F X Z
dt

 

And we re-write the equation in the infected class as  

   ( , )
dz

G X Z
dt

 

Where 
1


 X S R represents the uninfected 

compartment and  

   3, ,  Z E I R R represents the infected 

compartment 

 *

0 ( ,0)  X  denotes the disease free 

equilibrium of the system, and it globally 
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asymptotically stable if it satisfies the following 

conditions: 

  * *

1 :   ,0 , 
dX

H F X X
dt

 is globally 

asymptotically stable 

    *

2 :  ,0 ,ˆ
Z

dZ
H D G X Z G X Z

dt
   

  ˆ , 0G X Z 
 
for all  ,X Z D and where 

 *, 0ZD G X  is an M- matrix (i.e the diagonal elements 

are no-negative and it is also the Jacobian of 

 ˆ , 0G X Z   evaluated at 
*( ,0).X  

If the system satisfies the above condition, then the 

theorem below holds (Agbata et al, 2024) 

 

Theorem 3 

The equilibrium point 
*

0 ( ,0).X   is globally 

asymptotically stable if 
0 1R 
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At disease free equilibrium, 
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Clearly, 1 S this means that  ˆ , 0G X Z  .  

Hence, the disease free equilibrium of the given model 

is globally asymptotically stable. 
 

Endemic Equilibrium Point of the Model 

The endemic equilibrium point in mathematical 
epidemiology refers to a stable state where the disease 

persists within a population at a constant level over 

time. Mathematically, it represents a situation where 

the rates of infection and recovery (or other relevant 

processes) balance each other, leading to a steady state 

in disease dynamics. To obtain the endemic 

equilibrium we set the RHS of the differential 

equations in (1) to zero and solve for the state 

variables. 

Thus, at the endemic equilibrium point,  

1 2 0
dV dVdS dE dI dR

dt dt dt dt dt dt
      . 

Let  ** ** ** ** ** ** **

1 2, , , , ,S V V E I R   be the 
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**E E  is given 
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Sensitivity Analysis of the Model 

Sensitivity analysis is carried out to determine the 

parameters that enhance the spread of measles as well as 

control of the infection in a population. 

The sensitivity index of the reproduction number of the 

model with respect to any parameter say x  is given by: 
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Figure 2 Sensitivity bar chat 

The sensitivity bar chart presented in the figure 

highlights the impact of various parameters on the 

dynamics of disease transmission. Parameters 

exhibiting positive sensitivity indices are identified as 

factors that promote or enhance the spread of the 

disease. For example, the contact rate shows a positive 

sensitivity index, indicating that it plays a significant 

role in facilitating transmission. Therefore, any 

intervention or control strategy aimed at reducing the 

contact rate—such as social distancing, use of 

protective equipment, or limiting gatherings—would 

have a substantial effect in lowering the overall disease 
transmission within the population (Bolaji et al, 2024). 

In contrast, parameters with negative sensitivity indices 

are those that contribute to suppressing the spread of 

the disease. Specifically, the first-dose vaccination rate 

displays a negative sensitivity index, which implies 

that increasing vaccination coverage directly supports 

efforts toward disease control and eventual eradication. 

By enhancing vaccination efforts, the susceptible 

population is reduced, thus interrupting transmission 

chains and decreasing the basic reproduction number 

(R0). This underscores the critical importance of 
vaccination campaigns and public health initiatives in 

controlling infectious diseases. 
 

RESULTS AND DISCUSSION 

Results   

Numerical Simulations of the Model 

Numerical simulations allow modelers to validate their 

mathematical models against real-world data and 

calibrate model parameters to improve accuracy. This 

iterative process ensures that the model reflects 
observed patterns of measles transmission and 

vaccination outcomes. Double-dose vaccination 

introduces additional variables like the timing between 

doses and the effectiveness of boosting immunity. 

Numerical simulations enable the exploration of 

different vaccination scenarios, including varying 

levels of vaccine coverage and efficacy, to asses assess 

their impact on disease control. Numerical simulations 

helps in understanding the disease dynamics over time, 

identifying critical parameters, and optimizing control 

measures. By running simulations, modelers can 
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observe the progression of the disease under different 

conditions, helping to predict outbreaks, assess the 

effectiveness of public health measures, and inform 

policy decisions. 

Table 2:  Parameter values used for simulation.  

Parameter Value Source 

  0.02755 Stephen et al, 2014 

  0.0087 Agbata et al, 2024 

1  0.167 Stephen et al, 2014 

  0.08 Agbata et al, 2024 

  0.40 Assumed 

2  0.7 Stephen et al, 2014 

3  0.167 Stephen et al, 2014 

  0.002 Assumed 

  0.09091 Stephen et al, 2014 
  0.001 Assumed 

f  0.004 Stephen et al, 2014 

  0.002 Assumed 
 

 
Figure 3a. Graph of Susceptible human against time      Figure 3b. Graph of first dose of vaccination 

 
Figure 3c. Graph of second dose of vaccination                   Figure 3d. Graph of exposed human against time 
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Figure 3e. Graph of infected human against time                 Figure 3f. Graph of recovered human against time 

 

Discussion  

From the sensitivity analysis and the resultant bar chat in 

Figure 2, it is observed that the parameters with positive 

sensitivity indices enhance the transmission of the disease 

within the human population. Thus, parameters like   

and   enhance the endemicity of the disease within the 

population. Also, parameters such as 1, ,    with 

negative sensitivity indices will ultimately curb the 

prevalence of the disease within the human population. 

Specifically, the contact rate of infection,    ,was 

identified with a positive sensitivity index, indicating that 

reducing this contact rate would effectively mitigate the 

spread of measles among the population.Conversely, the 

vaccination rate  1 of susceptible humans exhibited a 

negative sensitivity index. This finding suggests that 

enhancing efforts to improve or encourage higher 

vaccination rates would significantly aid in controlling 

measles within the population. These insights emphasized 

the critical role of vaccination campaigns and strategies in 

disease prevention and highlight the potential impact of 
targeted interventions aimed at reducing disease 

transmission rates. In Figure 3a, the decline of susceptible 

humans to zero indicates effective disease control, as no 

individuals remain susceptible to the disease over time. 

Figure 3d shows an initial increase followed by a rapid 

decrease in the number of exposed individuals, nearing 

zero due to successful implementation of control 

measures. Figure 3b illustrates a sharp rise and 

subsequent decline in first dose vaccination rates, 

attributed to the decrease in infected individuals (as seen 

in Figure 3e) and consequently fewer individuals 

completing their second vaccination dose (as observed in  
Figure 3c). This trend correlates with a notable increase in 

recovery rates depicted in Figure 3f. Overall, the double  

 

dose vaccination strategy emerges as an effective 
measure in containing the spread of measles, as 

evidenced by these interconnected figures showcasing 

the dynamics of disease transmission and vaccination 

impacts over time. 

The study provides valuable insights into the dynamics 

of measles transmission and the efficacy of control 

measures, particularly double vaccination strategies. 

The analysis demonstrates that achieving (𝑅0) values 

below 1 through vaccination efforts can lead to the 

elimination of measles transmission. Furthermore, the 

numerical simulations and sensitivity analysis validate 
the model's robustness and applicability to real-life 

scenarios. The findings emphasized the importance of 

implementing comprehensive vaccination programs 

and ensuring access to effective treatment to mitigate 

the spread of measles and prevent outbreaks. The study 

also emphasizes the critical role of mathematical 

modeling in informing public health policies and 

interventions aimed at controlling infectious diseases 

like measles. 

 

CONCLUSION 
This study presents a thorough mathematical analysis 

of measles transmission dynamics incorporating 

double-dose vaccination as a critical control measure. 

The sensitivity analysis reveals that parameters with 

positive sensitivity indices, such as the contact rate, 

significantly enhance the spread and endemicity of the 

disease within the population. This finding emphasizes 

that reducing the contact rate through behavioral 

interventions and public health measures can 

effectively diminish disease transmission. Conversely, 

parameters exhibiting negative sensitivity indices, 
particularly the vaccination rate of susceptible 

individuals, are shown to play a pivotal role in 

decreasing disease prevalence. Increasing vaccination 

coverage emerges as a vital strategy to promote disease 

eradication, underscoring the importance of robust 
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vaccination campaigns and public awareness efforts in 

controlling measles outbreaks. Numerical simulations 

further validate the effectiveness of the double-dose 

vaccination strategy, demonstrating a progressive decline 

in the susceptible population alongside a reduction in 
infection rates and an increase in recovery. The analysis 

confirms that maintaining the basic reproduction number, 

(R0) values below one through enhanced vaccination 

efforts is essential for halting disease transmission and 

achieving long-term control. The study highlights the 

significance of comprehensive vaccination programs 

combined with targeted interventions to reduce 

transmission parameters. The mathematical model’s 

robustness and applicability provide valuable insights for 

public health policymakers, guiding the design and 

implementation of effective disease control strategies. 

Sustained vaccination efforts, coupled with continuous 
monitoring and adaptive control measures, are essential 

for preventing future outbreaks and improving population 

health outcomes. 
 

Findings from the Study: 

 Effectiveness of Double Dose Vaccination: The 

model demonstrates that double dose vaccination 

effectively reduces the number of susceptible 

individuals to zero over time due to high 
recovery rates facilitated by effective control 

measures. 

 Positive Sensitivity of Contact Rate   : The 

contact rate of infection   was found to have 

a positive sensitivity index, indicating that 

reducing this rate would significantly mitigate 

measles transmission in the population. 

 Negative Sensitivity of Vaccination Rate  1 : 

The vaccination rate  1  of susceptible 

individuals exhibited a negative sensitivity 

index, highlighting that increasing vaccination 

rates would substantially aid in controlling 
measles outbreaks. 

 Impact of Control Measures: Effective control 

measures, including vaccination campaigns, play 

a crucial role in disease prevention and 

transmission reduction, as evidenced by the 

model's outcomes. 

 Role of Recovery Rate: The high recovery rate 

under effective control measures contributes 

significantly to the elimination of susceptible 

individuals over time, further reducing the 

disease burden in the population. 

 Validation through Sensitivity Analysis: The 

sensitivity analysis validates the importance of 

vaccination strategies and interventions aimed at 

reducing disease transmission rates, providing 

actionable insights for public health policies. 

 Future Preparedness:The study emphasizes 

the importance of continuous monitoring, 

preparedness, and enhancement of vaccination 
programs to sustain disease control efforts and 

prevent resurgence. 

 Recommendations Based on the Study 

These recommendations aim to leverage the study's 

findings to strengthen measles control measures, 

mitigate transmission risks, and enhance public health 

preparedness against future outbreaks. 

 Enhance Vaccination Campaigns: Effort 

should be taken to promote and facilitate 

higher vaccination rates, especially among 

susceptible populations, to bolster herd 
immunity and prevent measles outbreaks. 

 Target Reduction in Contact Rates: 

Implement measures to reduce the contact rate 

of infection   , such as promoting social 

distancing, improving hygiene practices, and 

timely isolation of infected individuals. 

 Invest in Education and Awareness: Launch 

educational campaigns to address vaccine 

hesitancy, misinformation, and promote the 

benefits and safety of vaccinations to enhance 

community acceptance and uptake. 

 Implement Routine Surveillance: Establish 

robust surveillance systems to monitor disease 

trends, vaccination coverage, and potential 

outbreaks, allowing for timely intervention 

and response. 

 Adapt Control Measures to Local Contexts: 
Tailor vaccination strategies and control 

measures to local epidemiological contexts 

and demographic characteristics to maximize 

effectiveness. 

 Support Research and Development: Invest in 

research to improve vaccine efficacy, develop 

new vaccine formulations, and enhance 

understanding of measles transmission 

dynamics for better control strategies. 

 Collaborate Across Sectors: Foster 

collaboration between public health 
authorities, healthcare providers, 

policymakers, and community stakeholders to 

ensure coordinated efforts in measles control 

and prevention.  
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