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ABSTRACT 

This study presents a two-equation predator-prey model to capture the nonlinear 

interactions between consumer growth and revenue dynamics in electricity 

distribution systems. Drawing on the classical Lotka-Volterra framework, total 

active consumers are modelled as the “prey” population sustaining revenue, 

while revenue generation functions as the “predator,” exerting feedback effects 

through pricing signals and service delivery. The model is calibrated using Kano 
Electricity Distribution Company (KEDCO)’s operational data, formatted as 

quarterly time-series data from 2015 to 2023. Parameters were initially estimated 

using Nonlinear Least Squares Regression (NLSR), and the system was 

numerically solved using the Runge-Kutta 4th Order (RK4) method. However, 

the NLSR approach produced unstable forecasts with economically unrealistic 

equilibria, highlighting its limitations for complex, nonlinear, and large-scale 

systems. As a result, parameters were subsequently refined using Differential 

Evolution with logarithmic transformation to ensure numerical stability and 

economic plausibility. In contrast, these refined parameters generated stable and 

accurate forecasts, achieving mean absolute percentage errors of 0.81% for 

consumers and 10.34% for revenue. Equilibrium and Sensitivity analysis were 

conducted which confirmed neutrally stable centres characteristic of Lotka-

Volterra systems, but crucially, only the refined model yielded economically 

plausible equilibria. The Sensitivity analysis further highlighted the model’s 

responsiveness to operational inefficiencies and pricing policies, revealing that 

consumer growth is most influenced by intrinsic growth and interaction rates 

while revenue dynamics depend strongly on decay and consumer contribution 

rates. This proposed framework demonstrates its utility as a robust, policy-

informing tool for optimizing revenue sustainability and demand management 

in electricity distribution networks. 

 
 

INTRODUCTION 

Electricity distribution is central to socio-economic 

development, yet distribution companies often face 

persistent challenges in aligning consumer demand with 

revenue generation. In Nigeria, the electricity sector is 

plagued by inefficiencies such as technical losses, energy 

theft, and estimated billing practices that undermine 

financial sustainability (Abe et al., 2021; Amadi et al., 

2016). Understanding the dynamics between consumer 

growth and revenue recovery is therefore critical to 
ensuring reliable service delivery and long-term viability 

of distribution companies. Nigeria’s electricity sector is 

characterized by an interplay of generation, transmission, 

and distribution.  

 

 

 

 

 

 

After privatization in 2013, ownership of generation and 

distribution companies transferred to private investors, 

while the transmission company remained under 

government control. The sector battles with chronic 

supply shortages, high aggregate technical and 

commercial losses, and weak cost recovery mechanisms 

(Amadi et al., 2016; Edomah et al., 2021). Distribution 

companies (DisCos), which are the final interface with 

consumers struggle with revenue leakages due to 

estimated billing, low metering penetration, and non-
payment culture (Adebayo & Ainah, 2024). 

Kano Electricity Distribution Company (KEDCO) 

serving Kano, Katsina, and Jigawa States, covers one of 

the largest customer bases in the country (KEDCO, n.d.).  
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Like other DisCos, KEDCO faces the dual challenge of 

expanding consumer access while ensuring sufficient 

revenue recovery to sustain operations. This makes 

KEDCO a suitable case study for investigating consumer-

revenue dynamics. Mathematical models provide 
valuable tools for analysing such complex interactions. 

Forecasting electricity demand and revenue has received 

extensive attention. ARIMA and ARIMAX models have 

been widely employed to capture consumption trends in 

Nigeria (Maku et al., 2023). While review studies have 

emphasized their predictive utility (Efekemo et al., 2022), 

these models however primarily emphasize temporal 

correlations and do not explicitly capture structural 

interdependence between consumers and revenue. 

Contrary to this, predator-prey modelling provides a 

framework to represent nonlinear feedback mechanisms. 

Mitropoulou et al. (2022) used such models to analyse 
competition dynamics in Greece’s electricity market, 

illustrating how cyclical interactions can be uncovered. 

The theoretical foundations lie in classical ecology 

(Lotka, 1925; Volterra, 1926) and mathematical biology 

(Murray, 2002). Broader contributions in epidemiology 

and economics (Brauer & Castillo-Chavez, 2011; 

Hritonenko & Yatsenko, 2010) highlight the generality of 

this approach. 

Our study builds on these traditions by adapting a 

modified Lotka-Volterra predator-prey model, originally 

formulated by Lotka (1925) and Volterra (1926) for 
ecological systems, to capture the dynamic relationship 

between electricity consumers and revenue in Nigeria’s 

electricity sector, specifically KEDCO. This model 

captures nonlinear feedback mechanisms and equilibrium 

behaviours, offering insights beyond conventional time-

series approaches. The framework is well-suited for 

KEDCO’s demand-revenue dynamics because it 

describes cyclical, interdependent processes where 

growth in one variable both sustains and constrains the 

other (Murray, 2002). 

 

MATERIALS AND METHODS 

The methodology centres on applying the Lotka-Volterra 

predator-prey framework to model KEDCO's demand-

revenue interactions showing the cyclical and 

interdependent behaviour where consumer growth 

sustains revenue, while revenue policies impact consumer 

activity. Our approach models consumer demand as the 

“prey,” while revenue represents the “predator” that 

depends on consumer activity. Revenue-driven factors 

such as tariff adjustments, billing enforcement and 

service quality shaped by financial performance can in 

turn, influence consumer growth, creating a feedback 
loop. To estimate parameters, Nonlinear Least Squares 

Regression (NLSR) was first carried out to obtain 

baseline estimates, and then parameters were refined 

through Differential Evolution (Ahmad et al., 2022) with 

logarithmic transformation (Benoit, 2011) for stability. 

Besides its interpretability, this modelling approach 

enables equilibrium, stability, and sensitivity analyses 

that provide insights into system behaviour under 

different operational or policy scenarios. Quarterly data 

covering Q1 to Q34 (2015-2023), consisting of total 
consumer numbers and corresponding revenue figures 

were obtained from KEDCO operational records 

published by the National Bureau of Statistics (NBS) of 

Nigeria. The dataset was cleaned and organized into a 

time-series format appropriate for dynamic modelling. 

Observations from Q1-Q30 were used for parameter 

estimation, while Q31 to Q34 were reserved as an out-of-

sample validation set to evaluate the forecasting 

performance of the model (Chaku et al., 2025). 

 

Model Formulation 

The dynamics between consumers and revenue are 
represented through a modified Lotka-Volterra predator-

prey model: 
𝑑𝐶

𝑑𝑡
= 𝑟𝐶 − 𝛼𝐶𝐾     (1) 

𝑑𝐾

𝑑𝑡
= −𝛿𝐾 + 𝛽𝐶𝐾    (2) 

Table 1. Definition of terms 

 

𝑪(𝒕) number of consumers at time 𝒕 

𝑲(𝒕) total revenue at time 𝑡 

𝒓 > 𝟎 intrinsic growth rate of consumers (per 

unit time) 

𝜶 > 𝟎 rate at which revenue generation affects 

consumer growth 

𝜹 > 𝟎 natural decay rate of revenue in absence 

of consumer activity 

𝜷 > 𝟎 rate at which consumers contribute to 

revenue growth 

 
Equation (1) models consumer dynamics: 

• The term 𝑟𝐶 represents natural growth of the 

consumer base. 

• The term −𝛼𝐶𝐾 captures the dampening effect of 

revenue collection pressure or economic constraints 
on consumer growth. 

Equation (2) models revenue dynamics: 

• The term −𝛿𝐾 accounts for revenue decay due to 

operational costs, inefficiencies, and non-payment. 

• The term +𝛽𝐶𝐾 represents revenue growth 

proportional to consumer engagement and 

transactions. 

The model assumes bilinear interaction terms (𝐶𝐾) 

consistent with classical Lotka-Volterra structure, 

ensuring that interaction effects vanish if either variable 

is zero. 
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Model Assumptions 

The modified Lotka-Volterra framework is based on the 

following key assumptions: 

• Consumers grow at an intrinsic rate (𝑟) in the 

absence of revenue effects. 

• Revenue depends entirely on consumer activity 

and decays naturally at rate (𝛿) due to 
inefficiencies and non-payment. 

• Revenue pressures (e.g., tariffs, billing) dampen 

consumer growth. 

• Consumers contribute uniformly to revenue 

growth at rate (𝛽), without distinguishing 

customer categories whether they are metered or 

estimated customers. 

• Consumer and revenue dynamics are modelled as 

continuous processes using differential equations, 

with no explicit carrying capacity constraint such 
as infrastructural capacity or market saturation. 

 

Equilibrium and Stability Analysis 

Equilibrium analysis involved solving for the steady-state 

conditions of consumers and revenue, while stability was 

assessed using the Jacobian eigenvalues at the 

coexistence point. 

Setting 
𝑑𝐶

𝑑𝑡
= 0 and 

𝑑𝐾

𝑑𝑡
= 0 yields equilibrium points: 

• Trivial equilibrium: (0,0) 

• Non-trivial equilibrium: 

From 
𝑑𝐶

𝑑𝑡
= 0, 

𝑟𝐶 − 𝛼𝐶𝐾 = 0 ⇒ C = 0 or K =
𝑟

𝛼
   (3) 

From 
𝑑𝐾

𝑑𝑡
= 0 

−𝛿𝐾 + 𝛽𝐶𝐾 = 0 ⇒ K = 0 or C =
𝛿

𝛽
  (4) 

The non-trivial coexistence equilibrium 

 (𝐶∗, 𝐾∗) = (
𝛿

𝛽
,

𝑟

𝛼
) 

Let 𝑓1 = 𝑟𝐶 − 𝛼𝐶𝐾 and  𝑓2 = −𝛿𝐾 + 𝛽𝐶𝐾 
𝜕𝑓1

𝜕𝐶
= 𝑟 − 𝛼𝐾   

𝜕𝑓1

𝜕𝐾
= −𝛼𝐶 

𝜕𝑓2

𝜕𝐶
= 𝛽𝐾  

𝜕𝑓2

𝜕𝐾
= −𝛿 + 𝛽𝐶 

The Jacobian matrix at equilibrium is given by  

 𝐽(𝐶, 𝐾) = [

𝜕𝑓1
𝜕𝐶⁄ 𝜕𝑓1

𝜕𝐾⁄

𝜕𝑓2
𝜕𝐶⁄ 𝜕𝑓2

𝜕𝐾⁄
]   (5) 

𝐽(𝐶, 𝐾) = [
𝑟 − 𝛼𝐾 −𝛼𝐶

𝛽𝐾 −𝛿 + 𝛽𝐶
]   (6) 

The Jacobian at coexistence (𝐶∗, 𝐾∗) = (
𝛿

𝛽
,

𝑟

𝛼
) becomes: 

𝐽(𝐶∗, 𝐾∗) = [
0 −𝛼

𝛿

𝛽

𝛽
𝑟

𝛼
0

]    (7) 

 

Eigenvalue Analysis 

The eigenvalue is computed as det(𝐽 − 𝜆𝐼) = 0 (8) 

But 𝜆𝐼 = [
𝜆 0
0 𝜆

]     (9) 

So, det(𝐽 − 𝜆𝐼) = [
0 − 𝜆 −𝛼

𝛿

𝛽

𝛽
𝑟

𝛼
0 − 𝜆

]              (10) 

The characteristic equation is 𝜆2 + 𝛿𝑟 = 0             (11)

  

At coexistence, eigenvalues are purely imaginary 

(𝜆 = ±𝑖√𝛿𝑟)               (12) 

 

These purely imaginary eigenvalues imply that the 

coexistence equilibrium is a centre, exhibiting neutral 

stability. This is consistent with classical Lotka-Volterra 
dynamics, trajectories form closed orbits around the 

equilibrium with neither exponential growth nor decay. 

Nonlinearities beyond linearization determine the long-

term trajectory behaviour. 

 

Sensitivity Analysis 

Local sensitivity analysis was conducted by computing 

partial derivatives of the model equations with respect to 

each parameter. This quantified how changes in each 

parameter influenced consumer and revenue trajectories, 

helping to identify the most critical drivers of system 

which most strongly influence consumer  (
𝑑𝐶

𝑑𝑡
)  and 

revenue (
𝑑𝐾

𝑑𝑡
) behaviour. 

For consumers (
𝑑𝐶

𝑑𝑡
):  

𝜕(𝑑𝐶
𝑑𝑡⁄ )

𝜕𝑟
= 𝐶, 

𝜕(𝑑𝐶
𝑑𝑡⁄ )

𝜕𝛼
= −𝐶𝐾,

 
𝜕(𝑑𝐶

𝑑𝑡⁄ )

𝜕𝛿
= 0,  

𝜕(𝑑𝐶
𝑑𝑡⁄ )

𝜕𝛽
= 0 

For revenue (
𝑑𝐾

𝑑𝑡
):  

𝜕(𝑑𝐾
𝑑𝑡⁄ )

𝜕𝑟
= 0, 

𝜕(𝑑𝐾
𝑑𝑡⁄ )

𝜕𝛼
= 0, 

 
𝜕(𝑑𝐶

𝑑𝑡⁄ )

𝜕𝛿
= −𝐾, 

𝜕(𝑑𝐾
𝑑𝑡⁄ )

𝜕𝛽
= 𝐶𝐾 

These derivatives were evaluated throughout the 

simulation period (Q31–Q34) to identify the most 

influential parameters.  

Results indicated that:  

• Consumer growth is most sensitive to 𝑟 and 𝛼. 

• Revenue dynamics are most sensitive to 𝛿 and 𝛽. 

 

Parameter Estimation 

Parameter estimation was performed in two stages: 

a. First, Initial Estimation via Nonlinear Least Squares 

Regression (NLSR) using 
scipy.optimize.least_squares in Python. 

• Numerical derivatives of observed time-series data 

were calculated using finite differences. 

• Parameters (𝑟, 𝛼, 𝛿, 𝛽) were fitted by minimizing 

squared errors between observed and model-predicted 

derivatives. 

NLSR Formula: 

𝑚𝑖𝑛𝜃 ∑ (𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜃))2𝑛
𝑖=1               (13) 

 Where 𝑦𝑖 = observed data and f(xi,θ) = model-

predicted values. 
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Let 𝑡1, 𝑡2, … , 𝑡𝑛  be the discrete time points over which 

data is available. At each time 𝑡𝑖, the observed values of 

𝐶(𝑡𝑖), and 𝐾(𝑡𝑖)) are used to approximate the 
derivatives using forward finite differences: 
𝑑𝐶

𝑑𝑡
⃒𝑡1

≈
𝐶(𝑡𝑖+1)−𝐶(𝑡𝑖)

∆𝑡
                (14) 

Similarly, 

 
𝑑𝐾

𝑑𝑡
⃒𝑡1

≈
𝐾(𝑡𝑖+1)−𝐾(𝑡𝑖)

∆𝑡
               (15) 

Denote: 

𝑦1,𝑖 =
Δ𝐶

Δ𝑡
 𝑦2,𝑖 =

Δ𝐾

Δ𝑡
 

These approximated derivatives are treated as the 

dependent variables in the regression framework, while 

the terms in equations (1) and (2) define the nonlinear 

functions of the parameters.  

At each time point 𝑡𝑖, the residuals for the equations are 

defined as: 

𝜀1,𝑖 = 𝑦1,𝑖 − [𝑟𝐶(𝑡𝑖) − 𝛼𝐶(𝑡𝑖)𝐾(𝑡𝑖)]             (16) 

𝜀2,𝑖 = 𝑦2,𝑖 − [−𝛿𝐾(𝑡𝑖) + 𝛽𝐶(𝑡𝑖)𝐾(𝑡𝑖)]              (17)

  

These residuals represent the deviations between the 

observed and modelled dynamics at each time point. The 

NLSR estimation procedure aims to find the parameter 

vector (𝛼, 𝛽, 𝑟, 𝛿) that minimizes the sum of squared 

residuals across all time points: 

𝑆(𝜃) = ∑ (𝜀1,𝑖
2 + 𝜀2,𝑖

2 )𝑛
𝑖=1                          (18) 

The optimal parameter vector 𝜃 is then obtained by 

solving: 𝜃 = arg min
𝜃

𝑆(𝜃) using Python’s 

scipy.optimize.least_squares, which implements iterative 

algorithms (e.g., Levenberg–Marquardt, trust-region 

methods). It provides initial guesses for (𝛼, 𝛽, 𝑟, 𝛿) and 

the optimizer iteratively adjusts parameters to minimize 

𝑆(𝜃). 

The baseline (NLSR) parameter estimates are 8.3396, 

4.8542 × 10−12, 5.5475 × 10−17, and 8.6698 × 10−9 

representing 𝑟, 𝛼, 𝛿 and 𝛽 respectively. 

b. To address the unrealistic equilibria produced by 

the initial NLSR parameter forecast, parameters were 

refined via Differential Evolution with Logarithmic 

Transformation. Differential Evolution (Ahmad et al., 

2022) is a stochastic global optimization algorithm that 

searches for a parameter vector 𝜃 minimizing a cost 

function 𝐽(𝜃) by evolving a population of candidate 

solutions over multiple generations. Each iteration (or 

“generation”) combines and mutates parameter vectors to 

explore the search space broadly, while retaining the best-

performing solutions. Before optimization, each 

parameter of the modified Lotka–Volterra model was 

transformed into log-space (Benoit, 2011): 𝜙 =
𝑙𝑜𝑔 (𝜃) = (𝑙𝑜𝑔 𝑟, 𝑙𝑜𝑔 𝛼, 𝑙𝑜𝑔 𝛿, 𝑙𝑜𝑔 𝛽). This 

transformation provides three benefits: 

• Positivity constraint: ensures all parameters 

remain positive after exponentiation(𝜃 = 𝑒∅). 

• Scale stabilization: handles large differences in 

parameter magnitudes(𝑒. 𝑔. , 𝑟 ∼ 10−2, 𝛼 ∼
10−7). 

• Smoother optimization landscape: log-scaling 

often converts a rugged error surface into one 

more continuous and easier for DE to navigate. 

During optimization, DE evolves ∅, not 𝜃, and converts 

back using exponentiation for model evaluation. Instead 

of fitting instantaneous derivatives (as NLSR did), DE 

minimizes the total squared difference between observed 

trajectories (consumer and revenue time series) and 

model-predicted trajectories obtained via RK4 integration 

of the differential equations. 

Formally: 

𝐽(∅) = ∑ [(𝐶𝑖
𝑜𝑏𝑠 − 𝐶𝑖

𝑠𝑖𝑚(∅))
2

+ (𝐾𝑖
𝑜𝑏𝑠 − 𝐾𝑖

𝑠𝑖𝑚(∅))
2

]𝑖    

                         (19) 

where: 

• 𝐶𝑖
𝑠𝑖𝑚, 𝐾𝑖

𝑠𝑖𝑚 are the simulated trajectories using 

parameters = 𝑒∅; 

• 𝐶𝑖
𝑜𝑏𝑠, 𝐾𝑖

𝑜𝑏𝑠 are observed from the KEDCO 

dataset. 

This means the optimizer directly tunes parameters to 
reproduce actual dynamics, not just derivative slopes. 

The algorithm for our equation is implemented via the 

following steps: 

i. Initialize population: generate 𝑁𝑝 candidate 

parameter vectors;  

∅𝑗 = (𝑙𝑜𝑔 𝑟𝑗 , 𝑙𝑜𝑔 𝛼𝑗 , 𝑙𝑜𝑔 𝛿𝑗 , 𝑙𝑜𝑔 𝛽𝑗) randomly 

within defined bounds. 

ii. For each target vector ∅𝑖, select three distinct random 

vectors ∅𝑎, ∅𝑏, ∅𝑐  from the population and create a 

mutant: 𝑣𝑖 = ∅𝑎 + 𝐹(∅𝑏 − ∅𝑐); 

iii. Crossover: Elements of the mutant vector are 

combined with the target vector to form a trial vector 

𝑢𝑖: 

𝑢𝑖,𝑗 =

{
𝑣𝑖,𝑗 ,         𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 < 𝐶𝐾 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

∅𝑖,𝑗,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               
 (20) 

 

With crossover rate 𝐶𝐾 ∈ [0,1]. 
iv. Selection: The trial vector 𝑢𝑖 is evaluated using the 

objective function (𝐽(∅) = ∑ [(𝐶𝑖
𝑜𝑏𝑠 −𝑛

𝑖=1

𝐶𝑖
𝑠𝑖𝑚(∅))

2
+ (𝐾𝑖

𝑜𝑏𝑠 − 𝐾𝑖
𝑠𝑖𝑚(∅))

2
]). If it produces a 

lower error than the target vector ∅𝑖, it replaces it in 

the next generation. 

v. Iteration: These steps are repeated for a fixed 

number of generations (e.g. 1000) or until the 

improvement in the objective function falls below a 

specified threshold. 

The parameter refinement was implemented in Python 

using the scipy.optimize.differential_evolution library. 

The RK4 integration scheme provided the simulated 

consumer and revenue trajectories at quarterly intervals. 
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Initial NLSR estimates served as starting points for 

Differential Evolution, ensuring a guided yet robust 

parameter search. 

The refined parameters obtained are 4.9638 × 10−5, 

1.4221 × 10−14, 2.7929 × 10−8  and 2.5662 × 10−8 

representing 𝑟, 𝛼, 𝛿 and 𝛽 respectively. 

Unlike the gradient-based NLSR, which often converged 

to local minima and produced unstable equilibria, the DE 

method performed a global search of the parameter space. 

This yielded stable and economically meaningful 

estimates that reproduced realistic consumer-revenue 

cycles and equilibrium behaviour. 

Overall, the DE with logarithmic transformation process 

ensured, all parameters remained positive and 

numerically stable, global convergence to the best-fitting 

parameter set, and realistic, neutrally stable Lotka-
Volterra dynamics consistent with observed KEDCO 

data. 

 

Numerical Simulation 

The coupled nonlinear differential equations of the 

modified Lotka-Volterra model were solved numerically 

using the fourth-order Runge-Kutta (RK4) method. This 

scheme was selected for its balance of computational 

efficiency, accuracy and stability when applied to 

nonlinear dynamic systems. RK4 method starts at an 

initial point 𝑦(𝑡0) = 𝑦0, calculates four slopes 

(intermediate slopes: 𝑘1, 𝑘2, 𝑘3, 𝑘4).  

We write the system compactly as a vector ODE 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦), 𝑦 = (

𝐶
𝐾

) 

𝑓(𝑡, 𝑦) = (
𝑟𝐶 − 𝛼𝐶𝐾

−𝛿𝐾 + 𝛽𝐶𝐾
)                (21) 

 

The RK4 algorithm approximates the solution at the next 

time step as follows: Given the state 𝑦𝑛 = 𝑦(𝑡𝑛) and 

ℎ: 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 = 1 (quarterly data), RK4 computes 𝑦𝑛+1 

by: 

𝑘1 = ℎ ∗ 𝑓(𝑡𝑛 , 𝑦𝑛): Slope at the beginning. 

𝑘2 = ℎ ∗ 𝑓(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘1

2
): Slope at the midpoint using 

𝑘1 

𝑘3 = ℎ ∗ 𝑓(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘2

2
): Another midpoint slope 

using 𝑘2   

𝑘4 = ℎ ∗ 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 + 𝑘3): slope at the end of the 

interval using 𝑘3   
Compute the weighted average of the slopes 

𝑦𝑛+1 = 𝑦𝑛 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)            (22) 

Because 𝑦 is 2-dimensional, each 𝑘𝑖 is a 2-vector. 

Concretely: 

𝑘1 = (
𝑟𝐶𝑛 − 𝛼𝐶𝑛𝐾𝑛

−𝛿𝐾𝑛 + 𝛽𝐶𝑛𝐾𝑛
)                (23) 

Compute 𝑘2, 𝑘3, 𝑘4, advance to the next time step and 

repeat the process until the desired end time. 

 

RESULTS AND DISCUSSION 

All simulations, parameter estimation, and data analyses 
in this study were conducted using the Python 

programming language due to its versatility in scientific 

computing. 

 

Forecast Comparison 

Two parameter sets, NLSR and Refined, were compared. 

RK4 simulation was used to solve the equations and 

forecast Q31 to Q34. NLSR produced extreme 

divergence, with unstable predictions (including infinities 

and NaNs (Not a Number)). Conversely, Refined 

parameters yielded stable and realistic forecasts, with 

consumer predictions close to observed values (≈2 

million) and revenue forecasts in the range of 1.09 ×
1010 to 1.28 × 1010, consistent with empirical 

magnitudes. 

Table 2. Observed vs Predicted Consumers and Revenue (Q31–Q34)

 

Quarter Consumers 

(Observed) 

Revenue 

(Observed) 

Consumers 

(NLSR) 

Revenue 

(NLSR) 

Consumers 

(Refined) 

Revenue 

(Refined) 

31 2,037,146 1.2007𝑒10 6.8470𝑒8 2.0228𝑒10 2.046478𝑒6 1.0934𝑒10 

32 2,039,023 1.2956𝑒10 -4.3312𝑒12 7.9145𝑒15 2.046252𝑒6 1.1524𝑒10 

33 2,066,822 1.4956𝑒10 8.7930𝑒76 -1.5705𝑒80 2.046010𝑒6 1.2145𝑒10 

34 2,075,283 1.3139𝑒10 ∞ 𝑁𝑎𝑁 2.045748𝑒6 1.2800𝑒10 
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Figure 1. Forecast Trajectories (linear scale) 

 
Figure 2. Forecast Trajectories (log scale) 
Forecast results demonstrated the inadequacy of NLSR, 

which diverged numerically, and the superior 

performance of the refined parameters, which aligned 

with observed consumer and revenue magnitudes and 

reliably captured observed dynamics (Q31–Q34), 

supporting its validity for short-term forecasting in 

electricity distribution. Logarithmic plots highlighted the 

NLSR model’s catastrophic instability compared to the 

robust trajectories of the refined model. 

 

Error Metrics 

Following the RK4 simulation and comparison of both 

NLSR and refined parameters forecasts, the forecast 

accuracy was assessed using RMSE, MAE, and MAPE. 
These metrics are generally used to quantify how far 

model predictions deviate from actual values 

(Scherbakov et al., 2013). They are computed as follows:  

Let 𝑦𝑖 represent the actual value, 𝑦̂𝑖 represent the 

observed/predicted value and 𝑛 is the number of 

observations. Then the error 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖 denotes the 

error at point 𝑖. 
• MAE: Mean Absolute Error computes the 

average absolute difference between predictions 
and actual values. Thus, it treats all errors 

equally. 

MAE =
1

𝑛
∑|𝑒𝑖|

𝑛

𝑖=1

 

• RMSE: Root Mean Square Error first squares 

errors, takes the average of the squared errors 

and then takes the square root. It strongly 

highlights large errors. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑖

2

𝑛

𝑖=1

 

• MAPE: Mean Absolute Percentage Error 
expresses error as a percentage of the actual 

value. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑒𝑖

𝑦𝑖

|

𝑛

𝑖=1

× 100 

The error assessment yielded the following result: 

• NLSR parameters exhibited infinite error metrics, 

confirming complete numerical instability; 

• Refined model achieved low errors for consumers 

(MAPE=  0.81%) and reasonable accuracy for 

revenue (MAPE=  10.34%). 

Thus, refined parameters dramatically outperformed the 

initial estimates. 

Table 3. Forecasting Error Metrics (Q31–Q34) 

Model RMSE 

(Consumers) 

MAE 

(Consumers) 

MAPE 

Consumers(%) 

RMSE 

(Revenue) 

MAE 

(Revenue) 

MAPE 

Revenue(%) 

NLSR ∞ ∞ ∞ 9.0670𝑒79 5.2349𝑒79 3.5002𝑒71 

Refined 19,005.15 16,726.96 0.81 1.6743𝑒9 1.4133𝑒9 10.34 
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Equilibrium Analysis and Phase Planes 

After conducting numerical equilibrium analysis, the 

NLSR equilibrium yielded economically unrealistic 

values, whereas refined parameters produced a plausible 

coexistence equilibrium in the billions of Naira range 

consistent with actual revenue magnitudes. 

Table 4. Equilibrium Points and Stability Results 

Model 𝑪∗(Consumers) 𝑲∗ (Revenue) Eigenvalues Stability 

NLSR 6.40 × 10−9 1.72 × 1012 ±2.15 × 10−8𝑖 Neutral centre (unrealistic) 

Refined 1.088 3.49 × 109 ±1.18 × 10−6𝑖 Neutral centre (realistic) 

• NLSR Parameters yielded unrealistic equilibrium 

values (𝐶∗ ≈ 6.4 × 10−9, 𝐾∗ ≈ 1.7 × 1012), 

suggesting a near-zero consumer base alongside 

implausibly high revenue. 

• Refined Parameters produced economically 

meaningful equilibria (𝐶∗ ≈ 1.1, 𝐾∗ ≈ 3.5 × 109), 

reflecting a plausible balance. 

 

Figure 3. Phase Plane Trajectories

Sensitivity Analysis 

Normalized sensitivity analysis confirmed that consumer 

growth was most sensitive to 𝑟 and 𝛼, while revenue was 

most sensitive to 𝛿 and 𝛽. This decomposition provided 

insight into parameter influence, guiding interpretation 

and policy applications. 

 

Figure 4. Sensitivity of State Equations to Model Parameters
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The results demonstrate the limitations of derivative-

based fitting methods such as NLSR when applied to 

nonlinear, large-scale datasets. Divergence and 

unrealistic equilibria were observed confirming that it is 

not suitable for the consumer-revenue system under 
study. This underscored the need for robust optimization 

techniques. The use of Differential Evolution with 

logarithmic scaling produced stable simulations and 

interpretable equilibria, aligning with both the 

magnitudes and dynamics of the observed data. 

Compared to Maku et al. (2023) who applied 

ARIMA/ARIMAX to forecast Nigerian electricity 

consumption, their approach emphasized temporal 

prediction without modelling underlying structural 

feedbacks. By contrast, the present study captures the 

cyclical consumer-revenue relationship, adding 

explanatory depth. Mitropoulou et al. (2022) highlighted 
predator-prey dynamics in competitive electricity 

markets, but focused on inter-firm competition in Greece 

in contrast this study extends that modelling logic to 

consumer-revenue interactions in Nigeria, demonstrating 

broader applicability of ecological-inspired models to 

electricity economics. 

 

CONCLUSION 

This study demonstrated the utility of a modified Lotka-

Volterra framework for providing valuable insights into 

consumer-revenue dynamics (and short-term forecasting) 

within the electricity distribution sector. While initial 

NLSR estimation produced unstable and economically 

unrealistic results, refinement using Differential 

Evolution with logarithmic transformation significantly 
improved stability, interpretability, and forecasting 

accuracy that align with real-world KEDCO data. The 

findings offer a framework that balances predictive 

capability with interpretability, providing actionable 

insights for electricity distribution planning in Nigeria. 

For policymakers and KEDCO, the findings highlight the 

importance of modelling approaches that incorporate 

nonlinear dynamics. Beyond forecasting, such models 

can reveal systemic vulnerabilities and guide 

interventions such as tariff reforms, loss reduction, and 

targeted metering strategies. 
Recommendations include adopting robust parameter 

refinement methods, validating models with out-of-

sample data, exploring alternative model structures such 

as time lags and segmentation, and integrating external 

economic and policy variables for greater realism. 

Overall, the study provides a policy-informing 

framework for balancing consumer growth with 

sustainable revenue recovery, offering a pathway toward 

improved performance of distribution companies in 

Nigeria and similar contexts. 
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