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ABSTRACT

This study presents a two-equation predator-prey model to capture the nonlinear
interactions between consumer growth and revenue dynamics in electricity
distribution systems. Drawing on the classical Lotka-Volterra framework, total
active consumers are modelled as the “prey” population sustaining revenue,
while revenue generation functions as the “predator,” exerting feedback effects
through pricing signals and service delivery. The model is calibrated using Kano
Electricity Distribution Company (KEDCO)’s operational data, formatted as
quarterly time-series data from 2015 to 2023. Parameters were initially estimated
using Nonlinear Least Squares Regression (NLSR), and the system was
numerically solved using the Runge-Kutta 4th Order (RK4) method. However,
the NLSR approach produced unstable forecasts with economically unrealistic
equilibria, highlighting its limitations for complex, nonlinear, and large-scale
systems. As a result, parameters were subsequently refined using Differential
Evolution with logarithmic transformation to ensure numerical stability and
economic plausibility. In contrast, these refined parameters generated stable and
accurate forecasts, achieving mean absolute percentage errors of 0.81% for
consumers and 10.34% for revenue. Equilibrium and Sensitivity analysis were
conducted which confirmed neutrally stable centres characteristic of Lotka-
Volterra systems, but crucially, only the refined model yielded economically
plausible equilibria. The Sensitivity analysis further highlighted the model’s
responsiveness to operational inefficiencies and pricing policies, revealing that
consumer growth is most influenced by intrinsic growth and interaction rates
while revenue dynamics depend strongly on decay and consumer contribution
rates. This proposed framework demonstrates its utility as a robust, policy-
informing tool for optimizing revenue sustainability and demand management
in electricity distribution networks.
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INTRODUCTION After privatization in 2013, ownership of generation and

Electricity distribution is central to socio-economic
development, yet distribution companies often face
persistent challenges in aligning consumer demand with
revenue generation. In Nigeria, the electricity sector is
plagued by inefficiencies such as technical losses, energy
theft, and estimated billing practices that undermine
financial sustainability (Abe et al., 2021; Amadi et al.,
2016). Understanding the dynamics between consumer
growth and revenue recovery is therefore critical to
ensuring reliable service delivery and long-term viability
of distribution companies. Nigeria’s electricity sector is
characterized by an interplay of generation, transmission,
and distribution.

distribution companies transferred to private investors,
while the transmission company remained under
government control. The sector battles with chronic
supply shortages, high aggregate technical and
commercial losses, and weak cost recovery mechanisms
(Amadi et al., 2016; Edomah et al., 2021). Distribution
companies (DisCos), which are the final interface with
consumers struggle with revenue leakages due to
estimated billing, low metering penetration, and non-
payment culture (Adebayo & Ainah, 2024).

Kano Electricity Distribution Company (KEDCO)
serving Kano, Katsina, and Jigawa States, covers one of
the largest customer bases in the country (KEDCO, n.d.).
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Like other DisCos, KEDCO faces the dual challenge of
expanding consumer access while ensuring sufficient
revenue recovery to sustain operations. This makes
KEDCO a suitable case study for investigating consumer-
revenue dynamics. Mathematical models provide
valuable tools for analysing such complex interactions.
Forecasting electricity demand and revenue has received
extensive attention. ARIMA and ARIMAX models have
been widely employed to capture consumption trends in
Nigeria (Maku et al., 2023). While review studies have
emphasized their predictive utility (Efekemo et al., 2022),
these models however primarily emphasize temporal
correlations and do not explicitly capture structural
interdependence between consumers and revenue.
Contrary to this, predator-prey modelling provides a
framework to represent nonlinear feedback mechanisms.
Mitropoulou et al. (2022) used such models to analyse
competition dynamics in Greece’s electricity market,
illustrating how cyclical interactions can be uncovered.
The theoretical foundations lie in classical ecology
(Lotka, 1925; Volterra, 1926) and mathematical biology
(Murray, 2002). Broader contributions in epidemiology
and economics (Brauer & Castillo-Chavez, 2011;
Hritonenko & Yatsenko, 2010) highlight the generality of
this approach.

Our study builds on these traditions by adapting a
modified Lotka-Volterra predator-prey model, originally
formulated by Lotka (1925) and Volterra (1926) for
ecological systems, to capture the dynamic relationship
between electricity consumers and revenue in Nigeria’s
electricity sector, specifically KEDCO. This model
captures nonlinear feedback mechanisms and equilibrium
behaviours, offering insights beyond conventional time-
series approaches. The framework is well-suited for
KEDCO’s demand-revenue dynamics because it
describes cyclical, interdependent processes where
growth in one variable both sustains and constrains the
other (Murray, 2002).

MATERIALS AND METHODS

The methodology centres on applying the Lotka-Volterra
predator-prey framework to model KEDCO's demand-
revenue interactions showing the cyclical and
interdependent behaviour where consumer growth
sustains revenue, while revenue policies impact consumer
activity. Our approach models consumer demand as the
“prey,” while revenue represents the “predator” that
depends on consumer activity. Revenue-driven factors
such as tariff adjustments, billing enforcement and
service quality shaped by financial performance can in
turn, influence consumer growth, creating a feedback
loop. To estimate parameters, Nonlinear Least Squares
Regression (NLSR) was first carried out to obtain
baseline estimates, and then parameters were refined
through Differential Evolution (Ahmad et al., 2022) with
logarithmic transformation (Benoit, 2011) for stability.
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Besides its interpretability, this modelling approach
enables equilibrium, stability, and sensitivity analyses
that provide insights into system behaviour under
different operational or policy scenarios. Quarterly data
covering Q1 to Q34 (2015-2023), consisting of total
consumer numbers and corresponding revenue figures
were obtained from KEDCO operational records
published by the National Bureau of Statistics (NBS) of
Nigeria. The dataset was cleaned and organized into a
time-series format appropriate for dynamic modelling.
Observations from Q1-Q30 were used for parameter
estimation, while Q31 to Q34 were reserved as an out-of-
sample validation set to evaluate the forecasting
performance of the model (Chaku et al., 2025).

Model Formulation
The dynamics between consumers and revenue are
represented through a modified Lotka-Volterra predator-

prey model:
ac

i rC —aCK 1)
& = —6K + BCK @)
Table 1. Definition of terms

c) number of consumers at time ¢

K(t) total revenue at time t

r>0 intrinsic growth rate of consumers (per
unit time)

a>0 rate at which revenue generation affects
consumer growth

6>0 natural decay rate of revenue in absence
of consumer activity

B>0 rate at which consumers contribute to
revenue growth

Equation (1) models consumer dynamics:

e The term rC represents natural growth of the

consumer base.

e The term —aCK captures the dampening effect of
revenue collection pressure or economic constraints
on consumer growth.

Equation (2) models revenue dynamics:

e The term —&K accounts for revenue decay due to
operational costs, inefficiencies, and non-payment.

e The term +BCK represents revenue growth
proportional to consumer engagement and
transactions.

The model assumes bilinear interaction terms (CK)

consistent with classical Lotka-Volterra structure,

ensuring that interaction effects vanish if either variable
is zero.
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Model Assumptions Butar=[* © ©)
The modified Lotka-Volterra framework is based on the 0 2
following key assumptions: 0-1 —al
e Consumers grow at an intrinsic rate (r) in the So,det( —A) =] | p (10)
absence of revenue effects. B, 0-2
e Revenue depends entirely on consumer activity ~The characteristic equation is A% + §r = 0 (12)
and decays naturally at rate (&) due to
inefficiencies and non-payment. At coexistence, eigenvalues are purely imaginary
e Revenue pressures (e.g., tariffs, billing) dampen (1 = +iVér) (12)

consumer growth.

e Consumers contribute uniformly to revenue
growth at rate (B), without distinguishing
customer categories whether they are metered or
estimated customers.

e Consumer and revenue dynamics are modelled as
continuous processes using differential equations,
with no explicit carrying capacity constraint such
as infrastructural capacity or market saturation.

Equilibrium and Stability Analysis

Equilibrium analysis involved solving for the steady-state
conditions of consumers and revenue, while stability was
assessed using the Jacobian eigenvalues at the
coexistence point.

Setting % =0and 'Z—f = 0 yields equilibrium points:
o Trivial equilibrium: (0,0)
e Non-trivial equilibrium:
ac
From— =0,
dt .
rC—aCK =0 =>C=00rK=;

dK
From—=20
dt

®)

—6K+BCK=0=>K=001"C=%

The non-trivial coexistence equilibrium
ey _ (81

(C IK ) - (ﬁ'a)

Letf, =rC —aCK and f, = —6K + BCK

of1 of1

= =r—ak —==—aC
ac oK

f2 _ 2 _ _
el BK Vi 6+ pC
The Jacobian matrix at equilibrium is given by
afl/ afl/

ac 0K

(4)

J(C,K) = (5)

(6)

BK  —8+BC
E,f) becomes:
a

The Jacobian at coexistence (C*, K*) = (B

0 —0{E
JjeL kY=, F
B- 0

a

)

Eigenvalue Analysis
The eigenvalue is computed as det(J — AI) = 0

(®)

These purely imaginary eigenvalues imply that the
coexistence equilibrium is a centre, exhibiting neutral
stability. This is consistent with classical Lotka-Volterra
dynamics, trajectories form closed orbits around the
equilibrium with neither exponential growth nor decay.
Nonlinearities beyond linearization determine the long-
term trajectory behaviour.

Sensitivity Analysis

Local sensitivity analysis was conducted by computing
partial derivatives of the model equations with respect to
each parameter. This quantified how changes in each
parameter influenced consumer and revenue trajectories,
helping to identify the most critical drivers of system

. . ac
which most strongly influence consumer (E) and
dK .
revenue (E) behaviour.

0 Y gp) _ o 0 gp) _

dc, .
For consumers (E)' p. DT ow CK,
3%/ g0 _ 3D _
as ! ap
3 dK F] dK
For revenue (d—K): 0 ar) _ 0, 0 ar) _ 0,
dC/dt) or a(dK/ ) da
0 ap) _ at) _
as ! ap CK

These derivatives were evaluated throughout the
simulation period (Q31-Q34) to identify the most
influential parameters.

Results indicated that:

e Consumer growth is most sensitive to  and a.

e Revenue dynamics are most sensitive to § and S.

Parameter Estimation

Parameter estimation was performed in two stages:

a. First, Initial Estimation via Nonlinear Least Squares
Regression (NLSR) using
scipy.optimize.least_squares in Python.

o Numerical derivatives of observed time-series data
were calculated using finite differences.
e Parameters (r,a,d,8) were fitted by minimizing
squared errors between observed and model-predicted
derivatives.
NLSR Formula:
mind L1, (v; — f (x;, 0))? (13)
Where y; = observed data and f(xi,d) = model-
predicted values.
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Let t,,t,, ..., t, be the discrete time points over which
data is available. At each time t;, the observed values of
C(t;), and K(t;)) are used to approximate the
derivatives using forward finite differences:

ac . C(tip1)—C(t)
dt ‘tl - At (14)
Similarly,
aK - K )-K ()
dt ‘fl - At (15)
Denote:
AC AK
Yii = 5 Yoi= 5

These approximated derivatives are treated as the
dependent variables in the regression framework, while
the terms in equations (1) and (2) define the nonlinear
functions of the parameters.

At each time point t;, the residuals for the equations are
defined as:

&, =y, — [rC(t) — aCt)K ()]
&1 = Y2, — [-OK(t) + BC(t)K(¢)]

(16)
A7)

These residuals represent the deviations between the
observed and modelled dynamics at each time point. The
NLSR estimation procedure aims to find the parameter
vector (a, 5,7, 6) that minimizes the sum of squared
residuals across all time points:

S(0) = Xii(ef; + €5) (18)

The optimal parameter vector § is then obtained by
solving: 6 = arg minS(6) using Python’s

scipy.optimize.least_squares, which implements iterative
algorithms (e.g., Levenberg—Marquardt, trust-region
methods). It provides initial guesses for (a,B,7,8) and
the optimizer iteratively adjusts parameters to minimize
S(6).

The baseline (NLSR) parameter estimates are 8.3396,
4.8542 x 10712, 55475 x 1077, and 8.6698 x 10~°
representing r, a, § and S8 respectively.

b. To address the unrealistic equilibria produced by
the initial NLSR parameter forecast, parameters were
refined via Differential Evolution with Logarithmic
Transformation. Differential Evolution (Ahmad et al.,
2022) is a stochastic global optimization algorithm that
searches for a parameter vector & minimizing a cost
function j(6) by evolving a population of candidate
solutions over multiple generations. Each iteration (or
“generation”) combines and mutates parameter vectors to
explore the search space broadly, while retaining the best-

performing solutions. Before optimization, each
parameter of the modified Lotka—Volterra model was
transformed into log-space (Benoit, 2011): ¢ =
log (8) = (log r,log a,log 6,log B). This

transformation provides three benefits:
e Positivity constraint: ensures all parameters
remain positive after exponentiation(6 = e?).
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e Scale stabilization: handles large differences in
parameter magnitudes(e.g.,r ~ 1072, a ~
1077).

e Smoother optimization landscape: log-scaling
often converts a rugged error surface into one
more continuous and easier for DE to navigate.

During optimization, DE evolves @, not 8, and converts
back using exponentiation for model evaluation. Instead
of fitting instantaneous derivatives (as NLSR did), DE
minimizes the total squared difference between ohserved
trajectories (consumer and revenue time series) and
model-predicted trajectories obtained via RK4 integration
of the differential equations.

Formally:

J@) = Z[(ce - ceim@)” + (K¢ — ke ()]
(19)

where:

o (™M, KF™ are the simulated trajectories using
parameters = e?;
o (PP, KPP are observed from the KEDCO
dataset.
This means the optimizer directly tunes parameters to
reproduce actual dynamics, not just derivative slopes.
The algorithm for our equation is implemented via the
following steps:

i. Initialize population: generate N, candidate
parameter vectors;
@; = (log 7j,log aj,log 6;,log B;) randomly

within defined bounds.

ii. For each target vector @;, select three distinct random
vectors @,, @,, @, from the population and create a
mutant: v; = @, + F (@, — 0.);

iii. Crossover: Elements of the mutant vector are
combined with the target vector to form a trial vector
uii

ul-,j =

D,
With crossover rate CK € [0,1].
iv. Selection: The trial vector u; is evaluated using the

objective  function  (J(§) =X, [(C{’bs -

csm(@))” + (Kevs — Kfim((Z)))z]). If it produces a
lower error than the target vector @;, it replaces it in
the next generation.

v. Iteration: These steps are repeated for a fixed
number of generations (e.g. 1000) or until the
improvement in the objective function falls below a
specified threshold.

The parameter refinement was implemented in Python

using the scipy.optimize.differential_evolution library.

The RK4 integration scheme provided the simulated

consumer and revenue trajectories at quarterly intervals.

if rand; < CK o1 j = jrana
otherwise (20)
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Initial NLSR estimates served as starting points for
Differential Evolution, ensuring a guided yet robust
parameter search.

The refined parameters obtained are 4.9638 x 1075,
1.4221 x 1071, 2.7929 x 108 and 2.5662 x 1078
representing r, a, § and S respectively.

Unlike the gradient-based NLSR, which often converged
to local minima and produced unstable equilibria, the DE
method performed a global search of the parameter space.
This vyielded stable and economically meaningful
estimates that reproduced realistic consumer-revenue
cycles and equilibrium behaviour.

Overall, the DE with logarithmic transformation process
ensured, all parameters remained positive and
numerically stable, global convergence to the best-fitting
parameter set, and realistic, neutrally stable Lotka-
Volterra dynamics consistent with observed KEDCO
data.

Numerical Simulation

The coupled nonlinear differential equations of the
modified Lotka-Volterra model were solved numerically
using the fourth-order Runge-Kutta (RK4) method. This
scheme was selected for its balance of computational
efficiency, accuracy and stability when applied to
nonlinear dynamic systems. RK4 method starts at an

initial  point  y(t,) = y,, calculates four slopes
(intermediate slopes: kq, k, ks, k,).
We write the system compactly as a vector ODE
dy _ _(C
=@y, y= (K)
rC — aCK
re = (L5x 4 sex) (21)
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ki = h * f(t,, y,,): Slope at the beginning.
k,=hxf(t,+ %,yn + kz—l): Slope at the midpoint using
key

ks =hxf(t,+ %,yn + kz—z): Another midpoint slope
using k,

k,=hxf(t,+hy, +ks): slope at the end of the

interval using k5
Compute the weighted average of the slopes
1

Vn+1 = In +g(k1 + 2k, + 2k3 + ky) (22)
Because y is 2-dimensional, each k; is a 2-vector.
Concretely:

_( 1C, —aCK, )
kl B <_5Kn + ECnKn (23)
Compute k,, ks, k,, advance to the next time step and
repeat the process until the desired end time.

RESULTS AND DISCUSSION

All simulations, parameter estimation, and data analyses
in this study were conducted using the Python
programming language due to its versatility in scientific
computing.

Forecast Comparison

Two parameter sets, NLSR and Refined, were compared.
RK4 simulation was used to solve the equations and
forecast Q31 to Q34. NLSR produced extreme
divergence, with unstable predictions (including infinities
and NaNs (Not a Number)). Conversely, Refined
parameters yielded stable and realistic forecasts, with
consumer predictions close to observed values (=2
million) and revenue forecasts in the range of 1.09 x

. . . 101° to 1.28 x 10'°, consistent with empirical
The RK4 algorithm approximates the solution at the next magnitudes.
time step as follows: Given the state y, = y(t,) and
h:step size = 1 (quarterly data), RK4 computes y,,,
by:
Table 2. Observed vs Predicted Consumers and Revenue (Q31-Q34)
Quarter Consumers Revenue Consumers Revenue Consumers Revenue
(Observed) (Observed) (NLSR) (NLSR) (Refined) (Refined)
31 2,037,146 1.2007¢1° 6.8470e® 2.0228¢1° 2.046478e6 1.0934¢10
32 2,039,023 1.2956¢10 -4.3312¢1? 7.9145e15 2.046252¢6 1.1524¢10
33 2,066,822 1.4956¢10 8.7930e7° -1.5705¢8° 2.046010e° 1.2145¢10
34 2,075,283 1.3139¢10 e NaN 2.045748e° 1.2800e1°
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Forecast results demonstrated the inadequacy of NLSR,
which diverged numerically, and the superior
performance of the refined parameters, which aligned
with observed consumer and revenue magnitudes and
reliably captured observed dynamics (Q31-Q34),
supporting its validity for short-term forecasting in
electricity distribution. Logarithmic plots highlighted the
NLSR model’s catastrophic instability compared to the
robust trajectories of the refined model.

Revenue (%)
I
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Error Metrics

Following the RK4 simulation and comparison of both
NLSR and refined parameters forecasts, the forecast
accuracy was assessed using RMSE, MAE, and MAPE.
These metrics are generally used to quantify how far
model predictions deviate from actual values
(Scherbakov et al., 2013). They are computed as follows:
Let y; represent the actual value, y; represent the
observed/predicted value and n is the number of
observations. Then the error e; = y; —¥; denotes the
error at point i.

e MAE: Mean Absolute Error computes the
average absolute difference between predictions
and actual values. Thus, it treats all errors
equally.

n
1
MAE = Je,|
ns
i=1

e RMSE: Root Mean Square Error first squares
errors, takes the average of the squared errors
and then takes the square root. It strongly
highlights large errors.

RMSE =

e MAPE: Mean Absolute Percentage Error
expresses error as a percentage of the actual
value.

n
1
MAPE = —Z
n .
i=1

The error assessment yielded the following result:

e NLSR parameters exhibited infinite error metrics,
confirming complete numerical instability;

o Refined model achieved low errors for consumers
(MAPE= 0.81%) and reasonable accuracy for
revenue (MAPE= 10.34%).

Thus, refined parameters dramatically outperformed the

initial estimates.

€
—| x 100

Yi

Table 3. Forecasting Error Metrics (Q31-Q34)

Model RMSE MAE MAPE RMSE MAE MAPE
(Consumers) (Consumers) Consumers(%) (Revenue) (Revenue) Revenue(%)

NLSR o o0 o0 9.0670e7° 5.2349¢7° 3.5002¢71

Refined 19,005.15 16,726.96 0.81 1.6743e° 1.4133¢° 10.34
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values, whereas refined parameters produced a plausible
coexistence equilibrium in the billions of Naira range
consistent with actual revenue magnitudes.

Equilibrium Analysis and Phase Planes

After conducting numerical equilibrium analysis, the

NLSR equilibrium yielded economically unrealistic
Table 4. Equilibrium Points and Stability Results

Model C*(Consumers) K* (Revenue) Eigenvalues Stability
NLSR 6.40 x 107° 1.72 x 1012 +2.15%x 1078 Neutral centre (unrealistic)
Refined 1.088 3.49 x 10° +1.18 x 1079 Neutral centre (realistic)
e NLSR Parameters yielded unrealistic equilibrium e Refined Parameters produced economically

values (C* = 6.4x107°, K* =~ 1.7 x 10%?),
suggesting a near-zero consumer base alongside
implausibly high revenue.

meaningful equilibria (C* = 1.1,K* ~ 3.5 x 109),
reflecting a plausible balance.

Phase Plane: NLSR Parameters Phase Plane: Refined Parameters
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Figure 3. Phase Plane Trajectories
insight into parameter influence, guiding interpretation
and policy applications.

Sensitivity Analysis

Normalized sensitivity analysis confirmed that consumer
growth was most sensitive to r and a, while revenue was
most sensitive to & and 8. This decomposition provided

Normalized Sensitivity of dC/dt Normalized Sensitivity of dK/dt
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Figure 4. Sensitivity of State Equations to Model Parameters
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The results demonstrate the limitations of derivative-
based fitting methods such as NLSR when applied to
nonlinear, large-scale datasets. Divergence and
unrealistic equilibria were observed confirming that it is
not suitable for the consumer-revenue system under
study. This underscored the need for robust optimization
techniques. The use of Differential Evolution with
logarithmic scaling produced stable simulations and
interpretable  equilibria, aligning with both the
magnitudes and dynamics of the observed data.
Compared to Maku et al. (2023) who applied
ARIMA/ARIMAX to forecast Nigerian electricity
consumption, their approach emphasized temporal
prediction without modelling underlying structural
feedbacks. By contrast, the present study captures the
cyclical ~ consumer-revenue  relationship,  adding
explanatory depth. Mitropoulou et al. (2022) highlighted
predator-prey dynamics in competitive electricity
markets, but focused on inter-firm competition in Greece
in contrast this study extends that modelling logic to
consumer-revenue interactions in Nigeria, demonstrating
broader applicability of ecological-inspired models to
electricity economics.

CONCLUSION

This study demonstrated the utility of a modified Lotka-
Volterra framework for providing valuable insights into
consumer-revenue dynamics (and short-term forecasting)
within the electricity distribution sector. While initial
NLSR estimation produced unstable and economically
unrealistic  results, refinement using Differential
Evolution with logarithmic transformation significantly
improved stability, interpretability, and forecasting
accuracy that align with real-world KEDCO data. The
findings offer a framework that balances predictive
capability with interpretability, providing actionable
insights for electricity distribution planning in Nigeria.
For policymakers and KEDCO, the findings highlight the
importance of modelling approaches that incorporate
nonlinear dynamics. Beyond forecasting, such models
can reveal systemic vulnerabilities and guide
interventions such as tariff reforms, loss reduction, and
targeted metering strategies.

Recommendations include adopting robust parameter
refinement methods, validating models with out-of-
sample data, exploring alternative model structures such
as time lags and segmentation, and integrating external
economic and policy variables for greater realism.
Overall, the study provides a policy-informing
framework for balancing consumer growth with
sustainable revenue recovery, offering a pathway toward
improved performance of distribution companies in
Nigeria and similar contexts.
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