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ABSTRACT 
The persistent threat of typhoid fever to global public health is most severe in 

regions where sanitation is poor and safe drinking water is scarce. The illness, 

which is caused by Salmonella Typhi, can result in systemic infection and 

serious complications if not treated promptly. Populations at greater risk, 

particularly in low-resource environments, are especially affected due to 

inadequate healthcare facilities. This research presents a novel fractional-order 

mathematical model to assess the transmission dynamics of typhoid fever, 

incorporating memory effects and intricate transmission patterns that 

traditional integer-order models fail to capture. The study uniquely applied the 

Adams-Bashforth method alongside fractional-order derivatives to obtain the 
model's solution, offering a more accurate representation of disease 

progression. Sensitivity analysis showed the critical roles of treatment 

intervention , reducing contact rate and improved sanitation in lowering the 

prevalence of the disease. Furthermore, the study assesses how public health 

initiatives, such as enhanced water quality, hygiene education, and 

advancements in rapid diagnostics, influence the management of typhoid fever. 

Simulation results suggest that a comprehensive strategy such as effective 

management of contaminated agents, efficient treatment, and strengthened 

public health systems can greatly mitigate  transmission and enhance disease 

management outcomes. 
 

INTRODUCTION 

Typhoid fever is a life-threatening infection caused by the 

bacterium Salmonella enterica serovar Typhi. 

Transmission primarily occurs through the consumption 

of food or water contaminated by feces from an infected 

or convalescent individual. Once ingested, the bacteria 

multiply and spread into the bloodstream, leading to 

systemic infection (World Health Organization, 2023). 

The disease is characterized by prolonged fever, fatigue, 

headache, nausea, abdominal pain, and constipation or 

diarrhea. Without appropriate antibiotic treatment, 
typhoid fever can result in serious complications or death. 

Globally, typhoid fever imposes a significant health  

 

 

 

 

 

burden, particularly in regions with inadequate access 

to clean water and sanitation. In 2019, it was estimated 

that approximately 9.2 million cases and 110,000 

deaths occurred worldwide, with the highest incidence 

rates reported in the World Health Organization 

(WHO) South-East Asian, Eastern Mediterranean, and 

African regions (Kim et al., 2023). These areas often 

face challenges related to infrastructure and healthcare 

access, exacerbating the spread and impact of the 

disease. Recent studies have highlighted various 

factors associated with an increased risk of typhoid 
fever. A study conducted among febrile patients 

identified significant associations between typhoid  
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fever infection and occupational status, particularly 

among unemployed individuals and farmers, as well as 

lower body mass index (BMI). The study also noted 

inadequate levels of knowledge, perception, and practice 

regarding typhoid fever prevention among the population 
(Tadesse et al., 2024). These findings underscore the need 

for targeted public health interventions to address these 

risk factors and improve preventive measures. 

The emergence of extensively drug-resistant (XDR) 

strains of Salmonella Typhi poses a growing challenge to 

typhoid fever management. In Pakistan, XDR typhoid 

strains resistant to nearly all antibiotics have been 

reported, complicating treatment efforts and highlighting 

the urgency for improved water and sanitation 

infrastructure, as well as prudent antibiotic use (The 

Guardian, 2024). In response to the escalating threat, 

several countries have introduced typhoid conjugate 
vaccines (TCVs) into their national immunization 

programs since 2018, aiming to reduce the incidence of 

the disease and combat the spread of resistant strains 

(Kim et al., 2023). Fractional-order mathematical 

modeling has emerged as a powerful tool in 

understanding the dynamics of infectious diseases. By 

extending traditional integer-order models to include 

derivatives of non-integer order, these models effectively 

incorporate memory effects and hereditary properties 

inherent in biological systems, leading to more accurate 

representations of disease progression (Kumar et al., 
2024). For instance, a fractional-order SEIQRDP model 

was developed to simulate COVID-19 dynamics, 

demonstrating improved predictive capabilities over 

classical models (Patel et al., 2023). Similarly, a 

fractional-order model for measles infection utilizing the 

Caputo derivative provided a more comprehensive 

analysis of the disease's transmission dynamics (Tadesse 

et al., 2024).  

Sharma et al. (2024) developed a fractional-order 

SEI1I2I3QCR model incorporating awareness and delay 

differential equations to simulate the progression of the 

COVID-19 pandemic. The study demonstrated that 
fractional-order models provide more accurate predictions 

than classical integer-order models by accounting for 

memory effects in disease transmission. Ali et al. (2024) 

proposed a fractional-order mathematical model to 

analyze tuberculosis (TB) transmission, incorporating the 

impact of vaccination. Their research highlighted how 

fractional derivatives enhance the model’s accuracy in 

capturing TB dynamics, particularly in scenarios 

involving long incubation periods and vaccine efficacy. 

Tadesse et al. (2024) investigated the co-infection 

dynamics of COVID-19 and malaria using a fractional-
order model with Caputo-type derivatives. The study 

analyzed the stability of the model and demonstrated the 

effectiveness of fractional calculus in simulating co-

infection scenarios, improving predictions of disease 

outbreaks. Gomez et al. (2023) developed a fractional-

order SEIR (Susceptible-Exposed-Infected-Recovered) 

model to analyze COVID-19 transmission in Buenos 

Aires. The study found that incorporating memory 

effects improved model accuracy in predicting case 

trends and evaluating the impact of lockdown 
measures. 

 

MATERIALS AND METHODS 

Preliminary 

Definition 1: Let ( ),f R then the right and left 

Function's Caputo fractional derivative 
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Definition 2: The Mittag-Leffler function in 

generalized form  ,E x   for x R  is given by  
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Taking the Laplace transform,  yilds equation (4) 
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Proposition 1.1 Let  ( )f R d R    and 

, 1 ,R c c     Consequently, the following 

requirements are met:
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Model Formulation 

In this segment, a deterministic compartmental model for 

the transmission dynamics of typhoid fever is developed. 

The total human population  N t , is subdivide  into five 

(5) epidemiological  classes of susceptible humans S , 

exposed humans to diarrhea infection  ,E    infected 

humans ,I , treatment class of  typhoid fever  T , and 

recovered individuals  R . Let   denotes recruitment 
rate of individuals into the susceptible compartment, 

where   is the effective contact rate with the probability 

of infection per contact with infected human. The 

population of exposed human is decreased by infection 

rate    and treatment rate of exposed humans  , where 

   is the treatment rate of infectious individuals and each 

of the compartment is decreased by the natural death rate 

  and   denotes diseased induced rate. Every treated 

human recovers at the 
 

rate, where immunity loss 

occurs recovered individuals become susceptible at the   
rate. Based on the schematic diagram in figure 1 and the 

model description, we have the following differential 

equations 

 ,


     
dS SI

R S
dt N

 

 ( ) ,


     
dE SI

E
dt N

 

 ( ) ,      
dI

E I
dt
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dT

E I T
dt

 

 ( ) .    
dR

T R
dt

                                                                                                   

                (5) 

 

Figure 1. Schematic diagram for the typhoid fever  

model (1) 

Fractional typhoid fever mathematical model 

In this section, the integer-order model of typhoid fever 

from Equation (5) transformed into  the Caputo 

fractional derivative operator (Abah, et al, 2025). This 

fractional model introduces greater flexibility 
compared to the classical model, as it allows the 

system's behavior to adapt and exhibit a range of 

dynamic responses. The fractional modeling approach 

for Diphtheria is thus formulated as follows: 
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Assuming suitable initial conditions: 
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 Model Analysis 

 Positivity of solution 

Considering the non-negativity of the initial values. 
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Hence    is positively invariant. 

If , , , ,S E I T R are non-negative, so that the solution 

of model (6) will also be non-negative for 𝑡> 0 . 

By taking the first equation from Eq. (6), we obtain: 

 ,a

t

SI
D S R S

N

 
       

 
a

t

SI
D S S R

N

 
       

       

 

0 0 0 0

0

0 , 0 , 0 , 0 ,

0 .

   



S S E E I I T T

R R



 

Semi-Analytical Approach to a Fractional-Order … Agbata et al.  

 

JOBASR2025 3(3): 215-226 

 

 

218 

But 0,R  
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By applying the inverse Laplace transform, we have 
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Since the term on the right-hand side of  equation  (8) is 

positive, we  deduce that 0S   for 0t  . Also, since
  

0 , 0, 0, 0,E I T R    are positive , the solutions 

remain within the real number set
5R  for all  0t   with 

positive initial conditions. 
 

Boundedness of solution of the fractional-order model 

The total number of people in our model is given by: 
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Taking the Laplace transform of equation  (9), we have: 
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Taking the inverse Laplace transform of equation (10) 

yields: 
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At t  , the limit of equation (11) becomes 
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We can therefore conclude that, from an 

epidemiological perspective, this region   is both pe 
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 Existence and uniqueness of our model solution 

Let T be a real nonnegative number, given that
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Using proposition, we have that, 
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The Picard iterations of equation (14)  are obtained 
below: 
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Applying the initial value problem in equation (12) yields; 
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Lemma 1. The vector   ,K t P t    satisfies the 

Lipschitz requirement as stated in Eq. (13) on a set  

  50,T R  with the Lipchitz constant given as;
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     *

1 1 1 1, , .K t S K t S S S     
 

Likewise, we discovered the following: 

 

   2 2 1 1, , ( ) ,K t E K t E E E      
 

 

   3 3 1 1, , ( ) ,K t I K t I I I        

 

   4 4 1 1, , ( ) ,K t T K t T T T      

 

   5 5 1 1, , ( ) .K t R K t R R R      

Where we obtained  

 

     2 1 2, , .K t P t K t P t P P  
 

     

   

* , , ,
max

, .

    

   

    
  
   

I
         

(18) 
Lemma 2: There exist   solutions to the initially value 

problems (6), (7) in Eq. (18). 

   0 .cK t L F
 

We examine the solution using fixed point theory and 

Picard-Lindel of      ,K t S P t When the Picard 

operator, represented as S, is defined as; 

   0 * 0 5: , , .C CS L F R L F R   

Therefore, 

    
 

    
1

0

1
0 , d

t

S K t K t P P


   



  

 
 

     1 2S P t S P t
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 
       

1

1 2
0

1
, ,

t

t K K K P d


     



    

 

 

 
       

1

1 2
0

1
, ,

t

t K P K P d


     



  
 

 

 
 

1

1 2
0

t

t P P d


 



  
 

 

     
 1 2

1
S P t S P t

S


  

 
 

When 
 

1
1

S





 
 the solutions to Equations (6) 

and (7) are unique since the Picard operator produces a 

contradiction. 
 

The basic reproduction number (R0) and model 

equilibrium points: 

The disease-free equilibrium point of model (5) is given 

below: 

 * * * * *

0 , , , , ,0,0,0,0S E I T R


 
  


 

  

 Following the approach  in  (VendenDriessche and 

Watmough, 2002;  Diethelm, 199). We obtain the basic 

production number as follows  

 , , ,let u E I T R

 
So that .

du
F V

dt
   

Where; 

 

0 0

0 0 0 ,

0 0 0

 
 

  
  

F

1

2

3

0

,

0



 



 
 

   
  

K

V K

K
 

1

3 1

1 2 3 1 2 3 1 2 3

0 0 0 .

0 0 0

  

  

 

 
   

 
 
 
 
 
 

FV

K K

K K K K K K K K K

Thus, the basic reproduction number for the typhoid 

model is given as:

 

3
0

1 2 3

                   (20)







Ty K
R

K K K
 

Where 

1 2 3, , .K K K              

Mathematically, the basic reproduction number is 

computed as  1

0R FV   where   is the 

dominant Eigen value of the system  1FV 
. Where 

0

HR  is the basic reproduction number associated with 

the individuals in the population (Bolaji et al., 2024) 

Endemic equilibrium point 

The endemic equilibrium point is the state where the 

disease persists in the population, there is a positive 
stable state known as the endemic equilibrium point. 

The variables in the model are not zero at this 

equilibrium point. 

 * * * * *0, 0, 0, 0, and 0S E I T R      

The model equations are solved in terms of the force of 

infection linked with human populations in order to 

examine the endemic equilibrium point. Based on the 

fractional Tuberculosis model (6), the endemic 
equilibrium state is symbolized as follows: 

 
* * * * *( , , , , )S E I T R 

 
Defined as; 

** 3 2

1 2 3

,
K K

S
K K K 






** **
**

2

,
S I

E
K




**
**

3

,
E

I
K




** **
** ,

E I
T

 

 






**
** .

T
R



 



 

Substituting these equilibrium values into the force of 

infection: 
**

** .
I

N


   

We obtained: 
** **( ) 0,A B    

where: 

3,A K  

 1 2 3 01 .TyB K K K R    

At the endemic equilibrium point, 
** 0  , thus: 

This implies: 
** 0.A B    

 

0 01 0 and 1.Ty TyR R     

Consequently, the typhoid model endemic equilibrium 

is stable whenever 0 1TyR  . 
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Sensitivity Analysis of the typhoid Model 

Sensitivity analysis is used to identify the factors that 

encourage both the containment and spread of typhoid 

within a population. For any parameter p , the sensitivity 

index of the reproduction number of the typhoid model is 

given by:  

 

0 0

0

R

p

R p

p R


  


 

 

The basic reproduction number for the typhoid model is 

expressed as:  

 

3
0

1 2 3

,Ty K
R

K K K







 

where: 

1 2 3, , .K K K              

Using the sensitivity formula, the sensitivity indices for 

the parameters are computed as follows: 

Transmission Rate (  ): 

0 0

0

1
R R

R







   


 

Progression Rate ( ): 

0 0

0

R R

R







  


 

Differentiating 0

TyR  with respect to   yields: 

0 3 3

2

1 2 3 1 2 3

.
( )

R K K

K K K K K K

  

  


 

  
 

Substituting values and simplifying: 
0 0.728.

R

   

0 0

0

.
R R

R







  


 

Differentiating 0

TyR  with respect to   through 2K  yields: 

0 3 1

2

1 2 3

.
( )

R K K

K K K



 


 

 
 

Substituting values and simplifying: 
0 0.135.

R

    

0 0

0

.
R R

R







  


 

The contributions of   arise through 1K , 2K , and 3K . 

After computation: 

0 0.093.
R

    

Treatment Rate ( ): 

0 0

0

.
R R

R







  


 

Since   is part of 
3K : 

0

1 2 3

.
R

K K K



 




 
 

Substituting values and simplifying: 

0 0.094.
R

   

 

 
Figure 2. Bar chat of Typhoid Fever Sensitivity 

Indices 
 

The sensitivity bar chart above provides a 

comprehensive analysis of the key parameters 

influencing the transmission dynamics of typhoid 

fever. Parameters with positive sensitivity indices 
indicate factors that contribute to an increase in disease 

transmission. Notably, the contact rate and infectious 

rate exhibit positive sensitivity indices, demonstrating 

that higher values of these parameters lead to a greater 

spread of typhoid fever. This implies that any measures 

aimed at reducing contact rate such as improved 

hygiene practices, social distancing in outbreak 

scenarios, and public awareness campaigns can play a 

crucial role in mitigating disease transmission. 

Similarly, controlling the infectious rate through early 

diagnosis, prompt treatment, and isolation of infected 
individuals can significantly curb the spread of typhoid 

fever (Agbata et al., 2024, ). Conversely, parameters 

with negative sensitivity indices highlight factors that 

contribute to disease reduction. One such parameter is 

the treatment rate, which shows a strong negative 

sensitivity index, indicating that an increase in timely 

and effective medical interventions significantly lowers 

the prevalence of typhoid fever. This underscores the 
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importance of enhancing treatment accessibility, 

particularly in low-resource settings where inadequate 

healthcare facilities contribute to prolonged infection and 

continued transmission (Odeh et al., 2024) Strengthening 

healthcare infrastructure, ensuring the availability of 
antibiotics, and improving patient adherence to prescribed 

treatment regimens are critical steps in reducing disease 

burden. 

 Implementation of fractional Adams–Bashforth–

Moulton method  

The approach proposed by Baskonus et al. (2015) and 

Diethelm et al. (1999) serves as the foundation for this 

study. In this work, we apply their methodology to 

develop an approximate solution for the fractional-order 

tuberculosis model described in Equation (6). To achieve 

this, we employ the fractional Adams–Bashforth method, 

a numerical technique well-suited for solving fractional 
differential equations. This method effectively captures 

the memory effects and complex dynamics inherent in 

fractional-order systems, offering a more accurate 

representation of the disease transmission process. 

Consequently, the fractional-order model presented in 

Equation (6) is reformulated as follows: 

 

    , , 0 ,a

tD X t Z t Q t t     

 

   
 

 00 , 1,0, ..., , .
nn

Q Q n Q Q   
                              

(24) 

Where  * * * * * 5, , , ,Q S E I T R R   and 

  ,K t Z t  is a real valued function that is continuous. 

Therefore, the following representation of Eq. (24) can be 
made using the idea of a fractional integral: 

   

 
    

1

0

0

1

0

!

1
,











 








nq
n

n

t

t
Q t Q

n

t q K q Q q dq                       (25) 

Using the method described by [7], we let the step size 

,d N
N


   with a grid that is uniform on   0, .  

Where , 0,1,1,... .ct cr c N   Therefore, the fractional 

order model of Typhoid model presented in (6) can be 

approximated as:  

 

 
 

 

 
 

1 0

0

2

, 1 ,
2





  


  






 
       

   

 
     

   


n
n n n

k

k
q

q q q

q

d S
S t S R I S

N

Sd
dq k R I S

N

 
 

 

 
 

1 0

0

( )
2

, 1 ( ) ,
2





   


   






 
      

   

 
    

   


n
n n

k

k
q

q q

q

d S
E t E I E

N

Sd
dq k I E

N

 

 
 

 

 
 

1 0

0

( )
2

, 1 ( ) ,
2





   


   






     
 

   
 



n n

k

k

q q

q

d
I t I E I

d
dq k E I

 

 
 

 

 
 

1 0

0

( )
2

, 1 ( ) ,
2





   


   






     
 

   
 



n n n

k

k

q q q

q

d
T t T E I T

d
dq k E I T

 

 
 

 

 
 

1 0

0

( )
2

, 1 ( ) ,
2





  


  






    
 

  
 



n n

k

k

q q

q

d
R t R T R

d
dq k T R

               (26) 

where 

     
 1

0

1
1 ,  





 
      
  


k

q

q q q qk

q

S
S t e k R I S

N

 

     
 1

0

1
1 ( ) ,   





 
     
  


k

q

q q qk

q

S
E t e k I E

N

 

     
 1

0

1
1 ( ) ,

k

q q qk
q

I t e k E I   





    




 

     
 1

0

1
1 ( ) ,

k

q q q qk
q

T t e k E I T   





    



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     
 1

0

1
1 ( ) .

k

q q qk
q

R t e k T R  





   


                                                                 

       (27) 

Equations (25) and (26) provided us with; 

  1

1, , 0Kdq K k k q
  

        

 

     
11 1

2 2 1 ,

1

 


 
      

 

k q k k q

q k

1, 1q k 
 

And  

   , 1 1 , 0 .q k

d
e k q k q q k


 




      
 

 

 

RESULTS AND DISCUSSION 

Numerical Simulation  

The numerical simulation of our model equations is 

carried out using MATLAB to illustrate the real-world 

dynamics of the system through graphical 

representations (Agbata et al., 2024). We examined the 

impact of various parameters on disease transmission 

and evaluate the effectiveness of different intervention 

strategies. The simulation offers valuable insights into 
key trends, including the temporal changes in 

susceptible, exposed, infected, and recovered 

populations.  

Table 1. Parameter values used in the model  
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Figure: 7 Effect of  on the cumulative new cases of 

Typhoid 

 

Figure 3(a) reveals that an increase in the parameters 
and indicating the contact rate and the progression rate 

of exposure to typhoid-infected persons, respectively, 

which, as evidenced by a basic reproduction number 0

TR

above one (1), raises the incidence of typhoid in human 

populations. The surface plot in Figure 3(b) shows the 

effects of different between and  , showing the 

disease-induced mortality rate of typhoid-affected 

individuals and the recovery rate of typhoid-affected 

humans relative to the basic reproduction number 0

TR  

of the population, It was shown that when these 

parameters are increased, the value of 0

TR  peaks and 

falls below one. This suggests that lowering the rate at 

which individuals are exposed to typhoid-causing 

chemicals and implementing policies that promote 

appropriate treatment may eventually lessen the 

incidence of typhoid among humans. Figure 4(a) shows 

the impact of varying   (Disease induced death rate 

of infected typhoid) and   (Natural death rate of 

humans) on the basic reproduction number 0

mR . As 

demonstrated by their impact on the basic reproduction 

number, which can go over one (1), factors   and 

have the potential to exacerbate the occurrence of 

typhoid if proper precautions are not taken. Figure 4(b) 
illustrates how changes in the fractional-order 

derivative   impact the susceptible human population 
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over time. The graph shows that as   increases, there are 

fewer people who are susceptible. This decrease occurs 

because fewer people are at risk of acquiring the illness as 

a result of the treatment plan. Figure 5(a) demonstrates 

that the exposed population decreases rapidly as infection 

rates rise. This shows that even though the overall 
exposed population is shrinking due to higher 

infectiousness, there is still a steady influx of individuals 

transitioning from the susceptible group to the exposed 

group. In Figure 5(b), the trends of the infected human 

population are depicted over time. Initially, the number of 

infected individuals grows due to the flow of people from 

the exposed group. However, after a certain point, this 

number starts to decline, thanks to treatment 

interventions. This highlights the effectiveness of 

treatment strategies in ultimately reducing the typhoid 

burden within the population. 

Figure 6(a) shows how the number of people undergoing 
treatment has changed over time. As individuals move 

from the infected group to the receiving group, the treated 

population initially grows. However, when effective 

medical treatments lead to typhoid recovery, this number 

steadily declines over time. Figure 6(b) demonstrates an 

increase in the population that has recovered as treatment 

rates climb. This demonstrates how well healthcare tactics 

work to fight the illness. However, as those who recover 

from typhoid may re-enter the cycle of disease 

transmission, the recovered population eventually begins 

to dwindle. Figure 7 shows the total number of new cases 
of malaria in proportion to the rate at which susceptible 

and infected people receive treatment. The graph indicates 

that the total number of new cases starts to decrease as the 

treatment rate rises. This indicates that increased 

treatment rates successfully lower the population's overall 

typhoid prevalence and burden. 

 

CONCLUSION 

This study a fractional-order mathematical model was 

developed to capture the complex dynamics of typhoid 

fever transmission, incorporating memory effects and 

nonlinear behavior often overlooked by traditional 
integer-order models. By employing the Adams–

Bashforth method, we derived accurate numerical 

solutions that effectively describe the progression of the 

disease over time. The findings demonstrate that high 

contact and infection rates significantly facilitate the 

spread of typhoid fever, emphasizing the urgent need for 

improved sanitation, hygiene practices, and health 

education in vulnerable communities. Conversely, timely 

and effective treatment interventions were shown to 

drastically reduce infection rates, highlighting the vital 

role of accessible healthcare services, early diagnosis, and 
proper antibiotic use.The sensitivity analysis revealed that 

the most influential parameters in reducing disease burden 

include lowering the contact rate, enhancing treatment 

efficacy, and improving environmental conditions. 

These insights point to the need for integrated public 

health strategies that combine disease prevention, 

prompt medical care, and community-based hygiene 

education. 
Furthermore, the study reinforces the pressing public 

health concern posed by typhoid fever, especially in 

regions with limited access to clean water and adequate 

healthcare infrastructure. The simulation results 

support a comprehensive approach to disease control—

one that includes efficient management of 

contaminated sources, robust treatment protocols, and 

strengthened health systems  
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