

Android Applications Code Coverage Tools: A Comparative Study

Usman A.1, Salihu A. I.2, Muazu A. A.3*, Eke O. N.4 & Usman M. A.5

1Department of Computer Science, Faculty of Computing, Nile University of Nigeria
2Department of Software Engineering, Faculty of Computing, Nile University of Nigeria
3*Department of Computer Science, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina,

Nigeria
4Wigwe University, Isiokpo, Rivers State, Nigeria
5Department of Computer Science, Federal University Gusau, Nigeria
*Corresponding Author Email: aminu.aminu@umyu.edu.ng

 Keywords:

 Android, Mobile

 Application, Code

 Coverage, Software

 Testing

ABSTRACT

The widespread adoption of mobile applications necessitates robust quality

assurance methods to ensure reliable software behavior. Among these methods,

software testing plays a vital role, with code coverage serving as a key metric

for evaluating test effectiveness. This study presents a comparative analysis of

prominent code coverage tools specifically designed for Android applications.

Through an extensive literature review and evaluation of thirteen tools—

including Emma, Jacoco, COSMO, WallMauer, and ACVTool—this research

highlights their instrumentation strategies, integration capabilities, validation

methods, and reporting metrics. The study emphasizes the importance of

granularity in coverage (e.g., method, line, and instruction), and the trade-offs

between bytecode and source code instrumentation. The findings aim to guide

developers and researchers in selecting appropriate tools for enhancing testing

coverage in Android app development.

INTRODUCTION

Software testing is a widely adopted practice for

maintaining the quality of software systems. To assess

and enhance the effectiveness of current test suites, code

coverage metrics are frequently employed. Coverage

serves as a key metric for evaluating the effectiveness of

the testing process (Memon, Soffa, & Pollack, 2001;

Usman, Ibrahim, & Salihu, 2020). Code coverage is a

crucial metric employed in these techniques to assess

their effectiveness, and it is often used as a fitness

function to enhance outcomes in evolutionary and fuzzy-

based methods (Eke, Salihu, & Usman, 2023; Shahid,

Ibrahim, & Mahrin, 2011). Achieving a high percentage

of test coverage for a specific program is one of the

primary objectives of the software testing process.

Criteria for evaluating the testing process's completeness

are represented by testing coverage. A variety of testing

tasks can be carried out in order to achieve test coverage.

Code testing coverage indicates whether sections of a

program's code are examined by at least one test case

(Pathy, Panda, & Baboo, 2015; Usman, Ibrahim,

Sulaiman, & Salihu, 2024).

When testing Android apps, it helps to combine several

granularities from instruction, method, and activity

coverage to get better results (Usman, Boukar, Suleiman,

& Salihu, 2024). Because activities and methods are

essential to app development, the activity and method

coverage numbers are clear and instructive (Azim &

Neamtiu, 2013). The main interface for user interaction is

called an activity, which consists of a number of methods

and underlying code logic (Salihu & Ibrahim, 2016). All

activity's methods have varying numbers of lines of code.

Similar to this, activity coverage is a condition for

identifying crashes that might happen while using the user

interface of the application (Dashevskyi, Gadyatskaya,

Pilgun, & Zhauniarovich, 2018). The program is more

likely to find possible crashes the more coverage it looks

at (Dashevskyi et al., 2018). Instruction coverage

indicates how much of the code has been executed during

testing. Therefore, enhancing both instruction and

method coverage helps ensure that a greater portion of the

application's functionalities linked to each activity are

thoroughly explored and tested (Azim & Neamtiu, 2013;

S. Yang, Huang, & Hui, 2019).

ISSN (print): 3026-9091, ISSN (online): 1597-9962

DOI: https://dx.doi.org/10.4314/jobasr.v3i4.25

 216 Usman A., Salihu A. I., Muazu A. A., Eke O. N. & Usman M. A. Android Applications

Code Coverage Tools: A Comparative Study. 3(4), 216-224.

https://dx.doi.org/10.4314/jobasr.v3i4.25

mailto:aminu.aminu@umyu.edu.ng
https://dx.doi.org/10.4314/jobasr.v3i4.6
https://dx.doi.org/10.4314/jobasr.v3i4.22

Android Applications Code Coverage … Muazu et al. JOBASR2025 3(4): 216-224

 Likewise, activity coverage is essential for identifying

crashes that may occur during interactions with the app’s

user interface. The greater the coverage achieved by the

tool, the higher the likelihood of uncovering potential

crashes (Dashevskyi et al., 2018).

Furthermore, in white-box testing, code coverage criteria

are commonly set as targets, guiding the design of test

cases until the desired level of coverage is achieved based

on the chosen metrics (Usman, Ibrahim, & Salihu, 2018).

However, there are numerous ways to define these

criteria, which may vary in terms of analysis granularity

such as component, method, or statement level and the

specific aspects of the program code being exercised,

including individual instructions, code blocks, control

paths, data paths, and more (Pilgun et al., 2020).

The term code coverage when used without further

clarification, typically refers to statement-level analysis,

also known as statement coverage. This type of coverage

indicates which program instructions are executed during

testing and which remain untested. However, even at this

level, variations in how an instruction is defined can lead

to inconsistencies in interpreting the results (Auer,

Arcuschin Moreno, & Fraser, 2024). In Java, for example,

a single line of source code may correspond to multiple

bytecode instructions, and the relationship between them

can be complex due to factors like compiler

optimizations. Another frequently used coverage

criterion is decision coverage, which focuses on whether

both possible outcomes of a decision—such as the true

and false branches of an ̀ if` statement—have been tested,

as well as whether loops are evaluated both by executing

and skipping their bodies (Memon et al., 2001). Because

this level of analysis involves not just individual

instructions but also control flow, measuring coverage

becomes more complex and introduces additional

challenges (Horváth et al., 2019; Salihu, Eke, Ibrahim, &

Kusharki, 2023). The comparative analysis based on code

coverage tools for Android applications is summarized in

the paragraph that follows.

Horvath et al., (Horváth et al., 2019) explores issues in

measuring code coverage for Java and compares results

from tools using two types of instrumentation: source

code and bytecode. It found that, due to key differences

between the methods, source code instrumentation is

better suited for calculating branch coverage. Moreover,

the (Q. Yang, Li, & Weiss, 2006) surveys and compare

17 coverage-based testing instruments with an emphasis

on coverage measurement, but not exclusively. They also

surveyed other capabilities, such as test report

customization, automatic test case development,

debugging support, and software prioritization for testing.

Furthermore, a survey of five code coverage tools is

presented by (Shelke & Nagpure, 2014), and one of them

was truly assessed for the features it suggested. Based on

the established criteria, a comparative analysis is offered.

The tools are compared based on the following criteria:

supported languages, number of coverage criteria,

instrumentation, and automation.

Upon closer examination, many of these improvements

indeed introduce novel comparative study on based on

android applications code coverage tools. However,

authors often focus source code and bytecode, test report

customization, automatic test case development,

debugging support, and software prioritization, supported

languages, number of coverage criteria, instrumentation,

and automation underlying these domains. Consequently,

they rarely connect this knowledge to our broader

understanding of android applications code coverage

tools. However, none of them focus on the evaluation in

instrumentation strategies, integration capabilities,

validation methods, and reporting metrics. As a result, the

current paper will conduct a comparative study on

android applications code coverage tools focusing the

evaluation in instrumentation strategies, integration

capabilities, validation methods, and reporting metrics to

propose a future direction in the domain.

The paper is structured as follows: Section 2 outlines the

methodology of the research, followed by Section 3

detailing the comparative analysis. Next, in Section 4,

presents the results and discussions of the study. Finally,

Section 5 offers conclusion.

MATERIALS AND METHODS

The approach employed to carry out the study is

discussed in this section. The majority of recent software

research publications have focused on Android apps;

hence, this study focusses on code coverage tools for

Android apps. We conducted a mini-literature survey on

papers published in the last ten years on the well-known

research databases and indexing systems of Google

Scholar and Scopus in order to choose our subjects.

Because Scopus and Google Scholar include all major

publishers, including Elsevier, Springer, ACM, and IEEE

publications, these two were deemed suitable. We found

the most widely used mutation testing methods and

resources by conducting a search using the paper title,

keywords, and abstract from 2013 to the present.

Comparative Criteria

Code coverage shows how much of your code is tested.

In Android development, you can create test coverage

reports locally using tools like Emma, JaCoCo, and

Cobertura (Dashevskyi et al., 2018). The process of

generating and sending code coverage to any code

coverage storage platform can be done automatically. The

criteria used for comparison are: Average time, testing

process, integration with testing tool, open source, is the

tool validated? metrics measured by the tool. The criteria

used for comparison are:

1. Instrumentation time

217

Android Applications Code Coverage … Muazu et al. JOBASR2025 3(4): 216-224

Coverage-testing tools use program execution monitoring

to get coverage data. By adding probes to the program

either before or during execution, execution can be

tracked. Usually, a probe consists of a few lines of code

that, when run, provide an event or record indicating that

the program has completed its execution at the probe's

location.

2. Testing strategy

Various methods are employed for measuring coverage

when testing Android applications. In both methods, the

system being tested and/or the runtime engine are

instrumented, which means that measurement probes are

positioned inside the system at particular points to allow

for the gathering of runtime data without changing the

system's behavior (Muazu, Hashim, Audi, & Maiwada,

2024). The first strategy is to instrument the source code,

which entails changing the original code by adding

probes, after which it is constructed and run through

testing (Usman, et. al., 2023). The second approach

involves instrumenting the system's compiled version, or

bytecode (Salihu, Ibrahim, & Usman, 2018). There are

two more methods here. The first option is to insert the

probes immediately following the build, which

essentially creates altered bytecode files. Second, when a

class is loaded for execution, the instrumentation may

happen at runtime.

Source code instrumentation allows precise control over

what parts are instrumented, while bytecode

instrumentation typically instruments entire classes at

once. Compile time won't be impacted by online bytecode

instrumentation, but runtime overhead comprises both the

additional code execution time and instrumentation

charges, which are typically incurred once every class

load. Lastly, source code instrumentation results are

directly linked to the sections of the source code, but

bytecode-based results can occasionally be challenging to

trace back to the source code.

3. Integration with testing tool

Code coverage tools help measure how much of your

code is being tested by your test suite. Integration with

testing tools ensures that you can see which parts of your

code are covered during testing and identify untested code

paths. Some of them relies on other tools to ensure their

long-term viability and compatibility with newer app. For

instance, AndroLog runs on Soot, BBoxTester is based on

Emma.

4. License

A wide range of tools, many of which are open source and

free, have emerged as a result of the growing need for

code coverage assessment in mobile apps, where

continuous integration necessitates ongoing code quality

monitoring and regression testing.

5. Is the tool validated?

In software engineering, validation is performed to

determine whether a system or method satisfies

requirements and achieves its goals. Every study uses

case studies, controlled or quasi-controlled trials, or

comparisons with other methods to evaluate the precision

or effectiveness of a new strategy or technique.

6. Metrics used in measuring the Tools

In order to quantify and analyze test coverage, numerous

research articles concentrated on various coverage

components. Statement, branch, block, decision,

condition, method, class, package, requirement, and data

flow coverage are some of the twelve different types of

coverage items. It is evident from the collected papers that

while other scholars have focused on various forms of

coverage, only two have employed requirement coverage

for test coverage analysis.

COMPARATIVE ANALYSIS

Our study focuses on comparing code coverage tools for

the Android mobile apps that available mainstream

research databases. This section presents an overview of

the thirteen techniques/tools selected for the study and

discusses the result. Summary of the

Emma ("EMMA: a free Java code coverage tool.," 2025)

is a Java-based code coverage tool capable of

instrumenting classes to measure various coverage types,

including class, method, line, and basic block coverage.

However, its limitation lies in supporting only Java

archive (JAR) file formats, as it does not accommodate

the Dalvik executable (DEX) format.

Jacoco ("Jacoco," 2025), is a free code coverage library

for Java, which has been created by the EclEmma team

from using and integrating existing libraries for many

years. Jacoco measure instruction, branch, line, and

method coverage.

AndroLog (Samhi & Zeller, 2024) is an innovative tool

built on the Soot framework, aimed at delivering detailed

coverage insights across various levels, such as classes,

methods, statements, and Android components. Unlike

some other tools, AndroLog places the responsibility of

testing apps on the analysts and emphasizes simplicity as

its core principle.

COSMO (Romdhana, Ceccato, Georgiu, Merlo, &

Tonella, 2021) is a fully automated Android app

instrumentation tool that works transparently at the

source code level. It is publicly available and fully

compatible with existing system-level testing tools and

Android test generators. Experimental results

demonstrate that COSMO can instrument the majority of

apps effectively without affecting their execution

behavior, while only introducing a minimal and

acceptable runtime overhead.

WallMauer (Auer et al., 2024), a new code coverage tool

that supports multidex, and avoids inconsistencies by

rigorously instrumenting Dalvik byte-code directly.

WallMauer solely requires an APK file as input and as

218

Android Applications Code Coverage … Muazu et al. JOBASR2025 3(4): 216-224

such it can be easily integrated into any existing testing

environment. The code coverage report of WallMauer is

textual, but the authors are planning to provide a graphical

report, to help human testers understand it better.

ACVTool (Pilgun, Gadyatskaya, Dashevskyi,

Zhauniarovich, & Kushniarou, 2018) can instrument

Android APK files and generate a code coverage report,

without needing access to the APK’s original source

code. The six phases that make up ACVTool's workflow

for a single APK are Instrument, Install, Start, Test, Stop,

and Report. Additionally, the program gathers crash data

that make it easier to analyse software flaws. It takes 36

seconds on average to instrument an app with ACVTool,

which is negligible for routine testing and analysis.

InsDal (Liu, Wu, Deng, Yan, & Zhang, 2017) is a tool

designed to insert instructions at specific locations within

Dalvik bytecode based on user-defined requirements. It

optimizes the inserted code to prevent memory waste and

needless overhead, and it carefully controls the registers

to guard against unauthorized alteration of the original

code's behavior. This user-friendly tool has been used in

a variety of situations, including code coverage analysis

and energy analysis. InsDal, built on top of ApkTool,

operates at the smali level, offering only instrumentation

at the class and method levels (Liu et al., 2017).

Cobertura ("Cobetura," 2025) is a free Java-based tool

designed to measure the percentage of code exercised by

tests. It helps pinpoint areas of a Java program that lack

sufficient test coverage and is built upon the jcoverage

framework.

CovDroid (Yeh & Huang, 2015), a black-box coverage

system for android. Furthermore, an application with

various test cases is used to demonstrate the concept that

the coverage index can enhance the app's performance

and serve as a metric for evaluating the quality of test

cases, whether for app marketplaces or testing service

providers. CovDroid executes its instrumentation at the

smali level, inserting probes at the method level. The

method devised by Huang et al. also functions at the smali

level but necessitates additional modifications to the

Android manifest, including integrating new permissions.

The tool demonstrates a limited success rate in

instrumenting apps, achieving only 36%.

BBoxTester, (Zhauniarovich, Philippov, Gadyatskaya,

Crispo, & Massacci, 2015), is a black-box code coverage

tool for Android apps. It converts Dalvik bytecode into

Java bytecode using dex2jar, and then leverages Emma

("EMMA: a free Java code coverage tool.," 2025) for the

instrumentation process. However, BBoxTester’s

approach necessitates modifying the Android manifest

and adding app resources, making it less flexible and

potentially intrusive.

Huang et al. (Huang, Chiu, Lin, & Tzeng, 2015) propose

a general approach to measure the code coverage rate of

dynamic analysis tools for Android that can be used with

both online and offline implementations.

MALintent (Askar, Fleischer, Kruegel, Vigna, & Kim) is

an open-source fuzzing framework that uses novel bug

oracles to find security vulnerabilities in AndroidIntent

handlers. MALintent is the first Intentfuzzer that applies

grey box fuzzing on compiled closed source Android

applications. The methods that work well with a variety

of Android versions is presented, and bug oracles were

able to identify a number of crashes, privacy-related

vulnerabilities, and memory-safety problems in the most

popular Android app, Google Play store.

ELLA (Anand, 2016), is a tool that allows Android APKs

to be instrumented for a variety of uses, including

recording which methods are used. Along with both

online and offline tools, it can also capture the time-

stamped trace of methods that have been executed, the

values of arguments given at call sites, the values of

formal parameters of methods, etc.

ELLA (Anand, 2016) and InsDal (Liu et al., 2017)

measure code coverage only at the method level.

RESULTS AND DISCUSSION

In this section we and discusses results of the comparative

analysis to provide a better understanding of the collected

data. Table 1 shows the summary of the tools compared

in the study.

219

Android Applications Code Coverage … Muazu et al. JOBASR2025 3(4): 216-224

Table 1 Summary of Reviewed Tools

Tool Time operation Testing Integration License Validation Metrics Report

Emma Bytecode Black

box

-- yes - Class,

method,

line, block

Xml,

text, html

Jacoco 40 sec Bytecode Black

box

Soot yes yes classes,

methods,

statements

Xml,

html

AndroLog 34 sec Bytecode Black

box

Soot yes yes class,

methods,

statements,

-

COSMO 1 sec Source

code

Gray box jacoco yes yes methods

and lines of

code

HTML,

CSV,

XML

WallMauer 21 sec Bytecode Black

box

Mate yes yes Line, class,

method

text

ACVTool 36 sec Smali Black

box

Apktool yes Yes

Instruction,

line,

method,

crash

reports,

Html,

Xml

InsDal - Smali - Apktool yes yes Method,

class

--

Cobertura Bytecode Whitebo

x

jcoverage yes Line,

branch,

method

Html,

xml

CovDroid - Smali Black

box

- yes yes method jasmin

structure

ELLA - Bytecode Black

box

- yes yes Method -

BBoxTester 13 sec Bytecode emma yes yes Block,

class,

method

-

MALintent 7 sec Bytecode Gray box eJavaVirtu

alMachine

ToolsInterf

ace(JVMT

I)

yes - Block

class

-

Huang et al. - smali Black

box

emma yes yes Class

Method

Block,

Line

--

1. Operation of the Tools

Most Android app coverage tools function at the bytecode

level and do not inform developers about which source

code lines remain untested, as illustrated in Figure 1. In

cases where the source code is unavailable, coverage can

be evaluated by instrumenting the app’s Smali bytecode.

However, for developers, identifying which source code

lines are covered is typically more valuable than simply

knowing the percentage of covered Smali code. Actually,

a certain level of coverage of the source code does not

always follow from a given level of coverage of the Smali

code.

Furthermore, developers find it far more challenging to

comprehend how to cover the Smali code sections that are

not yet covered by the existing test suite than it is to

reason directly on the exposed source code.

220

Android Applications Code Coverage … Muazu et al. JOBASR2025 3(4): 216-224

Figure 1: Operations of the Tools

2. Instrumentation Time

In terms of effectiveness, we can observe that the time

required for app instrumentation is little in comparison to

the time spent on app testing. Additionally, only one

instrumentation of the apps is required for each testing

session. Figure 2 show the average instrumentation time

for most of the tools. Consequently, efficiency does not

depend on this offline processing. BBOXTESTER

(Zhauniarovich et al., 2015) was able to instrument 45 out

of 52 applications of Dynodroid in 612 seconds, which is

roughly 13 seconds.

Figure 2: Instrumentation Time

3. Testing Strategy

Android app coverage can be obtained through two

distinct types of instrumentation: black-box and white-

box. Black-box instrumentation operates on the app's

bytecode, whereas white-box instrumentation is applied

directly to its source code. There are numerous black-box

tools for measuring code coverage such as (Auer et al.,

2024; Pilgun et al., 2018; Romdhana et al., 2021; Samhi

& Zeller, 2024). However, they are unable to measure

fine-grained source code coverage, as the coverage is

computed at the bytecode level and cannot be accurately

mapped back to specific source code lines, reducing its

clarity for developers. In contrast, for general Java

projects, source code coverage can be assessed using

well-established methods. Tools for white-box code

coverage ("Cobetura," 2025) measurement are included

and maintained by Google in the Android SDK. Figure 3

show the percentage of testing strategy.

Figure 3: Testing Strategy

4. Evaluation Metric

A big part of software engineering is evaluation. It is the

methodical approach to figuring out how well a process,

method, or technique will work in the end. It is carried out

in compliance with recognized metrics or measurements,

such as code coverage in the software testing domain.

Line, class, branch, method, instruction, and block are the

most commonly used coverage evaluation criteria for

determining how effective they are.

Figure 4: Evaluation Metric

5. Code Coverage Report

Most of the tools obtain the coverage report that can

independently be used for any other downstream task in

61%

31%

8%

Bytecode

Smali

Soucecode

40

34

1

21

36

13

0

5

10

15

20

25

30

35

40

45

Seconds

Jacoco AndroLog COSMO

WallMauer ACVTool BBoxTester

73%

9%

18%

Blackbox

Whitebox

Graybox

0 5 10 15

Line

Method

Class

Block

Branch

statement

Instruction

6

12

8

4

1

2

1

221

Android Applications Code Coverage … Muazu et al. JOBASR2025 3(4): 216-224

different format. The most widely used format used for

reporting coverage is xml and html. This is because they

are easy to read and understand by both humans and

machines, promoting transparency and interoperability.

They are also not tense to any precise software or

hardware, making it widely operational in different

systems. The HTML report usually shows the application

code in Smali with the relevant coverage details in an

intuitive browser view. The same code coverage data that

can be incorporated into automated testing tools is

included in the report's xml and cvs versions. Figure 5

show the most widely used formats. And most of the tools

use morethan one format like (Romdhana et al., 2021) use

html, csv, xml, while ("EMMA: a free Java code coverage

tool.," 2025) use html, text, and xml

Figure 5: Code Coverage Report

6. Validation

All authors validated their tools using comparison with

other existing techniques was also carried out. For

instance AndroLog (Samhi & Zeller, 2024) is compared

against existing tools COSMO (Romdhana et al., 2021),

ACVTool (Pilgun et al., 2018), and BBoxTester

(Zhauniarovich et al., 2015).

CONCLUSION

This comparative study of Android code coverage tools

underscores the diverse approaches and capabilities

available for measuring software test effectiveness in

mobile applications. Tools like COSMO and WallMauer

demonstrate advanced instrumentation methods, offering

fine-grained analysis with minimal overhead, while

others such as Emma and BBoxTester maintain simplicity

and legacy compatibility. Our analysis reveals that

although bytecode instrumentation dominates the

Android testing landscape, source code-based tools

provide more actionable insights for developers. The

inclusion of metrics like method, instruction, and crash

report coverage further distinguishes tools in terms of

their practical applicability and diagnostic power.

Additionally, the validation of tools through case studies

and performance benchmarks ensures their credibility for

real-world usage. Ultimately, the selection of an

appropriate tool depends on factors such as required

coverage granularity, integration needs, and available

code access. This study offers a foundational reference to

inform the choice of tools that best align with specific

testing goals in Android application development.

REFERENCE

Anand, S. (2016). ELLA: a tool for binary

instrumentation of Android apps. In: May.

Askar, A., Fleischer, F., Kruegel, C., Vigna, G., & Kim, T.

(2025). MALintent: Coverage Guided Intent Fuzzing

Framework for Android. In 32nd Annual Network and

Distributed System Security Symposium, NDSS (pp. 24-

28).

Auer, M., Arcuschin Moreno, I., & Fraser, G. (2024,

April). Wallmauer: Robust code coverage

instrumentation for android apps. In Proceedings of the

5th ACM/IEEE International Conference on Automation

of Software Test (AST 2024) (pp. 34-44).

https://doi.org/10.1145/3644032.3644462

Azim, T., & Neamtiu, I. (2013, October). Targeted and

depth-first exploration for systematic testing of android

apps. In Proceedings of the 2013 ACM SIGPLAN

international conference on Object oriented programming

systems languages & applications (pp. 641-660).

https://doi.org/10.1145/2509136.2509549

Cobetura. (2025). Retrieved from

https://sourceforge.net/projects/cobertura/

Dashevskyi, S., Gadyatskaya, O., Pilgun, A., &

Zhauniarovich, Y. (2018, October). The influence of code

coverage metrics on automated testing efficiency in

android. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security

(pp. 2216-2218).

https://doi.org/10.1145/3243734.3278524

Eke, N. O., Salihu, I. A., & Usman, A. (2023, November).

Comparative Analysis of Fully Automated Testing

Techniques for Android Applications. In 2023 2nd

International Conference on Multidisciplinary

Engineering and Applied Science (ICMEAS) (pp. 1-6).

IEEE. DOI: 10.1109/ICMEAS58693.2023.10429901

EMMA: a free Java code coverage tool. (2025). Retrieved

from https://emma.sourceforge.net/Horváth, F., Gergely,

T., Beszédes, Á., Tengeri, D., Balogh, G., & Gyimóthy, T.

(2019). Code coverage differences of Java bytecode and

5

5

1 1

0

1

2

3

4

5

6

XML

HTML

Text

222

https://doi.org/10.1145/3644032.3644462
https://sourceforge.net/projects/cobertura/

Android Applications Code Coverage … Muazu et al. JOBASR2025 3(4): 216-224

source code instrumentation tools. Software Quality

Journal, 27, 79-123.

Huang, C. Y., Chiu, C. H., Lin, C. H., & Tzeng, H. W.

(2015, June). Code coverage measurement for Android

dynamic analysis tools. In 2015 IEEE International

Conference on Mobile Services (pp. 209-216). IEEE.

DOI: 10.1109/MobServ.2015.38

Jacoco. (2025). Retrieved from

https://www.eclemma.org/jacoco/

Liu, J., Wu, T., Deng, X., Yan, J., & Zhang, J. (2017,

February). InsDal: A safe and extensible instrumentation

tool on Dalvik byte-code for Android applications. In

2017 IEEE 24th international conference on software

analysis, evolution and reengineering (SANER) (pp. 502-

506). IEEE. DOI: 10.1109/SANER.2017.7884662

Memon, A. M., Soffa, M. L., & Pollack, M. E. (2001,

September). Coverage criteria for GUI testing. In

Proceedings of the 8th European software engineering

conference held jointly with 9th ACM SIGSOFT

international symposium on Foundations of software

engineering (pp. 256-267).

https://doi.org/10.1145/503209.503244

Muazu, A. A., Hashim, A. S., Audi, U. I. I., & Maiwada,

U. D. (2024). Refining a one-parameter-at-a-time

approach using harmony search for optimizing test suite

size in combinatorial t-way testing. IEEE Access. DOI:

10.1109/ACCESS.2024.3463953

Pathy, S., Panda, S., & Baboo, S. A. R. A. D. A. (2015).

A review on code coverage analysis. International Journal

of Computer Science & Engineering Technology

(IJCSET), 6(10), 580-587.

Pilgun, A., Gadyatskaya, O., Dashevskyi, S.,

Zhauniarovich, Y., & Kushniarou, A. (2018, October). An

effective android code coverage tool. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and

Communications Security (pp. 2189-2191).

https://doi.org/10.1145/3243734.3278484

Pilgun, A., Gadyatskaya, O., Zhauniarovich, Y.,

Dashevskyi, S., Kushniarou, A., & Mauw, S. (2020).

Fine-grained code coverage measurement in automated

black-box android testing. ACM Transactions on

Software Engineering and Methodology (TOSEM),

29(4), 1-35. https://doi.org/10.1145/3395042

Romdhana, A., Ceccato, M., Georgiu, G. C., Merlo, A., &

Tonella, P. (2021, April). Cosmo: Code coverage made

easier for android. In 2021 14th IEEE conference on

software testing, verification and validation (ICST) (pp.

417-423). IEEE. DOI: 10.1109/ICST49551.2021.00053

Salihu, I. A., Usman, A. U., Eke, N. O., Ibrahim, R., &

Kusharki, M. B. (2023, November). Mutation Testing

Techniques for Android Applications: A Comparative

Study. In 2023 2nd International Conference on

Multidisciplinary Engineering and Applied Science

(ICMEAS) (Vol. 1, pp. 1-5). IEEE. DOI:

10.1109/ICMEAS58693.2023.10429866

Salihu, I. A., & Ibrahim, R. (2016, November).

Systematic exploration of android apps' events for

automated testing. In Proceedings of the 14th

International Conference on Advances in Mobile

Computing and Multi Media (pp. 50-54).

https://doi.org/10.1145/3007120.3011072

Samhi, J., & Zeller, A. (2024, July). AndroLog: Android

Instrumentation and Code Coverage Analysis. In

Companion Proceedings of the 32nd ACM International

Conference on the Foundations of Software Engineering

(pp. 597-601). https://doi.org/10.1145/3663529.3663806

Salihu, I. A., Ibrahim, R., & Usman, A. (2018, August). A

Static-dynamic Approach for UI Model Generation for

Mobile Applications. In 2018 7th International

Conference on Reliability, Infocom Technologies and

Optimization (Trends and Future Directions)(ICRITO)

(pp. 96-100). IEEE. DOI:

10.1109/ICRITO.2018.8748410

Shahid, M., Ibrahim, S., & Mahrin, M. N. R. (2011). A

study on test coverage in software testing. Advanced

Informatics School (AIS), Universiti Teknologi Malaysia,

International Campus, Jalan Semarak, Kuala Lumpur,

Malaysia, 1.

Shelke, S., & Nagpure, S. (2014). The Study of various

code coverage tools. International Journal of Computer

Trends and Technology (IJCTT), 13(1).

Usman, A., Boukar, M. M., Suleiman, M. A., & Salihu, I.

A. (2024). Test Case Generation Approach for Android

Applications using Reinforcement Learning.

Engineering, Technology & Applied Science Research,

14(4), 15127-15132. https://doi.org/10.48084/etasr.7422.

Usman, A., Ibrahim, N., & Salihu, I. A. (2018, February).

Test case generation from android mobile applications

focusing on context events. In Proceedings of the 2018

7th international conference on software and computer

applications (pp. 25-30).

https://doi.org/10.1145/3185089.3185099

223

Android Applications Code Coverage … Muazu et al. JOBASR2025 3(4): 216-224

Usman, A., Ibrahim, N., & Salihu, I. A. (2020).

TEGDroid: Test case generation approach for android

apps considering context and GUI events. International

Journal on Advanced Science, Engineering and

Information Technology, 10(1), 16.

Usman, A., Ibrahim, R., Sulaiman, M. A., & Salihu, I. A.

(2024). An in-depth analysis of machine learning based

techniques for automated testing of android applications.

International Journal of Communication Networks and

Information Security, 16(3), 663-683.

Usman, A., Boukar, M. M., Suleiman, M. A., Salihu, I. A.,

& Eke, N. O. (2023). Reinforcement learning for testing

android applications: A review. In 2023 2nd International

Conference on Multidisciplinary Engineering and

Applied Science (ICMEAS) (Vol. 1, pp. 1-6). IEEE.

Yang, Q., Li, J. J., & Weiss, D. (2006, May). A survey of

coverage-based testing tools. In Proceedings of the 2006

international workshop on Automation of software test

(pp. 99-103). https://doi.org/10.1145/1138929.1138949

Yang, S., Huang, S., & Hui, Z. (2019). Theoretical

Analysis and Empirical Evaluation of Coverage Indictors

for Closed Source APP Testing. IEEE Access, 7, 162323-

162332.

Yeh, C. C., & Huang, S. K. (2015, July). Covdroid: A

black-box testing coverage system for android. In 2015

IEEE 39th annual computer software and applications

conference (Vol. 3, pp. 447-452). IEEE. DOI:

10.1109/COMPSAC.2015.125

Zhauniarovich, Y., Philippov, A., Gadyatskaya, O.,

Crispo, B., & Massacci, F. (2015, August). Towards black

box testing of android apps. In 2015 10th International

Conference on Availability, Reliability and Security (pp.

501-510). IEEE. DOI: 10.1109/ARES.2015.70

224

