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ABSTRACT 

This study introduces the New Extended Exponential-Gamma (NEEG) 

distribution, a flexible lifetime model developed to address the limitations of 

classical and generalized distributions in capturing real-world data complexity. 

The statistical properties of the proposed distribution are thoroughly explored, 

including its probability density function, cumulative distribution function, and 

parameter estimation via the maximum likelihood method. The practical 

effectiveness of the NEEG model is demonstrated using two real-life COVID-

19 datasets from Italy and Nigeria, where it is benchmarked against several 

existing models such as the Gamma, Exponential, UYEG, and two variants of 

the Generalized Lindley distribution. Model comparison was conducted using a 

combination of information criteria (AIC, AICc, BIC, HQIC) and graphical tools 

such as density plots overlaid on empirical histograms. The results consistently 

show that the NEEG distribution provides the best fit across both datasets, 

outperforming all competing models in terms of flexibility, goodness-of-fit, and 

alignment with the empirical data. The model’s adaptability to skewed and 

peaked data structures is particularly evident in pandemic-related scenarios, 

where traditional models often fail. These findings position the NEEG 

distribution as a powerful and versatile tool for statistical modelling in public 

health, reliability analysis, and other domains requiring robust handling of non-

normal, skewed, or heavy-tailed data. Future research may extend the model into 

regression frameworks or multivariate contexts to enhance its applicability 

further. 
 

INTRODUCTION 

One notable development in lifetime data modelling is the 

formulation of the Exponential-Gamma (EG) 

distribution, initially introduced by Lindley (1958) and 

Ogunwale et al. (2019). This model, which blends 

features of the Exponential and Gamma distributions, 

offers enhanced adaptability in characterizing lifetime 

data with variable hazard rates. Building on this 

innovation, Umar and Yahya (2021) proposed the New 

Exponential-Gamma distribution, incorporating special 

cases from the Exponential, Lindley, and their 

generalized forms (Gupta & Kundu, 2001; Nadarajah et 

al., 2011; Aderoju, 2021; Aderoju & Babaniyi, 2023; 

Suleman et al., 2025). These extensions significantly 

broadened the model's applicability, particularly in 

situations where hazard rates are not constant. 

 

 

 

 

 

 

 

Broadly, in applied statistical modelling across 

disciplines like health sciences, reliability engineering, 

economics, climate studies, and more, the need for highly 

flexible distributions has prompted researchers to 

introduce new models via parameterization and 

distribution compounding. These models often 

outperform classical ones due to their ability to capture 

complex patterns and tail behaviors. Examples of recent 

generalizations include the Gumbel-based T-X model by 

Fayomi et al. (2024), the Modified Frechet–Rayleigh 

Distribution by Muhammad et al. (2022), and the 

Exponential Transformed Inverse Rayleigh distribution 

by Proloy & Shreya (2022). Aderoju (2021) introduced 

the Samade distribution, a mixture of exponential and 

gamma distributions, deriving its mathematical properties 

and demonstrating its improved fit for lifetime data 

compared to existing models.  
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The Samade distribution encompasses moments, 

reliability functions, and entropy measures, and has been 

shown to outperform classical models on various 

datasets. Building on the Samade distribution, Aderoju 

and Babaniyi (2023) developed the Power Samade 

distribution, a three-parameter lifetime model that 

generalizes the gamma family. This distribution provides 

additional flexibility in modelling the shape of the density 

and hazard rate functions, and its efficacy has been 

validated using real datasets, where it outperformed the 

exponential, Lindley, and other related distributions in 

terms of AIC and BIC. 

 

Additional works by Albalawi et al. (2022), Abiodun & 

Ishaq (2022), Idika et al. (2021), Ibeh et al. (2021), 

Aderoju & Adeniyi (2022), and Elangovan et al. (2023) 

demonstrate the growing trend of constructing new 

distribution families tailored to specific data 

characteristics. 

Against this backdrop, Aderoju (2021) and Aderoju & 

Jolayemi (2022) advanced the lifetime model by 

embedding it within a new family of Exponential-Gamma 

distribution.  

Aderoju and Jolayemi (2022) proposed the Power Hamza 

distribution, which generalizes the Hamza distribution 

and offers greater flexibility for survival time analysis. 

This model has been applied successfully to survival data, 

providing better fits than classical models. 

In further work, Aleshinloye et al. (2023) developed and 

applied generalized gamma-Weibull and other related 

distributions for modelling cancer data and other lifetime 

data sets, again demonstrating improved flexibility and fit 

over traditional models. 

The exponential-gamma distribution and its 

generalizations, including those proposed by Aderoju, 

have found extensive application in fields where accurate 

modelling of lifetime and failure data is critical. In 

biostatistics, these models have been used to analyze 

survival times and remission periods in clinical studies, 

often providing a superior fit compared to traditional 

exponential or gamma models (Aderoju et al., 2023; 

Alnaji and Alghamdi, 2023). In reliability engineering, 

the distributions are particularly useful for systems with 

non-constant or bathtub-shaped hazard rates, allowing for 

more accurate estimation of failure probabilities and 

system reliability (Thomas & Chacko, 2022). 

 

Comparative analyses have consistently shown that the 

exponential-gamma distribution and its extensions 

outperform classical models such as the Weibull, Erlang, 

and generalized extreme value distributions, particularly 

when modelling data with non-monotonic hazard 

functions (Alnaji and Alghamdi, 2023 and Wang et al., 

2024). 

Empirical comparisons have shown that the New 

Exponential-Gamma distribution frequently provides 

superior fits to real-world data when compared with the 

classical Exponential model and its extensions. 

Nevertheless, existing models still exhibit limitations, 

especially in capturing intricate hazard rate behaviors 

such as non-monotonicity and bathtub patterns.  

To address this gap, this study proposes a more 

generalized form known as the New Extended 

Exponential-Gamma (NEEG) distribution. The NEEG 

distribution is constructed by compounding the 

Exponential distribution with the Gamma distribution 

using transformed mean proportion. The main objective 

of this research is to investigate the mathematical 

properties of the NEEG distribution, examine its 

submodels, and evaluate its performance using real 

datasets. The proposed model will be compared with 

several well-known lifetime distributions to highlight its 

advantages in practical settings. Ultimately, the study 

contributes to the evolving framework of robust and 

flexible lifetime models. 

The rest of the paper is organized as follows: Section 2 

introduces the NEEG distribution. Section 3 outlines the 

estimation of its key statistical properties. In Section 4, a 

comprehensive maximum likelihood estimation of the 

parameters is conducted to evaluate. Section 5 contains 

applications to real-life datasets to demonstrate the 

practical utility of the model. The paper concludes with a 

summary and final observations in Section 6. 

 

MATERIALS AND METHODS 

 

The modified Lifetime distribution, named New 

Extended Exponential-Gamma (NEEG) distribution, is 

characterized by the parameters τand𝜔, which are 

defined through its probability density function (pdf). 

This pdf follows the general structure of a k-component 

additive mixture distribution, as outlined by Everitt and 

Hand (1981). Specifically, for a random variable r, the pdf 

is given by: 

𝑓(𝑧, 𝛩) =  ∑ 𝜋𝑗,ℎ𝑗(𝑧, 𝛩𝑗)

𝑘

𝑗=1

 ,                                             (1) 

where  𝛩𝑗  is the vector of parameters for the mixture 

models, 𝜋𝑗  is the mixture proportion and∑ 𝜋𝑗 = 1𝑘
𝑗=1 . 

Note that the pdf (1) can be shown as a mixture 

of𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝜏) and 𝐺𝑎𝑚𝑚𝑎 (τ, 𝜔)distributions as 

follows: 

𝑓(𝑧; τ, 𝜔) = 𝜋ℎ1(𝑧; τ) + (1 − 𝜋)ℎ2(𝑧; τ, 𝜔) ,              (2) 

where   

𝜋 =
Г(𝜏)

1+Г(𝜏)
 , is the mixing proportion (or mixture weight), 

which is obtained as the proportion of the first moments 

of ℎ1and ℎ2. 

226 



 
The New Extended Exponential-Gamma … Samuel et al. JOBASR2025 3(4): 225-235 

 

   

Exponential Distribution 

ℎ1(𝑟; τ, 𝜔) = 𝜏𝑥𝜏−1𝑒−𝜏𝑥  ,      𝑥 > 0                            (3) 

and  

Gamma Distribution 

𝑔1(𝑥; τ, 𝜔) =
𝜔𝜏

Г(𝜏)
𝑥𝜏−1𝑒−𝜔𝑥  ,      𝑥 > 0                  (4) 

where: 

1. 𝜏 > 0 is the shape parameter. 

2. 𝜔 > 0 is the scale parameter. 

Now substituting (3) and (4) into (2), we have 

𝑓(𝑧; τ, 𝜔 ) =
Г(𝜏)

1 + Г(𝜏)
(𝜏𝑒−𝜏𝑥)

+ (1 −
Г(𝜏)

1 + Г(𝜏)
)

𝜔𝑟𝑟𝜔−1

Г(𝜏)
𝑒−ω𝑟  

Therefore, 

𝑓(𝑧; τ, 𝜔) =
𝜔 + 𝑧𝜏−1𝜔𝜏

1 + Г(𝜏)
𝑒−ω𝑧 

The corresponding cumulative distribution function (cdf) 

is 

  𝐹(𝑧; τ, 𝜔) = ∫ 𝑓(𝑡; τ, 𝜔, )𝑑𝑡

𝑧

0

 

   𝐹(𝑧; τ, 𝜔) = ∫
(𝜔 + 𝑡𝜏−1𝜔𝜏)

(1 + Г(𝜏))
𝑒−ω𝑡𝑑𝑡

𝑧

0

 

                       =
1 − 𝑒−𝑥𝜔 + (Г(𝜏) − 𝛤(𝜏, 𝑧𝜔))

1 + Г(𝜏)
 

∴ 𝐹(𝑧; τ, 𝜔 ) =
1 − 𝑒−𝑧𝜔 + (Г(𝜏) − 𝛤(𝜏, 𝑧𝜔))

1 + Г(𝜏)
 

 

RESULTS AND DISCUSSION 

Figure 1 presents the pdf plots of the NEEG distribution 

at varying values of the parameters. This visual 

exploration confirms the proposed model’s parametric 

versatility, capturing various real-world data patterns, 

from sharp, peaked distributions to long-tailed, skewed 

scenarios. Such adaptability makes it well suited for 

complex lifetime, biomedical, or reliability datasets 

where classical distributions often fail. In panel (a): 𝜏̂ =
0.25, the density is highly right-skewed, peaking sharply 

near zero and decaying rapidly. As 𝜔̂ increases, the 

distribution flattens and spreads slightly, indicating 

greater dispersion. This reflects the model’s ability to 

capture heavy-tailed behaviours for small 𝜏̂. In panel (b): 

𝜏̂ = 5, a pronounced mode emerges, and the curves shift 

rightward with increasing 𝜔̂.  The distribution gains 

flexible peakedness, useful for modelling moderate 

survival times. In panel (c): 𝜏̂ = 10, the effect of 𝜔̂ 

becomes even clearer: smaller 𝜔̂ yields sharper peaks, 

while larger 𝜔̂ induces heavier tails.Demonstrates the 

distribution’s capacity to adjust kurtosis and skewness 

simultaneously. In panel (d): 𝜏̂ = 10, with a higher 𝜏̂, the 

distribution shifts substantially to the right and remains 

unimodal. Increasing  𝜔̂  maintains a sharp mode but 

controls tail length, indicating robust tail adaptability. 

Moreover, Figure 2 represents two panels that display cdf 

plots for a NEEG distribution under various combinations 

of the parameters. The plots illustrate how changes in 

these parameters influence the rate of accumulation of 

probability density. In the left panel (𝜏̂ = 10), as 

𝜔̂  increases from 0.25 to 2.50: the cdf rises more steeply, 

indicating a faster accumulation of probability. The 

distribution becomes more concentrated near smaller 

values of 𝑧. This implies that higher 𝜔̂ leads to lower 

median and shorter tails, highlighting the distribution’s 

ability to model early-event or short-time phenomena 

effectively. In the right panel (𝜏̂ = 10), all curves rise 

quickly, but the speed and steepness still vary with 𝜔̂.  
The curve for 𝜔̂ = 2.5approaches 1 much faster than that 

for 𝜔̂ = 0.25. These plots validate the distribution’s 

flexible cumulative behaviour, capable of capturing both 

rapid and gradual event accumulation patterns. This 

makes the model suitable for diverse applications such as 

failure time analysis, risk modelling, and biomedical 

event studies, where classical models may not offer this 

dual sensitivity to both early and late event probabilities. 

 
Figure 1: Visualization of the NEEG distribution's pdf 

across different τ and 𝜔 parameter settings 

 

227 



 
The New Extended Exponential-Gamma … Samuel et al. JOBASR2025 3(4): 225-235 

 

   

 
Figure 2:Visualization of the NEEG distribution's cdf 

across different τ and 𝜔 parameter settings 

 

STATISTICAL PROPERTIES 

In this section, we explore various statistical properties of 

the 𝑁𝐸𝐸𝐺(𝜏, 𝜔) distribution, including its moments, 

measures of skewness and kurtosis, the moment 

generating function, as well as the quantile function, 

median, and entropy. 

Moments 

The first four raw moments of the proposed probability 

density function f(𝑧; τ, 𝜔) are obtained as follows: 

Let  

𝜇𝑟 = E(𝑧𝑟) = ∫ 𝑧𝑟𝑓(𝑧; τ, 𝜔)𝑑𝑥

∞

0

 

𝜇𝑟 = ∫ 𝑧𝑟
(𝜔 + 𝑧𝜏−1𝜔𝜏)

(1 + Г(𝜏))
𝑒−ω𝑧𝑑𝑧

∞

0

 

     =
𝜔−𝑟(Г(1 + 𝑟) + Г(𝑟 + 𝜏))

1 + Г(𝜏)
 

Therefore, when 𝑟 = 1, 2, 3, 4 we have: 

𝜇1 =
1 + Г(1 + 𝜏)

𝜔 + 𝜔Г(𝜏)
 

𝜇2 =
2 + Г(2 + 𝜏)

𝜔2(1 + Г(𝜏))
 

𝜇3 =
6 + Г(3 + 𝜏)

𝜔3(1 + Г(𝜏))
 

𝜇4 =
24 + Г(4 + 𝜏)

𝜔4(1 + Г(𝜏))
 

Hence the variance (𝜎2) is 

𝑉𝑎𝑟(𝑥) = 𝜎2 =
(1 + Г(1 + 𝜏))2

(𝜔 + 𝜔Г(𝜏))2
+

2 + Г(2 + 𝜏)

𝜔2(1 + Г(𝜏))
 

While the coefficient of variation (CV) is 

𝐶𝑉

=
√(1 − 2Г(1 + 𝜏) − Г(1 + 𝜏)2 + Г(2 + 𝜏) + Г(𝜏)(2 + Г(2 + 𝜏))))

(𝜔(1 + Г(𝜏))(1 + Г(1 + 𝜏))
 

The skewness and the kurtosis were also obtained, 

respectively, as: 

𝑆𝑘

=
(6 + Г(3 + 𝜏))

𝜔3(1 + Г(𝜏))(−
(1 + Г(1 + 𝜏))2

(𝜔 + 𝜔Г(𝜏))2 +
2 + Г(2 + 𝜏)
𝜔2(1 + Г(𝜏))

)3 2⁄

 

and  

𝐾𝑠

=
((1 + Г(𝜏))3(24 + Г(4 + 𝜏)))

(1 − 2Г(1 + 𝜏) − Г(1 + 𝜏)2 + Г(2 + 𝜏) + Г(𝜏)(2 + Г(2 + 𝜏)))2
 

Moment Generating Function 

The moment generating function (mgf) plays a 

fundamental role in probability theory, offering a 

compact representation of a random variable’s 

distribution. By encoding all the moments in a single 

function, the MGF provides a powerful tool for analyzing 

distributional properties, deriving moments, and 

facilitating comparisons between models. In this section, 

we derive the MGF of the NEEG distribution as follows. 

𝑀𝑋(t) = E(𝑒𝑡𝑧) = ∫ 𝑒𝑡𝑧𝑓(𝑧; τ, 𝜔)𝑑𝑥

∞

0

 

𝑀𝑋(t) = ∫ 𝑒𝑡𝑧
(𝜔 + 𝑧𝜏−1𝜔𝜏)

(1 + Г(𝜏))
𝑒−ω𝑧𝑑𝑥

∞

0

 

𝑀𝑋(t) =
1

1 + Г(𝜏)
(

𝜔

𝜔 − 𝑡
+

𝜔𝜏Г(𝜏)

(𝜔 − 𝑡)𝜏
) 

Quantile and Median 

Given the pdf and cdf in equations (1) and (2), 

respectively, the quantile function (inverse of cdf) was 

obtained as 

𝐹(𝑥𝑝) = 𝑝       𝑓𝑜𝑟 𝑥𝑝, 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑝 ≤ 1. 

𝑥𝑝 = 𝐹−1(𝑝) 

Therefore,  
1 − 𝑒−𝑥𝜔 + Г(𝜏) − 𝛤(𝜏, 𝑧𝜔))

1 + Г(𝜏)
= 𝑝  

1 − 𝑒−𝑥𝜔 + (Г(𝜏) − 𝛤(𝜏, 𝑧𝜔))

= 𝑝(1 + Г(𝜏))                                                                    (5) 

This equation does not have a closed-form solution in 

general, but we can express the quantile function in terms 

of the inverse of the incomplete gamma function: 

𝑥𝑝 = 𝐹−1(𝑝) is the solution to (5) 

The median is 50th percentile (𝑝 = 0.5) 

1 − 𝑒−𝑧𝑜.5𝜔 + (Г(𝜏) − 𝛤(𝜏, 𝑧𝑜.5𝜔)) = 0.5(1 + Г(𝜏)) 
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Similarly, this requires numerical methods to solve 

for  𝑧𝑜.5. 

For 𝜏 = 1,  the median simplifies to: 

𝑧𝑜.5 =
ln (2)

𝜔
 

Figure 3 represents a quantile function plot. The quantile 

function of the new Exponential-Gamma distribution 

displayed here confirms it is a right-skewed, positively 

biased, and flexible continuous distribution, suitable for 

modelling asymmetric data with moderate to heavy tails. 

The visualization aids in understanding the distribution's 

behavior, especially in assessing spread and the impact of 

parameter changes on percentiles. 

 
Figure 3: The Quantile Function Plot 

 

Rényi’s Entropy 

Rényi’s entropy is particularly useful for analyzing the 

diversity and complexity of probability distributions. In 

this section, we derive the Rényi entropy of the NEEG 

model to assess its information-theoretic characteristics 

and capture the degree of randomness inherent in the 

distribution. The entropy is: 

𝐻𝛼(𝑍) =
1

1 − 𝛼
log [∫ 𝑓(𝑧; 𝜏, 𝜔)𝛼

∞

0

𝑑𝑧] 

𝐻𝛼(𝑍) =
1

1 − 𝛼
log [(

1

1 + Г(𝜏)
)

𝛼

∫(𝜔

∞

0

+ 𝑧𝜏−1𝜔𝜏)𝛼𝑒−ω𝑧𝛼 𝑑𝑧] 

We use the binomial series expansion to get: 

𝐻𝛼(𝑍)

=
1

1 − 𝛼
log [

𝜔𝛼−1

(1 + Г(𝜏))𝛼
∑ (

𝛼

𝑘
)

Г(𝑘(𝜏 − 1) + 1)

(𝛼)𝑘(𝜏−1)+1

∞

𝑘

],                                               (6) 

when 𝛼 > 0 

Order Statistics 

Order statistics serve as a foundational approach in 

drawing inferences from reliability data. Given 

independent and identically distributed random variables 

𝑋1, 𝑋2, . . . , 𝑋𝑛  following the NEEG distribution, the 

smallest and largest observations in the sample are 

referred to as the minimum and maximum order statistics, 

respectively. These are defined as𝑋(1) = min(𝑋1, 𝑋2,

. . . , 𝑋𝑛) and 𝑋(𝑛) = max(𝑋1, 𝑋2, . . . , 𝑋𝑛)The complete 

set of ordered values satisfies 𝑋(1) ≤ 𝑋(2) ≤. . . ≤  𝑋(𝑛). 

The pdf of the kth order statistic, denoted 𝑋(𝑘), is given 

by: 

𝑓𝑧(𝑘)(𝑧|τ, 𝜔) =
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
𝑓(𝑧)[𝐹(𝑧)]𝑘−1[1

− 𝐹(𝑧)]𝑛−𝑘 

From (5), we can write: 
𝑓𝑧(𝑘)(𝑧|τ, 𝜔)

=
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!

(𝜔 + 𝑧𝜏−1𝜔𝜏)𝑒−ω𝑧

(1 + Г(𝜏))
[
1 − 𝑒−𝑧𝜔 + (Г(𝜏) − 𝛤(𝜏, 𝑧𝜔))

1 + Г(𝜏)
]

𝑘−1

× [
𝑒−𝑧𝜔 + Г(𝜏, 𝑧𝜔)

1 + Г(𝜏)
]

𝑛−𝑘

 

The functions of the first and nth order statistics, 

respectively, are: 

𝑓𝑧(1)(𝑧|τ, 𝜔)

=
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!

(𝜔 + 𝑧𝜏−1𝜔𝜏)𝑒−ω𝑧

(1 + Г(𝜏))
[
𝑒−𝑧𝜔 + Г(𝜏, 𝑧𝜔)

1 + Г(𝜏)
]

𝑛−1

 

and  
𝑓𝑧(𝑛)(𝑧|τ, 𝜔)

=
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!

(𝜔 + 𝑧𝜏−1𝜔𝜏)𝑒−ω𝑧

(1 + Г(𝜏))
[
1 − 𝑒−𝑧𝜔 + (Г(𝜏) − 𝛤(𝜏, 𝑧𝜔))

1 + Г(𝜏)
]

𝑘−1

 

 

Survival Function 

Let z be a continuous random variable with cdf 

 𝐹(𝑧; τ, 𝜔). The survival function, which represents the 

probability that the event of interest has not occurred by 

time z, is defined as: 

𝑆(𝑧; τ, 𝜔) = 1 − 𝐹(𝑧; τ, 𝜔) 

𝑆(𝑧; τ, 𝜔) = 1 −
1 − 𝑒−𝑧𝜔 + (Г(𝜏) − 𝛤(𝜏, 𝑧𝜔))

1 + Г(𝜏)
 

𝑆(𝑧; τ, 𝜔) =
𝑒−𝑧𝜔 + Г(𝜏, 𝑧𝜔)

1 + Г(𝜏)
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Hazard Function 

Let z be a continuous random variable characterized by 

the probability density function 𝑓(𝑧; τ, 𝜔) and the 

cumulative distribution function 𝐹(𝑧; τ, 𝜔). The hazard 

rate function, also referred to as the failure rate function, 

is given by: 

 

ℎ(𝑧) =
𝑓(𝑧; τ, 𝜔)

1 − 𝐹(𝑧; τ, 𝜔)
 

ℎ(𝑧) =
𝑧𝜔 + 𝑧𝜏𝜔𝜏

𝑧 + 𝑒𝑧𝜔𝑧Г(𝜏, 𝑧𝜔)
 

ℎ(𝑧) =
𝜔 + 𝑧𝜏−1𝜔𝜏

(1 + 𝑒𝑧𝜔Г(𝜏, 𝑧𝜔))
 

Figure 5 represents the hazard function plots, which 

demonstrate the flexibility of the hazard function for the 

parametersτ̂ and 𝜔̂.  For high τ̂ (a), the hazard increases 

(aging systems).For low τ̂ (b), the hazard decreases 

(infant mortality systems). This behavior is desirable in 

modelling real-world data with varying failure dynamics, 

including increasing, decreasing, or non-monotonic 

hazard rates. These plots show that the NEEG distribution 

can model diverse lifetime behaviors depending on 

parameter choices. This adaptability makes it valuable in 

reliability analysis, biomedical studies, and engineering 

applications, where different types of failure risks exist. 

Figure 6 represents the survival function plots, which are 

monotonically decreasing in all cases. For higher τ̂ or 

lower  τ̂, the survival probability decreases more rapidly, 

indicating higher risk or shorter time to failure. This is 

useful in reliability analysis, biomedical survival 

analysis, and epidemiological modelling. These plots 

demonstrate the flexibility of the NEEG distribution to 

model systems with different failure behaviors, from 

quick failure to long-term survival.  

 

 
Figure 4: Survival function plots 

 

 
Figure 5: hazard plot 

 

MAXIMUM LIKELIHOOD ESTIMATION 

Let 𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑛  is a random sample of size n from 

the NEEG distribution, the maximum likelihood function 

of the parameters can be written as 

𝐿(𝜏, 𝜔) = ∏ 𝑓(𝑧𝑖 ;  𝜏, 𝜔)

𝑛

𝑖=1

, 

𝐿(𝜏, 𝜔) = ∏
(𝜔 + 𝑧𝑖

𝜏−1𝜔𝜏)

(1 + Г(𝜏))
𝑒−ω𝑧𝑖

𝑛

𝑖=1

, 

and the log-likelihood function is 

ℓ(𝜏, 𝜔) = ∑ 𝑙𝑛𝑓(𝑧𝑖;  𝜏, 𝜔)

𝑛

𝑖=1

 

ℓ(𝜏, 𝜔) = ∑[−ω𝑧𝑖 + ln(𝑧𝑖𝜔 + 𝑧𝑖
𝜏−1𝜔𝜏)]

𝑛

𝑖=1

− 𝑙𝑛𝑧𝑖

− 𝑙𝑛(1 + Г(𝜏)) 

ℓ(𝜏, 𝜔) = −ω ∑ 𝑧𝑖

𝑛

𝑖−1

+ ∑ ln(𝑧𝑖𝜔 + 𝑧𝑖
𝜏−1𝜔𝜏)]

𝑛

𝑖=1

− ∑ 𝑙𝑛𝑧𝑖

𝑛

𝑖=1

− 𝑛𝑙𝑛(1 + Г(𝜏)) 

Differentiating the  ℓ(𝜏, 𝜔)  partially with respect to the 

associated parameters, we have 

𝜕ℓ(𝜏, 𝜔)

𝜕𝜏
= ∑

𝑧𝑖
𝜏𝜔𝜏ln (𝑧𝑖𝜔)

𝑧𝑖𝜔 + 𝑧𝑖
𝜏𝜔𝜏

𝑛

𝑖=1

− 𝑛
Г′(𝜏)

1 + Г(𝜏)

= 0                                                           (7) 

𝜕ℓ(𝜏, 𝜔)

𝜕𝜔
= − ∑ 𝑧𝑖

𝑛

𝑖−1

+ ∑
𝑧𝑖𝜔 + 𝜏𝑧𝑖

𝜏𝜔𝜏−1

𝑧𝑖𝜔 + 𝑧𝑖
𝜏𝜔𝜏

𝑛

𝑖=1

= 0 ,                                                            (8) 

whereГ′(𝜏) is the digamma function. 

The Maximum Likelihood Estimates (MLEs), 

𝜏̂ 𝑎𝑛𝑑 𝜔̂, of 𝜏  and 𝜔  are solutions of equations (7) and 

(8). Analytical expressions for 𝜏̂ 𝑎𝑛𝑑 𝜔̂  are not available. 

Hence, we computed the MLEs numerically using the 

nloptr package and bobyqa function in R software (R 

Core Team, 2025) 
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Simulation Study 

In this subsection, we examine the performance of the 

maximum likelihood estimators 𝜏̂𝑀𝐿𝐸 and 𝜔̂𝑀𝐿𝐸 for the 

NEEG distribution using a comprehensive simulation 

framework. The procedure involves generating synthetic 

data based on the inverse cumulative distribution 

function, repeated over 1,000 iterations for varying 

sample sizes  𝑛 =  50, 100, . . . , 1000, The simulation 

study is conducted for three parameter settings: τ = 5, ω 

= 5; τ = 0.5, ω = 5 and τ = 0.5, ω = 0.5. To assess the 

quality of the estimators, we employ two key 

performance metrics: bias and mean squared error 

(MSE), defined mathematically as follows. 

𝑀𝑆𝐸(𝜔̂𝑀𝐿𝐸) =
1

𝑁
∑(𝜏̂𝑖 − 𝜏)2

𝑁

𝑖=1

 

and 

𝐵𝑖𝑎𝑠(𝜔̂𝑀𝐿𝐸) =
1

𝑁
∑(𝜏̂𝑖 − 𝜏 )

𝑁

𝑖=1

 

The numerical outcomes of the simulation are displayed 

in Table 1. Based on the simulation findings for the 

NEEG distribution, a consistent pattern emerges as the 

sample size n increases (i.e., as 𝑛 → ∞), both 𝜏̂𝑀𝐿𝐸 and 

𝜔̂𝑀𝐿𝐸  increasingly approximate their true parameter 

values, suggesting estimator consistency. Furthermore, 

the corresponding mean squared errors (MSEs) and 

biases of these estimators steadily decline toward zero, 

reflecting improved accuracy and reduced estimation 

error with larger samples. 

 

Table 1: The numerical illustration of the Simulation Study of the NEEG distribution 

 n Parameters MLEs Biases MSEs 

 

 

 

 

τ = 5 

 

ω = 5 

 

 

 

50 τ 

ω 

5.4085 

5.4431 

0.4085 

0.4431 

0.6591 

0.7568 

150 τ 

ω 

4.9733 

4.9256 

-0.0267 

-0.0744 

0.0538 

0.1289 

300 τ 

ω 

4.9818 

4.9693 

-0.0182 

-0.0307 

0.0268 

0.0317 

500 τ 

ω 

5.0667 

5.0998 

0.0667 

0.0998 

0.0429 

0.0776 

750 τ 

ω 

5.0052 

4.9756 

0.0052 

-0.0244 

0.0106 

0.0117 

1000 τ 

ω 

5.0039 

4.9707 

0.0039 

-0.0293 

0.0117 

0.0173 

 

 

 

τ = 0.5 

 

ω = 5 

50 τ 

ω 

0.4632 

4.9779 

-0.0368 

-0.0221 

0.0132 

1.7141 

150 τ 

ω 

0.4593 

4.7389 

-0.0407 

-0.2611 

0.0055 

0.3599 

300 τ 

ω 

0.4493 

4.6210 

-0.0507 

-0.3790 

0.0046 

0.3443 

500 τ 

ω 

0.4714 

4.6647 

-0.0286 

-0.3353 

0.0019 

0.2105 

750 τ 

ω 

0.4645 

4.7577 

-0.0355 

-0.2423 

0.0024 

0.1584 

1000 τ 

ω 

0.4508 

4.8558 

-0.0492 

-0.1442 

0.0028 

0.0898 

 

 

 

τ = 0.5 

 

ω = 0.5 

50 τ 

ω 

0.5354 

0.5435 

0.0354 

0.0435 

0.0098 

0.0057 

150 τ 

ω 

0.5069 

0.5259 

0.0069 

0.0259 

0.0042 

0.0021 

300 τ 

ω 

0.5093 

0.5223 

0.0093 

0.0223 

0.0031 

0.0013 

500 τ 

ω 

0.4899 

0.5114 

-0.0101 

0.0114 

0.0008 

0.0005 

750 τ 

ω 

0.4974 

0.5075 

-0.0026 

0.0075 

0.0004 

0.0002 

1000 τ 

ω 

0.4983 

0.5025 

-0.0017 

0.0025 

0.0003 

0.0000 
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REAL DATA APPLICATION 

This section assesses the performance of the newly 

introduced NEEG distribution by applying it to two real-

life datasets. For comparative purposes, the Gamma, 

exponential, exponential-gamma distribution (UYEG) 

introduced by Umar and Yahya (2021), the generalized 

Lindley distribution (Nadarajah_GLD) introduced by 

Nadarajah et al. (2011), and the New generalized two-

parameter Lindley distribution (Ekhosuehi_GLD) 

introduced by Ekhosuehi et al. (2018), are also fitted to 

the same datasets. Parameter estimation is carried out 

using R software to ensure precise and reliable results. 

 

 

 

Dataset 1: This was originally analyzed by Qayoom et al. 

(2025) and consists of the ratio between daily new deaths 

and daily new cases of COVID-19 in Italy recorded for 

111 days from 1 April to 20 July 2020. 

Dataset 2: This dataset represents the time-to-recovery (in 

days) of COVID-19 patients at Lagos state, Nigeria, in 

2020 (Aderoju et al., 2025). It comprises 553 patients.  

 

Table 2: Estimation of distribution parameters and 

Distribution performance using information criterion 

values based on given COVID-19 datasets. 

Dataset 1: COVID-19 in Italy recorded for 111 days from 1 April to 20 July 2020 (Qayoom et al., 2025) 

 MLEs (S.E.s)  

Model 𝝉̂ 𝝎̂ AIC AICc BIC HQIC 

NEEG 4.9108 (0.3399) 28.4381 (2.5472) -250.3052 -250.1941 -244.8862 -248.1069 

Gamma 3.8492 (0.4959) 23.0778 (3.176) -248.7172 -248.6061 -243.2981 -246.5188 

Nadarajah_GL

D 

4.2962 (0.6896) 13.5483 (1.1298) -244.1625 -244.0514 -238.7435 -241.9642 

Ekhosuehi_G

LD 

1.5195 (0.3244) 6.3784 (0.6253) -174.8544 -174.7433 -169.4354 -172.6561 

UYEG 1.5214 (0.3676) 6.3438 (0.6319) -174.5108 -174.3997 -169.0918 -172.3125 

Exp. - 5.9955 (0.5691) -173.6027 -173.566 -170.8931 -172.5035 

Dataset 2: Covid-19 data in Nigeria (Lagos data) Aderoju et al. (2025) 

NEEG 4.7561 (0.136) 0.4438 (0.0167) 3309.437 3309.459 3318.068 3312.809 

UYEG 4.3694 (0.1727) 0.4129 (0.0195) 3315.033 3315.055 3323.664 3318.405 

Gamma 3.4554 (0.1986) 0.3386 (0.0209) 3342.082 3342.104 3350.713 3345.454 

Nadarajah_GL

D 

2.2552 (0.1574) 0.2595 (0.0094) 3342.292 3342.313 3350.922 3345.664 

Ekhosuehi_G

LD 

3.6345 (0.2592) 0.3100 (0.0216) 3407.531 3407.553 3416.162 3410.903 

Exp. - 0.098 (0.0042) 3677.031 3677.039 3681.347 3678.717 

 

Table 2 presents the parameter estimates, standard errors, 

and model selection criteria reported. This provides 

compelling evidence of the superiority of the proposed 

NEEG distribution in modelling Infectious Disease. 

For the Italy dataset (Dataset 1), the NEEG distribution 

yielded the lowest values across all evaluated information 

criteria (AIC, AICc, BIC, and HQIC), indicating a 

superior fit compared to the Gamma, UYEG, and other 

generalized Lindley-type models. Notably, the NEEG 

model attained a significantly lower AIC (−250.31) than 

the Gamma (−248.72) and Nadarajah_GLD (−244.16), 

reinforcing its improved flexibility in modelling real-life 

data with skewness and heavy tails. Furthermore, the 

associated standard errors of the MLEs are acceptably 

small, suggesting stable and reliable parameter estimates. 

In the case of the Lagos dataset (Dataset 2), the trend 

remained consistent. The NEEG distribution again 

outperformed all competing models with the lowest AIC 

(3309.44) and other model selection criteria. Although 

UYEG and Gamma models were fairly competitive in 

terms of fit, they were still outmatched by NEEG in both 

numerical efficiency and graphical smoothness. The 

exponential distribution consistently lagged across both 

datasets, confirming its limited capacity for capturing 

complex real-world variations. 

Figures 6 and 7 further substantiate these findings through 

graphical density comparisons. In both figures, the NEEG 

curve aligns closely with the shape of the empirical 

histogram, particularly around the mode and tails. 

Competing models such as the Ekhosuehi_GLD and 

Exponential either under-fit or over-smooth portions of 

the data, resulting in noticeable deviation from the 
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empirical distribution. The NEEG model, by contrast, 

strikes an effective balance between flexibility and 

smoothness, offering a better approximation of the 

observed distributions. Overall, both the statistical 

indicators and visual diagnostics affirm the NEEG 

model’s capacity to accurately capture the underlying 

structure of pandemic-related datasets, thus making it a 

compelling alternative to existing flexible distributions. 

 

 

 
Figure 6: Italy data fitness plots 

 

 

 
Figure 7: Lagos data fitness plots 

 

CONCLUSION 

This study introduces the NEEG distribution as a novel 

extension for modelling lifetime and survival data. Key 

distributional characteristics and statistical properties 

such as the probability density function, moments, the 

mean and variance, survival function, hazard rate 

function, moment generating function, order statistics, 

and Rényi’s Entropy have been discussed. The 

parameters of the proposed new distribution are estimated 

by using the method of maximum likelihood estimation. 

Finally, the robustness of the model was assessed using 

two real-life COVID-19 datasets: one from Italy and 

another from Lagos, Nigeria. To evaluate its practical 

usefulness, the NEEG distribution was fitted to both 

datasets alongside well-established models such as the 

Gamma, Exponential, UYEG, and two generalized 

Lindley distributions (Nadarajah_GLD and 

Ekhosuehi_GLD). Parameter estimation was conducted 

via the maximum likelihood approach using R software. 

Model performance was benchmarked using a suite of 

information criteria, including AIC, AICc, BIC, and 

HQIC. Additionally, visual fit diagnostics through 

histogram-based density overlays were employed to 

complement the quantitative comparison. Findings from 

both datasets reveal that the NEEG distribution 

consistently offers a superior fit, capturing complex data 

behavior such as skewness and kurtosis more effectively 

than its counterparts do. Particularly, the NEEG model 

demonstrated lower information criteria values and better 

graphical adherence to observed data patterns, while 

classical models like the Exponential distribution failed 

to capture the tail behavior adequately. The promising 

performance of the NEEG model across different datasets 

underscores its potential as a versatile tool for analyzing 

real-world biomedical and epidemiological data. Given 

its flexibility and fit precision, the NEEG distribution 

may find application in broader domains such as 

reliability analysis, public health forecasting, and risk 

modelling. Future extensions could explore Bayesian 

estimation frameworks or multivariate generalizations of 

the model to further enhance its adaptability and 

inferential power. 
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