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ABSTRACT 
In this study, the generalized restricted three-body problem (R3BP) is applied 

to the EQ Pegasi binary system to investigate the effects of zonal harmonics on 

the motion of a satellite. Building on previous research, it enhances the 

standard potential function to represent the oblateness of the primaries by 

adding higher-order zonal harmonic terms 2 4,  J J
 

and 6J
 

for both the 

primary and secondary bodies. After establishing the equations regulating 

motion, the collinear equilibrium points (CEPs) are found numerically using 

the Newton-Raphson technique. The Lyapunov stability theorem is used to 

assess their stability. According to the results, the addition of zonal harmonics 

somewhat changes the locations of the CEPs, with the equatorial bulge 2J
 

having the most significant impact. The Jacobian constants indicate the energy 

levels at these moments, showing slightvariations across different scenarios. 

Even after adding higher-order zonal harmonics, stability evaluations show that 

the CEPs are still unstable, which aligns with classical R3BP findings. The 

necessity of active station-keeping in satellite mission planning, particularly 

close to these locations, is highlighted by this ongoing volatility. The study 

highlights the importance of considering higher-order gravitational effects 
while designing missions and analyzing stability, particularly for Nigerian 

spacecraft operating in complicated gravitational fields. The findings 

underscore the importance of advanced modeling in addressing the complex 

dynamics of binary star systems, thereby supporting earlier studies and offering 

valuable insights for future space missions. 
 

INTRODUCTION 

The field of celestial mechanics has been crucial for 

comprehending the movements of artificial satellites, 

space probes, and natural celestial entities. The restricted 

three-body problem (R3BP) is a central challenge in this 
domain, providing a simplified yet effective framework 

for examining the gravitational interactions that affect a 

small mass due to the presence of two larger bodies. In 

the classical restricted three-body problem, five Lagrange 

points (equilibrium points; 1 2 3 4, , ,L L L L , and 5L ) exist 

in the rotating frame where primaries are fixed. The 

equilibrium points 1 2,L L , and 3L  are collinear and 

unstable due to saddle-point dynamics, while 4L  and 5L , 

forming triangular configurations with the primary, are 

stable if 2

1 2

0.0385  


m

m m
(Szebehely(1967). Various  

 

 

 

 

 

aspects of the R3BP, such as equilibrium points and 

their stability, periodic and quasi-periodic orbits, 

resonance phenomena, chaotic behavior, and 

perturbative effects from additional forces like PR-

Drag, Stoke’s Drag, Albedo, radiation pressure, 
oblateness,angular velocity variation, variable mass, 

Triaxillity and relativistic corrections have been 

extensively studied by researchers (see Singh et al., 

(2016, 2017, 2018); Kalantonis et al., 2021; Kalantonis 

2025; Gyegwe et al., 2022; Baresi and Dell’Elce 2023; 

Jain and Aggarwal, 2015; Pan and Hou, 2022; Oni et 

al., 2024; Singh and Ashagwu 2024; Singh and 

Tyokaa, 2022; Putra et al., 2024; Arredondo et al., 

2012; Katour et al., 2014; Roy, 2005). These studies 

highlight those deviations from idealized scenarios, 

such as assuming spherical primary bodies, 
significantly increase the complexity of the system's 

dynamics. 
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Zonal harmonics describe the deviation of a celestial 

body's gravitational potential from a perfect sphere, 

influencing the motion of satellites in orbit. The external 

gravitational potential of an oblate body, expressed in 

terms of Legendre polynomials, has been extensively 
analyzed Lambeck (1988); Murray & Dermott (1999); 

Abouelmadg et al., (2015b). These studies are highly 

applicable to mission design, station-keeping strategies, 

and trajectory optimization in the context of space 

exploration.  

To further Nigeria's space exploration objectives, the 

Federal Ministry of Innovation, Science, and Technology 

established the National Space Research and 

Development Agency (NASRDA) in Abuja on May 5, 

1999. Despite financial and infrastructure obstacles, 

NASRDA, which former President Olusegun Obasanjo 

founded, has launched five satellites. These include 
NigComSat-1 (2007, lost in 2008) for communications, 

NigeriaSat-2 and NigeriaSat-X (2011) for advanced 

imaging, NigeriaSat-1 (2003) for disaster and resource 

monitoring, and NigComSat-1R (2011) as a successor 

(Oyewole, 2017). Through its UN-SPIDER office, 

NASRDA promotes disaster management, oversees 

specialist centers, and collaborates with the UK, China, 

and Russia. Nigeria's leadership in African space 

technology is expected to be strengthened by future 

initiatives, such as Edusat-2 and a lunar probe, by 2030, 

which will leverage the country's equatorial location to 
enhance launch capabilities (Oyewole, 2024). 

 

The Pegasus constellation contains the cataclysmic 

variable binary system PQ Pegasi, which comprises a 

white dwarf and a red dwarf. In contrast to the white 

dwarf, which is a compact, dense remnant of a star that is 

smaller but more massive due to its high density, the red 

dwarf is a bigger star that is still in its main sequence 

stage. As the material is drawn from the red dwarf by the 

white dwarf, the system exhibits dramatic activity, 

resulting in sporadic brightness surges. The red dwarf is 

called the "donor star," and the white dwarf is the 
"accretor." None of the stars are given individual names; 

instead, they are referred to by their roles (Crosley and 

Osten, 2018). A summary of related works is presented in 

Table 1. 

 

This study considers an artificial satellite (any of the five 

Nigerian satellites released into orbit) as an infinitesimal 

mass moving under the gravitational field of a binary 

system, taking EQ Pegasi as a representative system. The 

oblateness parameters of the primary and secondary 

bodies are introduced to refine the classical potential 
function. Building upon previous studies (Abouelmagd, 

2012; Abouelmagd et al., 2015a), the research derives 

motion equations that incorporate zonal harmonics' 

effects. It employs numerical techniques, such as the 

Newton-Raphson method, to determine collinear 

equilibrium points (CEPs), and applies the Lyapunov 
stability theorem to analyze the locations of the CEPs. 

The novelty of this work lies in the explicit 

consideration of
6J zonal harmonic terms in the EQ 

Pegasi system.The contributions of this study include: 

 

 Enhanced Gravitational Modeling in the R3BP: 

The study extends the classical Restricted Three-

Body Problem (R3BP) by incorporating higher-

order zonal harmonics (
2 4 6, ,J J J ) for both 

celestial bodies in the EQ Pegasi binary system. 

This refinement moves beyond the simple 

spherical approximation, offering a more precise 

representation of gravitational forces.   

 Implications for Nigerian Space Missions: The 
research investigates the orbital dynamics of 

Nigeria’s satellites (e.g., NigComSat-1R, 

NigeriaSat-2, etc.) within the complex 

gravitational field of a binary star system. These 

findings support mission planning and satellite 

operations for Nigeria’s space initiatives.   

 Precision Localization of Collinear Equilibrium 

Points (CEPs): The study accurately determines 

the positions of CEPs under perturbed conditions 

using the Newton-Raphson iterative method.   

 Stability Analysis Using Lyapunov’s Criterion: 
The study confirms the inherent instability of 

CEPs, even when higher-order harmonics are 

considered, aligning with classical R3BP 

predictions. This underscores the need for 

continuous orbital corrections in mission design.   

 Comprehensive Parametric Investigation: Nine 

distinct cases involving oblateness parameters are 

analyzed, generating detailed results on CEP 

positions and Jacobian constants (Tables 3–5). 

These are further illustrated through graphical 

depictions (e.g., Figure 4) for enhanced clarity.   

Practical Insights for Space Exploration: The research 
highlights higher-order gravitational perturbations' 

subtle yet significant influence, underscoring their 

critical role in trajectory optimization and stability 

assessments for missions in binary star systems. 

The paper is organized as follows: Section 2 provides 

the mathematical formulation of the model, the 

computation and the stability analysis of the CEPs. 

Sections 3 results and discuss, and sections 4 conclude 

the study's results. 
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   Table 1: A summary of related works 

Author(s) & Year        Focus of Study Key Contribution System Studied           Methodology                      

Szebehely (1967)             Classical R3BP                                                                     Established the 

foundational theory 

of orbits and 

equilibrium points 

in R3BP                               

 General                     Analytical                   

Lambeck (1988) 
 

Zonal harmonics in 
gravitational 

potential 

 

Analyzed Earth’s 
gravitational field 

deviations using 

Legendre 

polynomials 

 

Earth 
 

Analytical 
 

Abouelmagd 

(2012) 

 

R3BP with 

oblateness 

 

Studied triangular 

points’ stability 

with J₂ effects 

 

General 

 

Analytical/Numerical 

 

Abouelmagd et al., 

(2015a) 

 

R3BP with zonal 

harmonics (J₂, J₄) 
 

Extended R3BP to 

include J₂ and J₄ 
for both primaries, 
assessed stability 

 

General 

 

Analytical/Numerical 

 

Singh et al., (2016) 

 

R3BP with triaxial 

and oblate 

primaries 

 

Investigated 

periodic motions 

around CEPs with 

additional 

perturbations 

 

General 

 

Numerical 

 

Bury & McMahon 

(2020) 

 

Zonal harmonics 

near secondary 

body 

 

Examined 

dynamical 

structures 

influenced by zonal 

harmonics in 
CR3BP 

 

General 

 

Numerical 

 

Singh & Ashagwu 

(2024) 

 

Elliptic R3BP with 

PR-drag and 

oblateness 

 

Analyzed 

triangular points’ 

stability with 

combined effects  

 

General 

 

Analytical/Numerical 

 

Oni et al., (2024) 

 

R3BP with variable 

shape and masses 

 

Investigated out-of-

plane dynamics 

with evolving 

primaries (from 

document, 

authoritative) 

 

General 

 

Numerical 

 

Kalantonis, (2025)  The influence of 
oblateness on 

asymptotic orbits 

in the Hill three-

body problem  

 

Analysis and 
characterization of 

homoclinic and 

heteroclinic 

connections 

associated with 

CEPs, determining 

conditions for the 

Modified Hill 
three-body problem 

with an oblate 

primary body  

 

Combination of 
analytical and 

numerical methods, 

including systematic 

variation of the 

oblateness parameter, 

computation of stable 

and unstable 
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existence and 

location of these 

orbits under 

varying oblateness 

parameters  

invariant manifolds, 

and use of 

differential 

correction techniques 

leveraging system 

symmetries 
 

 

MATERIALS AND METHODS 

 
 

Figure 1: Flowchart for Procedures/Simulation Methods 
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Mathematical formulation of the Problem 
 

Zonal harmonics of the oblate spheroidal primaries 
The external gravitational potential of an oblate body can 

be expressed in terms of Legendre polynomials as: 

2

1 ( ) ( )n n

n

GM R
V J P Sin

r r

  




  
  

 
 ,                 (1) 

where, 

the parameter G denotes the gravitational constant, M  is 

the mass of the body, r is the distance from the centre of 

the body to any other body,  is the polar angle from the 

axis of rotation, R is the equatorial radius of the body, 

nJ is the dimensionless coefficient that characterizes the 

size of the non-spherical components of the potential and 

( )nP Sin  represent the Legendre Polynomials of degree 

n . According to Abouelmagd (2012), 0   under the 

assumption that the primary body's equatorial plane of 

motion coincides with the system's plane of motion. In 

terms of ( )nP Sin  , we can also have 

21
( ) ( 1)

2 !

n

n n n

d
P x x

n dx
  .                                     (2) 

The evaluation of Eqn. (2) for the aforementioned 

conditions shows that for odd values of n , (0) 0nP  , 

and consequently, the external gravitational potential of 

the oblate body for 2,...,6n  is obtained as (see also 

Abouelmagd (2012); Abouelmagd et al.(2015a,b)): 
2 4 6

2 4 6

3 5 7

3 51

2 8 16

J R J R J R
V GM

r r r r

  


 
     

 
          (3) 

Taking into consideration two oblate spheroids and 

assuming that their masses are 1M and 2M such that  

1 2M M , then the external gravitational potential 

between the two masses can be obtained as:

31 2

2 4 6

1 2

31 2

2 4 6

53
1

2 8 16

53

2 8 16

 

 

  
    

   
  
    
   

AA A

r r rGM M
V

r AA A

r r r

,        (4)            

where 

1

2

2

i

i iA J R

  and 
2

2

2

i

i iA J R

  as well as 2iJ  and 

2iJ 
, ( 1,2,3)i   are the oblateness and zonal 

harmonics coefficients of the primary and secondary 

bodies, respectively.  

 

Equations of motion 

 

In this section, the equations of motion of the satellite 

is presentedwhile taking into cognizance the oblateness 

coefficients 1 2 3,  ,  A A A  
and 1 2 3,  ,  A A A  

corresponding to the primary and secondary bodies, 

respectively, of the restricted three-body problem. 

Following the procedures presented in Szebehely 

(1967), Roy (2005), and Bury and McMahon (2020); 

consider three bodies with masses 1 2,M M and 0M . 

The parameters 1M and 2M are significant, and the 

corresponding bodies are called primaries, while the 

mass 0M of the third body is negligible. In this 

investigation, the third body, also known as the 

infinitesimal mass, is taken as a satellite orbiting or 

rotating under the gravitational attraction of the EQ 

Pegasi system. 

 

The normalization of the R3BP in carried out by 

choosing to make 1 2 1M M   (the sum of the 

masses equal to unity), 1 1M   , 2

1

2
M   , 

gravitational constant 1G  and the distance between 

the primaries is assumed to be unity. In the inertial 

reference frame, the coordinates of the bodies with 

masses 1 2,M M
 
and 0M  are given as 1 1 1( , , )   , 

2 2 2( , , )   and ( , , )   , respectively, while in the 

rotating reference frame, the coordinates of 1 2,M M

and 0M  are ( ,0,0) , ( 1,0,0)   and ( , , )x y z , 

correspondingly. The mean motion (angular velocity) 

of the primaries denoted by n  is assumed to be equal 

to one about the -axisz which coincides with the 

-axis . These descriptions and assumptions are 

shown in Figure 2. 
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Figure 2: The inertial ( , , )    and synodic ( , , )x y z reference frames for the RTBP with oblate primaries 

 

The equations of motion of the artificial satellite have been obtained as: 

2 ,

2 ,

          z ,

x

y

z

x ny

y nx

  

  

 

                   (5)                

where 

 

 

 

 

 
                            (6) 

 

is the potential function, also known as the force function, while the distance between the primary and the satellite as 

well as the distance between the secondary and the satellite are  

 
2 2 2

1r x y z   
 
and  

2 2 2

2 1r x y z    
         

(7) 

respectively. The mean motion of the satellite is denoted by  

     2

1 1 2 2 3 3

3 15 35
1

2 8 16
n A A A A A A                                  (8) 

Partially differentiating Eqns. (2) w.r.t. x , y and z correspondingly, we get 

2
2 2 3 31 2 1 2

3 5 7 3 5 7

1 1 1 1 2 2 2 2

2 23 31 2 1 2

5 7 9 5 7 9

1 1 1 2 2 2

5 53 31 1
( ) (1 )

2 2 8 16 2 8 16

35 353 15 3 15
      (1 ) ,

2 8 16 2 8 16

 

 

    

    

   
              

   

   
         

   

A AA A A An
x y

r r r r r r r r

A AA A A A
z z

r r r r r r
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2 2

1 2

3 5 2 7 2

1 1 1 1 1

2 2

3 1

9 2 3 5 2

1 1 2 2 2

2

2

7

2

2

2

2

3 ( ) 15 ( )5 7
n 1 1

2 8

35 ( ) 3 ( )9 5
        1 1

16 2

15 ( ) 7
       

(1 )

 
8

1

1
1

1

x

A Az z

r r r r r

A Az z

r r r r r

x xx
x

x xx

z

r r

xA

 


 




 

 



    
        

   

  


  

 
      



 



   


 




 2

3

9 2

2 2

35

1

1( ) 9
1 ,

6

A z

r

x

r

   
   




  



          

(9a) 

2 2 3 31 2 1 2

7 9 11 3 5 7 9

1 1 1 1 1 1 1

2 3 31 2 1 2

7 9 11 3 5 7 9

2 2 2 2 2 2 2

315 3515 105 3 151
(1 ) (1 )

2 8 16 2 8 16

315 3515 105 3 151
       

2 8 16 2 8 16

y

A AA A A A
n y z y y

r r r r r r r

A AA A A A
z y y

r r r r r r r

 

 

    

    

   
             

   

   
        

   

   

,

    



        

(9b) 

               and 

33 31 2 1 2

3 5 7 9 7 9 11

1 1 1 1 1 1 1

33 31 2 1 2

3 5 7 9 7 9 11

2 2 2 2 2 2 2

105 3159 45 15 1051
2(1 ) (1 )

2 4 8 32 2 8 16

105 3159 45 15 1051
        2

2 4 8 32 2 8 16

z

A AA A A A
z z

r r r r r r r

A AA A A A
z z

r r r r r r r

 

 

    

    

   
             

   

  
        

  
.


              

(9c) 

Constant of Integration 

Multiplying Eqns. (5) by ,x y and z respectively, and 

adding, we get 

x y zxx yy zz x y z     
. 

The constant of integration, otherwise known as the 

Jacobian constant, C , is obtained after integrating the 

last equation as: 
2 2 2 2                                                    (10)   x y z C

 

Equation (10) can also be written as 
2 2v C                                                                (11) 

where v  is the magnitude of the satellite’s velocity in the 

synodic reference frame. 

By substituting Eqn.  (6) into (11), the Jacobian constant 

is obtained as 

 

2 2 2 2 2 2

31 2

3 5 7

1 1 1 1

31 2

3 5 7

2 2 2 2

231 2

5 7 9

1 1 1

31 2

5 7

2 2 2

( )

531
2(1 )  

2 8 16

531
      2

2 8 16

353 15
2(1 )  

2 8 16

353 15
     2

2 8 16









 

 

 

 

      

 
    

 

 
    

 

 
    

 

  

C x y z n x y

AA A

r r r r

AA A

r r r r

AA A
z

r r r

AA A

r r r

2

9

  

 
 
 

z
             

(12) 

Location of Collinear equilibrium points 

The equilibrium points are locations where the 

gravitational forces and the centrifugal force due to the 

rotating reference frame balance each other out, 

resulting in zero net force on the infinitesimal body. 

That is, when the velocity and acceleration due to the 
satellite equals zero. The CEPs are determined by 

0x y z    , when 0y z  . 

From Eqns. (9a), we have 
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31 2

3 5 7 9

31 2

3
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5 7 9

35 ( )3 ( ) 15 ( )
( ,0,0) n

2 8 16

35 ( )3 ( ) 15 ( )
               

(1 )

11 11
0.

1 1 1 1
    

2 8 16

x

xx xx AA A

x x x x

A

x x

xx xA A

x x x x

x

 


   

 


   

 

 


  

 

 
     






  

  
  

   



     


  

            (13) 

The CEPs are the solutions of Eqn. (13). The Newton-

Raphson Technique is employed to find the roots of the 

equation. 

 

Table 2: The physical details of EQ Pegasi 

In Table 2, the physical characteristics of EQ Pegasi, as 
retrieved from Johnson (2022), are presented. The first, 

second, and third columns furnish the mass of the primary

1M , the mass of the secondary 2M (as compared with 

the mass of the Sun)and the mass ratio of the binary 

system,  , respectively. 

Table 3: The values of the oblateness parameters of EQ Pegasi for nine distinct cases up to 6J  Zonal 

Harmonics 

 

In Table 3, the values of the oblateness parameters of EQ 

Pegasi for nine distinct cases for 2J ( 1 1 ,A A 
), 4J (

2 2 ,A A 
) and 6J ( 3 3 ,A A 

) Zonal Harmonics are 

presented. The values of the oblateness parameters have 

been assumed, similar to those used in Abouelmagd et al. 

(2015a). The second and third columns present the 2J

values for the primary and secondary. Similarly, the 4J  

and 6J  values are presented in the fourth fifth, and sixth 

and seventh columns respectively. It can be observed that 

the 4J  values are negative differing from the 2J , and 6J

positive values. The gravitational potential of Earth is 

characterized by a negative 4J the term, which contrasts 

with the dynamics of binary star systems such as PQ 

Pegasi. On Earth, zonal harmonics describe deviations 

from a perfect spherical gravitational potential, with 2J  

reflecting the equatorial bulge caused by Earth's 

rotation (Lambeck, 1988) and 4J  representing higher-

order deformations. The negative sign of 4J  is 

attributed to the mass distribution at higher latitudes, 
Earth's rotation, and the chosen sign convention for 

expansion coefficients (Reigber, 1989). In contrast, 

binary star systems exhibit complex dynamics, with 

gravitational potentials influenced by mass distribution, 

symmetry, orbital motion, tidal forces, and rotational 

distortions (Murray & Dermott, 1999). The sign and 

relevance of higher-order terms in binary systems 

depend on detailed modeling, which may reveal 

positive or negative 4J -like terms resulting from tidal 

elongation or flattening effects (Fabian et al., 2012). 

However, for the purpose of this research work, the 

4J  parameters for EQ Pegasi have been assumed to be 

negative. 

Binary System Mass of Primary ( 1M ) Mass of Secondary ( 2M ) Mass parameter ( )  

EQ Pegasi 0.33 SM  0.16 SM  0.32653 

Case 
1A

 1A
 2A

 2A
 3A

 3A
 

1. 0.004  0.001  0.0012  0.0002  0.00004  0.00002  

2. 0.005  0.002  0.0013  0.0003  0.00005  0.00003  

3. 0.006  0.003  0.0014  0.0004  0.00006  0.00004  

4. 0.007  0.004  0.0015  0.0005  0.00007  0.00005  

5. 0.008  0.005  0.0016  0.0006  0.00008  0.00006  

6. 0.009  0.006  0.0017  0.0007  0.00009  0.00007  

7. 0.010  0.007  0.0018  0.0008  0.00010  0.00008  

8. 0.011  0.008  0.0019  0.0009  0.00011  0.00009  

9. 0.012  0.009  0.0020  0.0010  0.00012  0.00010  
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Table 4: The CEPs and corresponding Jacobian constants of the satellites with respect to (w.r.t.) PQ Pegasi 

for 
6J  Zonal Harmonics for the nine cases in Table 3 

 

Table 5: The Collinear Equilibrium Points and corresponding Jacobian constants of PQ Pegasi for 
4J  Zonal 

Harmonics using the nine cases in Table 3 

Case 
1( ,0)L x  2( ,0)L x  3( ,0)L x  

1LC  
2LC  

3LC  

1. −0.2496702 1.1346394 −1.2498363 3.9730523 3.3353260 3.5686553 

2. −0.2488998 1.1343856 −1.2502588 3.9836489 3.3411499 3.5761941 

3. −0.2481613 1.1341343 −1.2506731 3.9942247 3.3469735 3.5837311 

4. −0.2474527 1.1338858 −1.2510795 4.0047813 3.3527965 3.5912665 

5. −0.2467719 1.1336398 −1.2514783 4.0153196 3.3586191 3.5988002 

6. −0.2461173 1.1333964 −1.2518697 4.0258407 3.3644412 3.6063324 

7. −0.2454871 1.1331554 −1.2522537 4.0363457 3.3702628 3.6138631 

8. −0.2448801 1.1329170 −1.2526307 4.0468354 3.3760840 3.6213923 

9. −0.2442947 1.1326810 −1.2530011 4.0573106 3.3819048 3.6289201 
 

Table 6: The Collinear Equilibrium Points and corresponding Jacobian constants of PQ Pegasi for 2J  Zonal 

Harmonics using the nine cases in Table 3 
 

 

The CEPs and corresponding Jacobian constants of the 

satellite with respect to (w.r.t.) EQ Pegasi up to 6J  Zonal 

Harmonics for the nine cases in Table 3 are provided in 

Table 4. The second, third, and fourth columns present the 

first, second, and third CEPs 1,2,3L . It can be observed 

that a move from cases 1 through 9 shows a slight 

increase for 1L and  a slight decrease for 2L both points 

shifting towards the origin while 3L decreases and 

shifts away from the origin. Figure 3 is a graphical 

representation of the CEPs in the EQ Pegasi system. 

It’s a two-dimensional plot for the  xy coordinate

system showing the bigger primary 1M placed closer 

to the origin while 2M lies further out on the right on 

the x axis . Also, the equilibrium point 1L  lies 

Case 
1( ,0)L x  2( ,0)L x  3( ,0)L x  

1LC  
2LC  

3LC  

1. −0.2485171 1.1339766 −1.2498033 3.9597402 3.3301836 3.5637225 

2. −0.2481378 1.1337147 −1.2499801 3.9677197 3.3353756 3.5702860 

3. −0.2477673 1.1334551 −1.2501546 3.9756943 3.3405672 3.5768492 

4. −0.2474054 1.1331977 −1.2503267 3.9836643 3.3457582 3.5834121 

5. −0.2470517 1.1329425 −1.2504965 3.9916298 3.3509488 3.5899748 

6. −0.2467060 1.1326895 −1.2506641 3.9995909 3.3561389 3.5965371 

7. −0.2463680 1.1324387 −1.2508296 4.0075479 3.3613286 3.6030992 

8. −0.2460373 1.1321900 −1.2509929 4.0155007 3.3665176 3.6096610 

9. −0.2457139 1.1319433 −1.2511541 4.0234497 3.3717062 3.6162226 

Case 
1( ,0)L x  2( ,0)L x  3( ,0)L x  

1LC  
2LC  

3LC  

1. −0.2470833 1.1339893 −1.2505497 3.9666881 3.3313783 3.5658325 

2. −0.2459000 1.1336868 −1.2511135 3.9774632 3.3369266 3.5732634 

3. −0.2447765 1.1333872 −1.2516650 3.9881903 3.3424743 3.5806913 

4. −0.2437077 1.1330904 −1.2522047 3.9988729 3.3480212 3.5881162 

5. −0.2426889 1.1327963 −1.2527331 4.0095142 3.3535675 3.5955383 

6. −0.2417162 1.1325051 −1.2532504 4.0201172 3.3591132 3.6029577 

7. −0.2407861 1.1322165 −1.2537572 4.0306843 3.3646582 3.6103744 

8. −0.2398954 1.1319307 −1.2542538 4.0412179 3.3702026 3.6177885 

9. −0.2390414 1.1316474 −1.2547405 4.0517201 3.3757463 3.6252002 



 

The influence of
6J

 
zonal harmonics on the … Gyegwe et al.  

 
JOBASR2025 3(3): 261-276 

 

 

270 

between the primaries 1M  and 2M , while
2L is to the 

right of 2M  and 3L  to the left of 1M on the x axis

.The fifth, sixth, and seventh columns give the values of 

the Jacobian constant 
1,2,3LC at 1,2,3L , respectively. 

Similarly, the CEPs and corresponding Jacobian constants 

of the satellite w.r.t. EQ Pegasi for the zonal harmonics

4J  as well as
2J are given in Tables 5 and 6, 

respectively. The values show similar patterns to those 

in Table 4. 

 

 

Figure 3: The positions of the CEPs 1,2,3L  and the masses 1m and 2m  of the primary and secondary stars 

respectively for the first case in Table 3 
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Figure 4:   The zero velocity curves corresponding to Case 1 of Table 3 

 

 

 
 

 
Figure 5 (a), (b), (c): The Collinear Equilibrium Points 1,2,3L  corresponding to (a), (b), and (c) showing the 

Zonal harmonics 2J , 4J , 6J  in gray, magenta, and blue lines respectively 

The impacts of the zonal harmonics 2 4,J J , and 6J  on 

the locations of the collinear equilibrium points (CEPs) 

are depicted in Figure 4. Their contributions are 

differentiated by a color-coded scheme: gray for 2J , 

magenta for 4J , and blue for 6J . The data in Tables 4, 

5, and 6, which provide details on the CEPs and their 

associated Jacobian constants for nine cases of oblateness 

parameters listed in Table 3, were used to derive the 

figure. In Figure 5, each panel represents a distinct 

equilibrium point: panel (a) for 1L , panel (b) for 2L , 

and panel (c) for 3L . The color scheme illustrates the 

impact of each harmonic on the CEPs, with 2J  

denoting the equatorial bulge, 4J  representing higher-
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order deformations and 
6J Indicating finer gravitational 

asymmetries. By including 
4J  and 

6J , the gravitational 

potential it is refined beyond the primary influence of 
2J , 

resulting in additional perturbations that alter the CEPs. 

These shifts are illustrated visually, showing how higher-

order terms progressively alter the equilibrium positions. 

 

Stability of Collinear Points 

The Variational Equation 

To study the motion near any of the equilibrium points 

 0 0,L x y , we write 

0x x   , and 
0y y   , 

where   and   are small displacements in  0 0,x y . 

For the collinear points 1,2,3L , we have 0 1, 2,3x x , 

0 0y  .    

By making  

, ,

,              ,

x and y

x y

 

 

 

 
 

as well as expanding Eqn. (6) by means of Taylor series 

expansion while considering only the 2-D problem, we 

have 
0 02 ,xx xyn       

0 02 .xy yyn                                                 (14)             

Eqn. (14) is called the variational equation with respect to 

Eqns. (5). Here, only linear terms in  and   have been 

taken. The second partial derivatives of   are denoted 

by subscripts. The superscript 0 indicates that the 
derivatives are to be evaluated at the point under study. 

Characteristic Equations 

To examine the stability of the motion of the 

infinitesimal body near any of the equilibrium points, 

we take their trial solutions as 
tAe  ,   

tBe  .                                                                (15) 

Differentiating Eq. (15) with respect to t , we have 

,t tA e B e       

2 2,t tA e B e      .                                      (16) 

Putting Eqn.(16) into Eqn.(14), we get 
2 0 0

2 0 0

2 ,

2 .

t t t t

xx xy

t t t t

xy yy

A e nB e A e B e

B e nA e A e B e

   

   

 

 

    

    
 

Collecting like terms, the last two equations become 

   

   

2 0 0

0 2 0

2 0,

2 0.

t t

xx xy

t t

xy yy

A e B n e

A n e B e

 

 

 

 

    

     

         (17) 

 System (17), has solutions if 
2 0 0

0 2 0

2

0

2

xx xy

xy yy

n

n

 

 

  



 

.                                  (18) 

Equation (18) can be written as  

     2 0 2 0 0 02 2 0xx yy xy xyn n        

or 

   
2

4 2 0 0 2 0 0 04 0  (19)        yy xx xx yy xyn

Equation (19) is called the characteristic equation 

corresponding to the variational equation of Eq. (13). 

Stability Analysis of the collinear equilibrium points 

This section examines the collinear equilibrium points obtained for the EQ Pegasi system in terms of stability. So, 

using Eqns. (9a), (9b) and (9b) the following systems are obtained: 
* ** * * *2

2 3 31 2 1 2

3 2 4 6 5 2 4 6

1 1 1 1 1 1 1 1

**** ** ** **2

3 31 2 1 2

3 2 4 6 5 2 4

2 2 2 2 2 2 2

35 1053 15 5 35(1 ) 3(1 )( )
1 1

2 8 16 2 8 16

35 1053 15 5 353 ( 1 )
       1 1

2 8 16 2 8

xx

A AA A A Ax
n

r r r r r r r r

A AA A A Ax

r r r r r r r

  

  

     
            

   

   
        

 

**

6

2

,
16r

 
 
 

 

0,xy   

* ** * * *2
2 3 31 2 1 2

3 2 4 6 5 2 4 6

1 1 1 1 1 1 1 1

** **** ** ** **2

3 31 2 1 2

3 2 4 6 5 2 4 6

2 2 2 2 2 2 2 2

35 1053 15 5 35(1 ) 3(1 )
1 1

2 8 16 2 8 16

35 1053 15 5 353
       1 1

2 8 16 2 8 16

yy

A AA A A Ay
n

r r r r r r r r

A AA A A Ay

r r r r r r r r

 

 

    
            

   

  
         

  
,


         

(20)                                                       

Next, with 0y  , the value of each collinear equilibrium point, 0x  as well as the mean motion 
2n  in Eqn. (8) is 

substituted into Eqns. (20)  to get: 
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     
** *

0 31 2
1 1 2 2 3 3 3 2 4 6

1 1 1 1

**** **

31 2

3 2 4 6

2 2 2 2

353 453 15 35 2(1 )
1 1

2 8 16 8 4

353 452
        1 ,

8 4

xx

AA A
A A A A A A

r r r r

AA A

r r r r





        
              

   

 
    

        

(21) 

and 

     
** *

0 31 2
1 1 2 2 3 3 3 2 4 6

1 1 1 1

**** **

31 2

3 2 4 6

2 2 2 2

353 153 15 35 (1 )
1 1

2 8 16 2 8 16

353 15
        1 ,

2 8 16

yy

AA A
A A A A A A

r r r r

AA A

r r r r





        
              

   

 
    

 

 

with                                                                                                                          (22) 

 

 

22

1 0 1 0

22

2 0 2 0

,

1 1 .

r x r x

r x r x

 

 

    

      

 

 
We present the results in Table 8 by substituting the following equations (21) and (22) in eqn. (19) and solving for 

the equation's roots at each collinear equilibrium point. 
 

Table 7: Roots of the characteristic equation in the system (18) at 1,2,3L using the required data from Tables 3 

and 4 

Case 1

1,2,3,4

L  2

1,2,3,4

L  3

1,2,3,4

L  

1 3.90536224  

 2.88211907i  

0.93348912  

1.21871929i  

1.42046984  

1.44918227i  

2 3.96481749  

2.89410319i  

0.93817275  

1.21933750i  

1.43081285  

1.44831372i  

3 4.02247645  

2.90610093i  

0.94285784  

1.21995835i  

1.44102601  

1.44752190i  

4 4.07851961  

2.91810475i  

0.94754462  

1.22058205i  

1.45111377  

1.44680312i  

5 4.13309982  

2.93010814i  

0.95223331  

1.22120881i  

1.46108012  

1.44615383i  

6 4.18634929  

2.94210626  i  

0.95692228  

1.22183808i  

1.47093087  

1.44557164i  

7 4.23838223  

2.95409511i  

0.96161304  

1.22247059i  

1.48066843  

1.44505289i  

8 4.28929763  

2.96607124i  

0.96630393  

1.22310577i  

1.49029711  

1.44459504i  

9 4.33918296  

2.97803211i  

0.97099651  

1.22374434i  

1.49982089  

1.44419568i  

 

RESULTS AND DISCUSSION 

The location and stability of CEPs of any of the five 

Nigerian Satellites in the R3BP for the oblate EQ Pegasi 

system are being studied. The zonal harmonic effects of 

EQ Pegasi A and EQ Pegasi B have been taken into 

consideration. More particularly, the works of 

Abouelmagd et al., (2012; 2015a) have been extended 

to include the 6J zonal harmonics terms for both 

primaries.    In Tables 4, 5, and 6, it can be seen that 

the positions of the CEPs, 1,2,3L  shift slightly as the 
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zonal harmonics up to 
6J ( 3A

, and 3A
) are varied 

across the cases (1 through 9) (that is 
1L  and 

2L  move 

closer to the origin while 
3L  moves away from the 

origin). For example, in Case 1 of Table 4, the positions 

of 1,2,3L are −0.2470833, 1.1339893, and −1.2505497, 

respectively with corresponding Jacobian constants,

1,2,3LC as 3.9666881, 3.3313783, and 3.5658325.  These 

values change slightly as the parameters vary across the 

nine cases, showing the influence of 6J .  Similarly, the 

same can be observed for 
4J ( 2A

, 2A
) and 

2J  ( 1A
and

1A
) in Tables 5 and 6, respectively. The zonal harmonic 

2J  ( 1A
and 1A

) (equatorial bulge) has the most 

significant impact on the positions of the CEPs as shown 

in Table 6. Figure 5illustrates the behavior of the CEPs 

under various trends. In the case of 1L , the gray lines 

indicate a slight rightward shift toward the secondary 

mass, suggesting that the equatorial bulge increases the 

secondary's gravitational attraction compared to that of 

the primary. The magenta and blue lines, which represent 

4J  and further adjust this effect to reflect asymmetries of 

higher order in mass distribution. In the case of 2L , the 

gray lines illustrate a leftward movement toward the 

origin instigated by 2J , which signifies a compression of 

the potential well resulting from oblateness. The magenta 

and blue lines imply that 4J  and 6J  may either 

strengthen or counter this shift based on their particular 

contributions. For 3L , the gray lines illustrate a 

movement to the left that is separate from the origin, 

suggesting that the primary’s effective gravitational 

influence has broadened. The higher-order terms, depicted 

by magenta and blue lines, can either amplify this trend or 

bring about oscillatory behaviour. In sum, Figure 5 
illustrates the progressive refinement of the gravitational 

potential by each zonal harmonic, with 4J  and 6J  

introducing subtle perturbations that displace the CEPs 

beyond the primary influence of 2J . 

The Jacobian constants, representing the energy levels at 

the equilibrium points, vary across the cases, as shown in 

Tables 4, 5, and 6. The inclusion of 2 4,J J , and 6J  

modifies the gravitational potential, leading to changes in 

the energy required for a satellite to remain near these 

points. However, the changes in the Jacobian constants 

are relatively small, indicating that the lower-order term 

still dominates the overall dynamics 2J . 

Equation (18), the characteristic equation derived from 

the variational equations in Equation (13), assesses the 

stability of equilibrium points by analyzing the nature 

of its roots (real, imaginary, or complex). The 

Lyapunov theorem, applied via the indirect method, 
indicates that stability depends on the roots of the 

characteristic equation. Negative real parts signify 

asymptotic stability, positive real parts indicate 

instability, and purely imaginary roots render the 

analysis inconclusive. Consequently, the nature of the 

roots is directly connected to the stability outcomes. 

 

The roots of the characteristic equation of eqn. 18 are 

presented in Table 7 for cases 1 through 9. These are 

complex roots with positive real parts, confirming that 

the CEPs are unstable, even when accounting for the 

effects of the zonal harmonics 
2 4,J J , and 

6J . The 

instability of the CEPs implies that a satellite placed 
near these points will not remain there indefinitely 

without active station-keeping. This is particularly 

relevant for mission design and trajectory optimization. 

Also, this result is consistent with the classical R3BP, 

where collinear points are known to be unstable.  

The inclusion of 2 4,J J , and 6J modifies the positions 

of the CEPs and their stability characteristics, but the 

fundamental instability of the CEPs remains, and these 

results are in conformity with (Reigber, 1989). These 

results are also in agreement with those of Abouelmagd 

(2012) when only the zonal harmonic terms 2J  and 

4J  of the bigger primary studies is considered 

Abouelmagd et al., (2015a), when the 2J  and 4J  

zonal harmonic terms of both primaries are taken into 

cognizance. 

The zonal harmonics terms 4J  and 6J  account for 

higher-order deformations in the gravitational 

potential, introducing additional complexities into the 

system's dynamics. While these terms have a 

noticeable impact on the positions of the equilibrium 

points and their Jacobian constants, it is seen that their 

effect is relatively small compared to 2J . These 

findings underscore the importance of accounting for 

higher-order gravitational effects in the design and 

stability analysis of precise missions, particularly for 

Nigerian satellites operating in complex gravitational 

environments. 

 

CONCLUSION 
In conclusion, a rebalancing of gravitational forces is 

suggested by the slight changes in CEP locations (e.g., 

1L  and 2L  coming closer to the origin, 3L  moving 

outward) with increasing zonal harmonics. The colour-
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coded patterns in Figure 5 show that 
4J and 

6J  introduce 

slight asymmetries, whereas 
2J 's prominence emphasizes 

the equatorial bulge's role in flattening the potential well. 

Moderate changes in the Jacobian constants (from 

3.9666881 to 3.5658325 in Case 1) show that energy 

levels react to oblateness but are mostly affected by 

lower-order terms.  
For Nigerian satellites, this instability underscores the 

need for effective station-keeping measures, particularly 

in binary systems like EQ Pegasi, where tidal and 

rotational forces heighten disturbances. These insights 

refine mission planning by detailing how higher-order 

gravitational terms impact orbit design, a key factor given 

Nigeria’s equatorial launch benefits.   

The research assumes constant oblateness parameters, 

overlooking changes from stellar evolution or mass 

transfer in EQ Pegasi. It also treats the satellite as a point 

mass, disregarding its shape or orientation 

effects.Validation is constrained by the absence of real-
time observational data for EQ Pegasi, and computational 

limits cap the analysis at 6J , excluding higher harmonics 

like 8J . 

The future scope of this study may include taking into 

cognizance all or part of the following: 

 Expand the framework to incorporate higher-order 

zonal harmonics (beyond 6J ) for a more accurate 

gravitational field representation; possibly use 

machine learning techniques to manage the 

computational complexity. 

 Examine the effects of mass transfer between the 

white dwarf and red dwarf stellar components of EQ 

Pegasi on equilibrium point evolution and long-term 

stability. 
 Work with NASRDA to incorporate real-time data 

from Nigerian satellites to empirically validate the 

model in real binary system conditions. 

 Analyze how spacecraft geometry and attitude 

dynamics impact orbital behavior, going beyond the 

point-mass approximation to improve practical 

applicability. 

To support Nigeria's ambitious 2030 lunar exploration 

goals, the improved methodology should be applied to 

other prominent binary systems (such as Sirius and 

Procyon) to establish broader astrophysical insights. 
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