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ABSTRACT 

Lifetime distributions are salient statistical tools to model the different 

characteristics of lifetime datasets. The statistical literature contains very modern 

distributions to analyze these kinds of datasets. Nonetheless, these distributions 

have many parameters, which cause a problem in the estimation step. To offer 

fresh possibilities in modeling these kinds of datasets, we propose a 

Parsimonious Gamma Mixture (PGM) distribution using a finite mixture of 

Gamma distributions with parameter-dependent mixing weights. The proposed 

distribution has only one parameter and simple mathematical forms. The 

mathematical properties of the distributions, including moments, reliability 

functions and order statistics, are studied in detail. The unknown model 

parameter is estimated by using the maximum likelihood. The extensive 

simulation study is used to study the performance of parameter estimation. To 

convince the readers in favour of the proposed distribution, three real datasets 

from engineering and materials science are analyzed and compared with 

competitive models. Empirical findings show that the proposed one-parameter 

lifetime distribution produces better results than the other similar existing 

distributions. Its consistent achievement of the lowest AIC and BIC values 

across all datasets confirms its enhanced ability to capture diverse data patterns 

with remarkable parameter parsimony, making it a highly effective tool for 

modelling reliability and survival data. 

 
 

INTRODUCTION 

The statistical analysis and modelling of lifetime data, 

which is often referred to as survival or failure time 

analysis, form a cornerstone of research across a diverse 

areas of applied sciences: from the failure of mechanical 

components in engineering to the survival of patients in 

medical studies and from the time-to-default in financial 

instruments to the duration of unemployment in 

economics, the need to accurately model the time-to-

event is ever-present (Johnson et al., 1995; Mazucheli et 

al., 2018; Aderoju, 2021; Aderoju et al., 2025a; Aderoju 

et al., 2025b). The cardinal objective in these fields is not 

merely to describe data but to understand underlying 

failure mechanisms, evaluate reliability and inform 

critical decision-making processes. 

For decades, the classical exponential distribution, with 

its memoryless property and constant hazard rate, served 

as a foundational model due to its mathematical 

simplicity. However, its assumption of a constant failure 

rate is often a severe limitation when modelling real-

world phenomena, where components age or systems 

improve over time.  

 

 

 

 

 

 

Recognizing this, Lindley (1958) introduced a 

distribution that offered more flexibility. This inspired a 

renewed interest in developing more adaptable and 

flexible lifetime models. As noted by Shanker et al. 

(2015), the exponential and classical Lindley 

distributions are often unsuitable for many real-life 

datasets due to their restrictive shapes and hazard rate 

functionalities. 

This inadequacy has generated a significant movement in 

statistical literature towards the creation of more flexible 

probability distributions. A prominent strategy involves 

the generalization of existing baseline models, often by 

adding one or more shape parameters to enhance 

flexibility (Marshall & Olkin, 2007; Aderoju, 2021). 

While effective, this approach can lead to complex 

models with challenging parameter estimation. In 

contrast, the pursuit of parsimonious models remains a 

central principle of statistical modelling. As eloquently 

stated by one source, "the parsimony rule says the best 

model is a model that requires fewer assumptions and/or 

parameters"  
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(Burnham & Anderson, 2002; Box & Jenkins, 1976). This 

has driven the development of flexible one-parameter 

distributions that strive to balance simplicity with the 

flexibility needed to model complex data characteristics. 

The methodology for creating these new one-parameter 

distributions varies and is innovative. A common method 

is finite mixture modelling, where a new distribution is 

formed as a weighted combination of existing 

distributions, such as the exponential and gamma 

distributions. For instance, Ghitany et al. (2008) 

introduced the Lindley distribution by mixing 

exponential and gamma components. In line with this 

approach, researchers have proposed several models, 

such as the Samade (Aderoju, 2021), Power Hamza 

(Aderoju and Jolayemi, 2022), Ishita (Shanker & Shukla, 

2017) and Pranav (Shukla, 2018) distributions, Inverse 

Power Rama (Chrisogonus et al., 2020), Inverse Power 

Ishita (Shukla, 2021; Frederick et al., 2022) and Inverse 

Power Hamza distributions (Frank et al., 2023; Omoruyi 

et al., 2023). Other significant contributions through this 

paradigm are the Power Generalized Akash (Aderoju & 

Adeniyi, 2022), Power Hamza distribution (Aderoju & 

Jolayemi, 2022), the New Generalized Gamma-Weibull 

Distribution (Aleshinloye et al., 2023) and a novel variant 

of the Rama distribution (Omoruyi et al., 2023). This line 

of work also includes more recent contributions like the 

New Extended Exponential-Gamma Distribution 

(Aderoju et al., 2025b) and the new two-parameter 

generalized Lindley distribution (Aderoju et al., 2025a). 

Each of these proposed models features distinct mixing 

proportions and, consequently, unique resulting 

properties. Other methods include transformations of 

existing distributions, such as the unit-Lindley 

distribution for data on the interval (0, 1) and the use of 

generator families, like the odd Lindley-G family, to 

introduce new flexibility with a single additional 

parameter. 

The advantages of one-parameter distributions are 

numerous. They enable easier parameter estimation, 

especially with smaller sample sizes and their 

mathematical properties, such as moments, quantile 

functions and hazard rates, are often more manageable. 

Moreover, a simple formula for the mean allows for the 

direct incorporation of covariates to model their average 

effect on the response variable, allow the development of 

simplified regression models as alternatives to more 

complex counterparts like the Beta regression model 

(Ferrari & Cribari-Neto, 2004). 

In this dynamic context, the need for comparative studies 

is essential. With many one-parameter distributions now 

available, practitioners and researchers require clear 

guidance on their relative performance. As different data 

"sing their song," the quest to find the most suitable 

probability distribution to capture all its variations is of 

crucial (Eliwa et al., 2021). The primary motivation for 

developing new distributions is often the hope that they 

will provide a superior fit for types of data, achieve 

minimal error in forecasting and outperform existing 

models. 

In this paper, we introduce a novel one-parameter lifetime 

distribution that adheres to the principle of parsimony: the 

Parsimonious Gamma Mixture (PGM) Distribution. The 

remaining sections of this study are organized as follows. 

in Section 2, we derive the new model probability 

distribution function. Its key mathematical properties 

are presented in Section 3. Section 4 includes the 

maximum likelihood estimation procedure and 

assessment of its performance through a simulation 

study. Application of the model to real-life data is 

presented in Section 5.  Finally, the concluding remarks 

are presented in Section 6. 

 

MATERIALS AND METHODS 

A novel continuous distribution, the Parsimonious 

Gamma Mixture (PGM), is presented in this section. 

The derivation yields its probability density function, 

establishing the PGM as a mixture of two gamma 

distributions with a common rate parameter β > 0. 

Specifically, it combines Gamma (2, β) and Gamma (3, 

β) components, with the mixing proportion functionally 

dependent on β itself. The mixture distribution is of the 

form: 

𝑓(𝑥) = 𝑝1𝑔1(𝑥) + 𝑝2𝑔2(𝑥),                                             (1) 
where  

𝑔1(𝑥) ∼ Gamma(2, β) 

𝑔1(𝑥) =
β2

𝛤(2)
𝑥𝑒−β𝑥 = 𝛽2𝑥𝑒−𝛽𝑥,      𝑥, β > 0 

𝑔2(𝑥) ∼ Gamma(3, β) 

𝑔2(𝑥) =
β3

𝛤(3)
𝑥2𝑒−β𝑥 =

β3

2
𝑥2𝑒−β𝑥 ,      𝑥, β > 0 

and 

𝑝1 =
𝛽

1 + 𝛽
 

Where 𝑝1 + 𝑝2 = 1 

Therefore, (1) becomes 

𝑓(𝑥) =
𝛽3

2(1 + 𝛽)
𝑥(𝑥 + 2)𝑒−𝛽𝑥 

Note: This is a valid PDF because: 

a) It is non-negative for   𝑥 > 0, 𝛽 > 0. 

b) It integrates to one (since it is a mixture of two proper 

PDFs with weights summing to 1). 

c) The weight 𝑝1  represents the probability that an 

observation is generated from the first component, 

Gamma (2, β). As the rate parameter β increases, the 

mean of both component distributions (
2

𝛽
 𝑎𝑛𝑑 

3

𝛽
) 

decreases. The functional form 𝑝1(𝛽) ensures that as the 

distribution shifts towards smaller values (higher β), the 

weight 𝑝1 also increases. This creates a coherent system 

where a single parameter β controls both the 

scale and the mixture composition of the distribution. 
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This link ensures that 𝑝1  is automatically bounded 

between 0 and 1 for all  𝛽 > 0, satisfying the fundamental 

requirement for a probability weight. Specifically: 

lim
𝛽→0

𝑝1(𝛽) = 0  𝑎𝑛𝑑    lim
𝛽→∞

𝑝1(𝛽) = 1 

The PGM distribution emerges as a carefully constructed 

one-parameter model derived from a finite mixture of two 

Gamma components with shared scale parameters and 

fixed shape parameters. This strategic parameterization 

achieves an optimal balance between model simplicity 

and distributional flexibility, enabling it to capture 

diverse data patterns, including both decreasing and 

unimodal hazard rates, while maintaining computational 

compliance. Its closed-form cumulative distribution 

function and moments, with its interpretable single 

parameter that governs tail behaviour, make the PGM 

particularly well-suited for reliability engineering and 

lifetime data analysis, where avoiding 

overparameterization without sacrificing fit quality is 

key. 

 

 
Figure 1: The PDF plots of the PGM Distribution for 

Different Values of 𝛽̂ 

 

Figure 1 shows the probability density function 𝑓(𝑥) of 

the PGM distribution for different values of the 

parameter’s estimate. The curves are all unimodal, 

meaning they rise from zero, reach a peak and then 

decline exponentially as x increases. This behaviour 

reflects how the parameter 𝛽 controls the rate of decay 

and the concentration of the density. 

  

The corresponding cumulative distribution function 

(CDF) is 

𝐹(𝑥)

= 1 −
(𝛽2𝑥2 + 2𝛽𝑥(𝛽 + 1) + 2(1 + 𝛽 + 𝛽2))𝑒−β𝑥

2(1 + 𝛽)
(2) 

 
Figure 2: The plots of the PGM Distribution’s CDF for 

various values of the parameter 

 

Figure 2 represents the 𝐹(𝑥) plots, which increases from 

0 to 1 as x increases. For all values of 𝛽̂, the CDFs rise at 

different rates. Larger values of 𝛽̂,  make the CDF rise 

more steeply, meaning probabilities accumulate faster 

and most of the distribution lies near smaller x. 

Conversely, smaller 𝛽̂  values yield a slower rise in the 

CDF, which implies heavier tails and a greater chance of 

larger x. This matches the suspicion from the PDF plot: 

lower 𝛽 stretches the distribution, while higher 𝛽 

compresses it. 

Mathematical properties of the PGM distribution 

This subsection presents the fundamental mathematical 

properties of the new distribution, which are required for 

understanding its behaviour and execute statistical 

inference.  

Let 𝑋 ∼ 𝑃𝐺𝑀(𝛽), then the rth raw moment is given by: 

𝐸(𝑋𝑟) = 𝜇𝑟 = ∫ 𝑥
𝑟𝑓(𝑥)𝑑𝑥

∞

0

 

             =
𝛽3

2(1 + 𝛽)
∫ 𝑥𝑟+1(𝑥 + 2)𝑒−𝛽𝑥𝑑𝑥

∞

0

 

𝜇𝑟

=
𝛽−𝑟(2𝛽Γ(2 + 𝑟) + Γ(3 + 𝑟))

2(1 + 𝛽)
                                    (3) 

Substituting 𝑟 =  1, 2, 3, 4 into equation (3) provides the 

first four raw moments as: 

𝜇1 =
3 + 2𝛽

𝛽 + 𝛽2
 

𝜇2 =
6(2 + 𝛽)

𝛽2(1 + 𝛽)
 

𝜇3 =
60 + 24𝛽

𝛽3 + 𝛽4
 

𝜇4 =
120(3 + 𝛽)

𝛽4(1 + 𝛽)
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The variance of X, coefficient of variation (CV), 

skewness and kurtosis are derived as follows: 

𝜎2 =
3 + 6𝛽 + 2𝛽2

𝛽2(1 + 𝛽)2
 

𝐶𝑉 =
√(3 + 6𝛽 + 2𝛽2)

𝛽(1 + 𝛽)(3 + 2𝛽)
 

𝑆𝑘 =
60 + 24𝛽

𝛽3(1 + 𝛽)(
3 + 6𝛽 + 2𝛽2

𝛽2(1 + 𝛽)2
)3 2⁄

 

𝐾𝑠 =
120(1 + 𝛽)3(3 + 𝛽)

(3 + 6𝛽 + 2𝛽2)2
 

 

Rényi entropy  

Rényi entropy measures the uncertainty in a probability 

distribution. For the PGM distribution, the Rényi entropy 

of order 𝛾 (where 𝛾 > 0 and 𝛾 ≠ 1) is given by: 

𝐻𝛾(𝑋) =
1

1 − 𝛾
log(∫ 𝑓𝛾(𝑥)𝑑𝑥

∞

0

) 

𝐻𝛾(𝑋) =
1

1 − 𝛾
log((

𝛽3

2(1 + 𝛽)
)

𝛾

∫ 𝑥𝛾(𝑥

∞

0

+ 2)𝛾𝑒−𝛾𝛽𝑥𝑑𝑥) 

𝐻𝛾(𝑋)

=
1

1 − 𝛾
log

(

  
 

(
𝛽3

2(1 + 𝛽)
)

𝛾

(𝛾𝛽) −(2𝛾+1)

∑(
𝛾

𝑘
) (2𝛾𝛽)𝑘𝛤(2𝛾 − 𝑘 + 1)

∞

𝑘=0 )

  
 
             (4) 

 

Order statistics 

Order statistics provide a fundamental framework for 

inference in reliability engineering and survival analysis. 

For a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 drawn independently 

from the PGM distribution, the extreme observations are 

defined as 𝑋(𝑛) = max (𝑋1, … , 𝑋𝑛) and 𝑋(1) = min (𝑋1
, … , 𝑋𝑛), representing the maximum and minimum 

values, respectively. The ordered sequence 𝑋(1) ≤ 𝑋(2) ≤

⋯ ≤ 𝑋(𝑛) represents the sorted observations. The 

probability density function of the kth order statistic 𝑋(𝑘)
 for the PGM distribution is given by: 

𝑓𝑋(𝑘)(𝑥) =  
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
 𝑓𝑋(𝑥)[𝐹𝑋(𝑥)]

𝑘−1[1

− 𝐹𝑋(𝑥)]
𝑛−𝑘                                    (5) 

Substituting (1) and (2) into equation (5), the PDF of 

𝑋(𝑘) is given as the following: 

𝑓𝑋(𝑘)(𝑥)

=  
𝑛! 𝛽3𝑥(𝑥 + 2)

(𝑘 − 1)! (𝑛 − 𝑘)! ∙ 2(1 + 𝛽)
[1

−
𝐷(𝑥)𝑒−β𝑥

2(1 + 𝛽)
]

𝑘−1

[
𝑒−𝑥𝛽(2 + 2(1 + 𝑥)𝛽 + 𝑥(2 + 𝑥)𝛽2)

2(1 + 𝛽)
]

𝑛−𝑘

 

𝑒−𝛽𝑥  ,                                                                                     (6) 
 

Where: 

𝐷(𝑥) = (𝛽2𝑥2 + 2𝛽𝑥(𝛽 + 1) + 2(1 + 𝛽 + 𝛽2)) 

Now, the PDF of 𝑋(1) and 𝑋(𝑛) respectively are given by 

: 

𝑓𝑋(1)(𝑥) =  
𝑛! 𝛽3𝑥(𝑥 + 2)

(𝑘 − 1)! (𝑛 − 𝑘)! ∙ 2(1 + 𝛽)
𝑒−𝛽𝑥 

[
𝑒−𝑥𝛽(2 + 2(1 + 𝑥)𝛽 + 𝑥(2 + 𝑥)𝛽2)

2(1 + 𝛽)
]

𝑛−1

                   (7) 

and  

𝑓𝑋(𝑛)(𝑥)

=  
𝑛! 𝛽3𝑥(𝑥 + 2)

(𝑘 − 1)! (𝑛 − 𝑘)! ∙ 2(1 + 𝛽)
𝑒−𝛽𝑥 [1

−
𝐷(𝑥)𝑒−β𝑥

2(1 + 𝛽)
]

𝑛−1

                                                               (8) 

 

Reliability Property 

The reliability characteristics of a probability distribution 

are typically examined through its survival function, 

𝑆(𝑥)  and hazard rate function, ℎ(𝑥),  which are derived 

as follows: 

𝑆(𝑥) = 1 − 𝐹(𝑥)

=
𝑒−𝑥𝛽(2 + 2(1 + 𝑥)𝛽 + 𝑥(2 + 𝑥)𝛽2)

2(1 + 𝛽)
 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
=

𝑥(2 + 𝑥)𝛽3

2 + 2(1 + 𝑥)𝛽 + 𝑥(2 + 𝑥)𝛽2
 

 
Figure 3: The Survival Function plots of the PGM 

Distribution for Different Values of 𝛽̂ 
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Figure 3 shows the survival function 𝑆(𝑥) = 1 − 𝐹(𝑥), 
which represents the probability that the random variable 

exceeds a given value of x. As expected, 𝑆(𝑥) starts at 1 

when 𝑥 = 0 and declines toward 0 as x increases. The rate 

of decline depends on 𝛽̂. Higher values of 𝛽̂ cause the 

survival probability drops steeply, reflecting shorter 

expected lifetimes or faster decay. Lower values of 𝛽̂ 

decline more gradually, indicating a higher likelihood of 

survival at larger x. This confirms the earlier findings: 

small 𝛽 leads to longer tails and higher persistence, while 

large β corresponds to shorter tails and quicker decay. 

 
Figure 4: The Hazard Function plots of the PGM 

Distribution for Different Values of 𝛽̂ 

 

1. Maximum Likelihood Estimation  

The parameters of the PGM distribution can be estimated 

using the method of maximum likelihood, which provides 

desirable asymptotic properties including consistency, 

efficiency and normality. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random 

sample of size n from the PGM distribution with 

probability density function given in Equation (1). The 

likelihood function is expressed as: 

𝐿(𝛽|𝑥1, . . . ,𝑥𝑛) =∏𝑓(𝑥𝑖 ; 𝛽)

𝑛

𝑖=1

 

=∏
𝛽3

2(1 + 𝛽)
𝑥𝑖(𝑥𝑖 + 2)𝑒

−𝛽𝑥𝑖

𝑛

𝑖=1

 

= (
𝛽3

2(1 + 𝛽)
)

𝑛

∏𝑥𝑖(𝑥𝑖 + 2)𝑒
−𝛽𝑥𝑖

𝑛

𝑖=1

                       (10) 

The corresponding log-likelihood function simplifies to: 

ℓ(𝛽) = 3𝑛𝑙𝑛(𝛽) − 𝑛𝑙𝑛2 − 𝑛𝑙𝑛(1 + 𝛽) +∑𝑙𝑛

𝑛

𝑖=1

𝑥𝑖

+∑𝑙𝑛

𝑛

𝑖=1

(𝑥𝑖 + 2) − 𝛽∑𝑥𝑖

𝑛

𝑖=1

      (11) 

To obtain the maximum likelihood estimate (MLE) of 𝛽, 

we differentiate the log-likelihood function with respect 

to 𝛽 and set the resulting expression to zero: 

∂ℓ(𝛽)

𝜕𝛽
=
3𝑛

𝛽
−

𝑛

1 + 𝛽
−∑𝑥𝑖

𝑛

𝑖=1

= 0            

This yields the estimating equation: 
3

𝛽
−

1

1 + 𝛽
− 𝑥̅ = 0 

Therefore, 

𝑥̅ =
3 + 2𝛽

𝛽(1 + 𝛽)
 

The maximum likelihood estimate 𝛽̂ is obtained by 

solving this nonlinear equation numerically using 

iterative methods such as Newton-Raphson or Brent's 

optimization, as no closed-form solution exists. The 

existence and uniqueness of the MLE are guaranteed 

for 𝑥̅ > 0, which corresponds to the condition where the 

empirical mean exceeds the theoretical lower bound of 

the distribution's support. 

The Fisher information matrix can be derived to construct 

asymptotic confidence intervals for the parameter β. The 

observed Fisher information is given by: 

𝐼(𝛽̂) = −
∂2ℓ(𝛽)

𝜕𝛽2
│𝛽=𝛽̂ =

3𝑛

𝛽̂2
−

𝑛

(1 + 𝛽̂)
2 

For large samples, the MLE, 𝛽̂,  follows approximately a 

normal distribution with mean 𝛽 and variance 𝐼−1(𝛽̂), 

enabling the construction of (1 − 𝛼)100% confidence 

intervals as  𝛽̂ ± 𝑍1−𝛼 2⁄ √𝐼
−1(𝛽̂), where 𝑍1−𝛼 2⁄  denotes 

the standard normal quantile. 

 

 

RESULTS AND DISCUSSION 

Simulation Study for MLE of the PGM Distribution 

In this section we conducted a comprehensive simulation 

study to evaluate the finite-sample performance of the 

MLE procedure for the PGM distribution. The essence of 

this is to assess the consistency, unbiasedness and 

efficiency of the parameter estimates across varying 

sample sizes. 

We employed Monte Carlo simulations with true 

parameter value 𝛽 =  0.5 and sample sizes ranging from 

𝑛 =  50…1000 in increments of 50. For each sample 

size configuration, N = 1000 independent replications 

were performed to ensure robust statistical inference. 

Random samples were generated from the PGM 

distribution using the inverse transform method, which 

involved numerically solving the quantile function 

through root-finding algorithms. 
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The parameter estimation was carried out using 

maximum likelihood estimation via the L-BFGS-B 

optimization algorithm, which efficiently handles 

boundary constraints to ensure parameter positivity. The 

performance of the estimation procedure was evaluated 

using multiple metrics: bias, mean squared error (MSE) 

and empirical standard deviation. 

Table 1: The results of the simulation study (for 𝜷 = 𝟎. 𝟓) 

n 𝛽̂ Bias MSE SD 

50 0.4885 -0.0115 0.0016 0.0386 

100 0.4839 -0.0161 0.0010 0.0273 

150 0.4846 -0.0154 0.0007 0.0223 

200 0.4843 -0.0157 0.0006 0.0191 

250 0.4841 -0.0159 0.0005 0.0167 

300 0.4826 -0.0174 0.0005 0.0150 

350 0.4831 -0.0169 0.0005 0.0142 

400 0.4833 -0.0167 0.0005 0.0137 

450 0.4834 -0.0166 0.0004 0.0124 

500 0.4833 -0.0167 0.0004 0.0120 

550 0.4835 -0.0165 0.0004 0.0114 

600 0.4834 -0.0166 0.0004 0.0106 

650 0.4835 -0.0165 0.0004 0.0105 

700 0.4841 -0.0159 0.0004 0.0101 

750 0.4833 -0.0167 0.0004 0.0095 

800 0.4828 -0.0172 0.0004 0.0094 

850 0.4833 -0.0167 0.0004 0.0090 

900 0.4830 -0.0170 0.0004 0.0089 

950 0.4834 -0.0166 0.0003 0.0083 

1000 0.4832 -0.0168 0.0003 0.0081 

The simulation study results for the PGM distribution, in 

Table 1 and Figures 5, show that as the sample size n 

increases from 50 to 1000, the mean estimates of 𝛽̂ 

remain close to the true value of 0.5, with a small negative 

bias that is approximately zero. The MSE and SD both 

declines steadily, reflecting improved estimator precision 

and efficiency sample size increases. These results 

confirm the asymptotic consistency of the estimators and 

improved estimation precision.  

 

Figure 5: The Bias, MSE and SD plots of the simulation study 
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Application to Real Dataset 

In this section we examine the practical performance of 

the proposed PGM distribution through empirical 

applications to three real-world datasets. The model's 

performance is evaluated against six well-established 

lifetime distributions to assess its comparative advantage 

in modelling reliability data. 

 

Dataset Descriptions 

The first datasets are about Fatigue life of 6061-T6 

aluminum coupons (Birnbaum and Saunders, 1969), 

containing 101 observations of aluminum specimens 

oscillated at 18 cycles per second with maximum stress 

per cycle of 31,000 psi. The second data are on Aircraft 

window glass strength (Edwin et al., 1994), consisting of 

31 measurements of glass strength from aircraft windows. 

This dataset characterizes material failure stresses and is 

particularly relevant for structural reliability analysis in 

aerospace applications. The third data are on the Glass 

fiber strength (Smith and Naylor, 1987), containing 63 

measurements of 1.5 cm glass fiber strength obtained at 

the National Physical Laboratory, England. This dataset 

represents material strength properties crucial for 

composite material design and failure analysis. 

Competing Models 

The following established probability distributions 

considered as competing lifetime models (Eliwa et al., 

2021): 

1] Exponentiated Half-Logistic (EHL) with CDF:  

𝐹𝐸𝐻𝐿(𝑥;  𝛽)  = (
1 − 𝑒−𝑥

1 + 𝑒−𝑥
)

𝛽

 ;   𝑥, 𝛽 >  0 

2] Generalized Half-Logistic (GHL) with CDF:  

𝐹𝐺𝐻𝐿(𝑥;  𝛽)  = 1 − (
2𝑒−𝑥

1 + 𝑒−𝑥
)

𝛽

 ;   𝑥, 𝛽 >  0 

3] Lindley (Li) with CDF:  

𝐹𝐿𝑖(𝑥;  𝛽) = 1 − (1 +
𝛽𝑥

1 + 𝛽
) 𝑒−𝛽𝑥  ;   𝑥, 𝛽 >  0 

4] Inverse Lindley (ILi) with CDF:  

𝐹𝐼𝐿𝑖(𝑥;  𝛽) = (1 +
𝛽

(1 + 𝛽)𝑥
) 𝑒−𝛽𝑥  ;   𝑥, 𝛽 >  0 

5] Transmuted Half-Logistic (THL) with CDF:  

𝐹𝑇𝐿𝑖(𝑥;  𝛽) =
(𝑒𝑥 − 1)(1 + 2𝛽 + 𝑒𝑥)

(1 + 𝑒𝑥)2
 ;   𝑥 > 0, |𝛽 | < 1 

6] Exponential (Exp) with CDF:  

𝐹𝐸𝑥𝑝(𝑥;  𝛽) = 1 − 𝑒
−𝛽𝑥 ;   𝑥 > 0, 𝛽 >  0 

Table 2: Results of MLEs and evaluation metrics for the datasets 

 Distribution Parameters 

(𝜷̂) 

LogLik AIC AICC BIC HQIC 

 

 

Dataset 1 

PGM 𝟎. 𝟎𝟒𝟑𝟑 -476.2584 954.5167 954.5575 957.1219 955.5711 

Lindley 0.0289 -491.5548 985.1097 985.1505 987.7148 986.1640 

GHL 0.0148 -521.4222 1044.8444 1044.8853 1047.4496 1045.8988 

Exponential 0.0147 -522.4350 1046.8700 1046.9108 1049.4752 1047.9244 

InverseLindley 10.013 -627.0265 1256.0530 1256.0938 1258.6582 1257.1074 

EHL 100.01 -6304.515 12611.031 12611.072 12613.636 12612.086 

 

 

Dataset 2 

PGM 0.0946 -121.0240 244.0479 244.1858 245.4819 244.5154 

Lindley 0.0630 -126.9942 255.9884 256.1263 257.4224 256.4558 

GHL 0.0332 -136.5591 275.1182 275.2561 276.5522 275.5856 

Exponential 0.0325 -137.2644 276.5289 276.6668 277.9629 276.9963 

InverseLindley 10.0013 -152.0199 306.0398 306.1778 307.4738 306.5073 

EHL 100.0103 -790.9062 1583.8123 1583.9503 1585.2463 1584.2798 

 

 

Dataset 3 

PGM 𝟏. 𝟓𝟖𝟒𝟏 -64.1453 130.2907 130.3563 132.4338 131.1336 

EHL 2.0665 -64.2956 130.5912 130.6568 132.7344 131.4341 

GHL 0.9785 -77.4963 156.9927 157.0583 159.1359 157.8356 

Lindley 0.9961 -81.2784 164.5568 164.6224 166.7000 165.3997 

InverseLindley 1.8947 -85.8945 173.7891 173.8547 175.9323 174.6320 

Exponential 0.6636 -88.8303 179.6606 179.7262 181.8037 180.5035 
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Table 2 shows the performance results of the proposed 

distribution in comparism with the competing existing 

ones using three datasets. The PGM distribution indicates 

superior performance compared to the competing 

distributions. For Dataset 1, the PGM model achieves the 

lowest AIC value (954.52), which significantly 

outperforms the Lindley (985.11), GHL (1044.84), 

Exponential (1046.87), Inverse Lindley (1256.05) and 

EHL (12611.03) distributions. Similarly, in Dataset 2, the 

PGM distribution maintains its leading position with an 

AIC of 244.05, followed by Lindley (255.99), GHL 

(275.12), Exponential (276.53), Inverse Lindley (306.04) 

and EHL (1583.81). The results from Dataset 3 reveal a 

more competitive perspective, the PGM distribution (AIC 

= 130.29) slightly edging out the EHL distribution (AIC 

= 130.59), while both substantially outperform the 

remaining models. Across all the information criteria: 

AIC, AICC, BIC and HQIC, the PGM distribution 

consistently ranks first. This demonstrates its robust 

fitting capability and parameter parsimony.  

CONCLUSION 

In this study, the Parsimonious Gamma Mixture 

distribution is introduced as a robust, one-parameter 

model for lifetime data analysis. The proposed 

distribution consistently outperforms established 

competitors, including Lindley, Generalized Half-

Logistic and Exponential models, across multiple 

materials science and engineering datasets, as evidenced 

by superior rankings in the metrics used. By integrating 

mixture-like flexibility within a single Gamma-based 

kernel, the PGM avoids over-parameterization while 

maintaining identifiability, closed-form statistical 

properties and interpretable tail behaviour governed by 

the parameter β. Maximum likelihood estimation of β 

demonstrates consistency and increasing precision with 

sample size via simulation study. The distribution is 

particularly well-suited for reliability applications, with 

future work recommended for extensions into regression 

frameworks, Bayesian implementations and censored 

data scenarios. 
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