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ABSTRACT

Lifetime distributions are salient statistical tools to model the different
characteristics of lifetime datasets. The statistical literature contains very modern
distributions to analyze these kinds of datasets. Nonetheless, these distributions
have many parameters, which cause a problem in the estimation step. To offer
fresh possibilities in modeling these kinds of datasets, we propose a
Parsimonious Gamma Mixture (PGM) distribution using a finite mixture of
Gamma distributions with parameter-dependent mixing weights. The proposed
distribution has only one parameter and simple mathematical forms. The
mathematical properties of the distributions, including moments, reliability
functions and order statistics, are studied in detail. The unknown model
parameter is estimated by using the maximum likelihood. The extensive
simulation study is used to study the performance of parameter estimation. To
convince the readers in favour of the proposed distribution, three real datasets
from engineering and materials science are analyzed and compared with
competitive models. Empirical findings show that the proposed one-parameter
lifetime distribution produces better results than the other similar existing
distributions. Its consistent achievement of the lowest AIC and BIC values
across all datasets confirms its enhanced ability to capture diverse data patterns
with remarkable parameter parsimony, making it a highly effective tool for
modelling reliability and survival data.
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INTRODUCTION Recognizing this, Lindley (1958) introduced a

The statistical analysis and modelling of lifetime data,
which is often referred to as survival or failure time
analysis, form a cornerstone of research across a diverse
areas of applied sciences: from the failure of mechanical
components in engineering to the survival of patients in
medical studies and from the time-to-default in financial
instruments to the duration of unemployment in
economics, the need to accurately model the time-to-
event is ever-present (Johnson et al., 1995; Mazucheli et
al., 2018; Aderoju, 2021; Aderoju et al., 2025a; Aderoju
et al., 2025b). The cardinal objective in these fields is not
merely to describe data but to understand underlying
failure mechanisms, evaluate reliability and inform
critical decision-making processes.

For decades, the classical exponential distribution, with
its memoryless property and constant hazard rate, served
as a foundational model due to its mathematical
simplicity. However, its assumption of a constant failure
rate is often a severe limitation when modelling real-
world phenomena, where components age or systems
improve over time.

distribution that offered more flexibility. This inspired a
renewed interest in developing more adaptable and
flexible lifetime models. As noted by Shanker et al.
(2015), the exponential and classical Lindley
distributions are often unsuitable for many real-life
datasets due to their restrictive shapes and hazard rate
functionalities.

This inadequacy has generated a significant movement in
statistical literature towards the creation of more flexible
probability distributions. A prominent strategy involves
the generalization of existing baseline models, often by
adding one or more shape parameters to enhance
flexibility (Marshall & Olkin, 2007; Aderoju, 2021).
While effective, this approach can lead to complex
models with challenging parameter estimation. In
contrast, the pursuit of parsimonious models remains a
central principle of statistical modelling. As eloquently
stated by one source, "the parsimony rule says the best
model is a model that requires fewer assumptions and/or
parameters"
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(Burnham & Anderson, 2002; Box & Jenkins, 1976). This
has driven the development of flexible one-parameter
distributions that strive to balance simplicity with the
flexibility needed to model complex data characteristics.
The methodology for creating these new one-parameter
distributions varies and is innovative. A common method
is finite mixture modelling, where a new distribution is
formed as a weighted combination of existing
distributions, such as the exponential and gamma
distributions. For instance, Ghitany et al. (2008)
introduced the Lindley distribution by mixing
exponential and gamma components. In line with this
approach, researchers have proposed several models,
such as the Samade (Aderoju, 2021), Power Hamza
(Aderoju and Jolayemi, 2022), Ishita (Shanker & Shukla,
2017) and Pranav (Shukla, 2018) distributions, Inverse
Power Rama (Chrisogonus et al., 2020), Inverse Power
Ishita (Shukla, 2021; Frederick et al., 2022) and Inverse
Power Hamza distributions (Frank et al., 2023; Omoruyi
et al., 2023). Other significant contributions through this
paradigm are the Power Generalized Akash (Aderoju &
Adeniyi, 2022), Power Hamza distribution (Aderoju &
Jolayemi, 2022), the New Generalized Gamma-Weibull
Distribution (Aleshinloye et al., 2023) and a novel variant
of the Rama distribution (Omoruyi et al., 2023). This line
of work also includes more recent contributions like the
New Extended Exponential-Gamma  Distribution
(Aderoju et al., 2025b) and the new two-parameter
generalized Lindley distribution (Aderoju et al., 2025a).
Each of these proposed models features distinct mixing
proportions and, consequently, unique resulting
properties. Other methods include transformations of
existing distributions, such as the unit-Lindley
distribution for data on the interval (0, 1) and the use of
generator families, like the odd Lindley-G family, to
introduce new flexibility with a single additional
parameter.

The advantages of one-parameter distributions are
numerous. They enable easier parameter estimation,
especially with smaller sample sizes and their
mathematical properties, such as moments, quantile
functions and hazard rates, are often more manageable.
Moreover, a simple formula for the mean allows for the
direct incorporation of covariates to model their average
effect on the response variable, allow the development of
simplified regression models as alternatives to more
complex counterparts like the Beta regression model
(Ferrari & Cribari-Neto, 2004).

In this dynamic context, the need for comparative studies
is essential. With many one-parameter distributions now
available, practitioners and researchers require clear
guidance on their relative performance. As different data
"sing their song," the quest to find the most suitable
probability distribution to capture all its variations is of
crucial (Eliwa et al., 2021). The primary motivation for
developing new distributions is often the hope that they
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will provide a superior fit for types of data, achieve
minimal error in forecasting and outperform existing
models.

In this paper, we introduce a novel one-parameter lifetime
distribution that adheres to the principle of parsimony: the
Parsimonious Gamma Mixture (PGM) Distribution. The
remaining sections of this study are organized as follows.
in Section 2, we derive the new model probability
distribution function. Its key mathematical properties
are presented in Section 3. Section 4 includes the
maximum  likelihood  estimation  procedure and
assessment of its performance through a simulation
study. Application of the model to real-life data is
presented in Section 5. Finally, the concluding remarks
are presented in Section 6.

MATERIALS AND METHODS

A novel continuous distribution, the Parsimonious
Gamma Mixture (PGM), is presented in this section.
The derivation vyields its probability density function,
establishing the PGM as a mixture of two gamma
distributions with a common rate parameter > 0.
Specifically, it combines Gamma (2, ) and Gamma (3,
B) components, with the mixing proportion functionally
dependent on B itself. The mixture distribution is of the
form:

f(x) = p1g1(x) + p2g2(x),
where

9:(x) ~ Gamma(2, B)

2

(1)

91() = oy xe™™ = frxe™, x>0
g.(x) ~ Gamma(3, B)
3 83
g(x) = F(3)xze‘3x = 7xze'3x, x,>0
and
__F
Pr=1%3

Wherep, +p, =1
Therefore, (1) becomes

3
f(X) = mX(X + Z)B_Bx

Note: This is a valid PDF because:

a) Itis non-negative for x > 0,8 > 0.

b) Itintegrates to one (since it is a mixture of two proper
PDFs with weights summing to 1).

C) The weight p; represents the probability that an

observation is generated from the first component,

Gamma (2, B). As the rate parameter /5 increases, the

mean of both component distributions (%and%)

decreases. The functional form p; () ensures that as the
distribution shifts towards smaller values (higher $), the
weight p; also increases. This creates a coherent system
where a single parameter B controls both the
scale and the mixture composition of the distribution.
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This link ensures that p; is automatically bounded
between O and 1 forall g > 0, satisfying the fundamental
requirement for a probability weight. Specifically:
lim. p1(B) =0 and Jim nB) =1

The PGM distribution emerges as a carefully constructed
one-parameter model derived from a finite mixture of two
Gamma components with shared scale parameters and
fixed shape parameters. This strategic parameterization
achieves an optimal balance between model simplicity
and distributional flexibility, enabling it to capture
diverse data patterns, including both decreasing and
unimodal hazard rates, while maintaining computational
compliance. Its closed-form cumulative distribution
function and moments, with its interpretable single
parameter that governs tail behaviour, make the PGM
particularly well-suited for reliability engineering and
lifetime data analysis, where avoiding
overparameterization without sacrificing fit quality is
key.
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Figure 1: The PDF plots of the PGM Distribution for
Different Values of §

Figure 1 shows the probability density function f(x) of
the PGM distribution for different values of the
parameter’s estimate. The curves are all unimodal,
meaning they rise from zero, reach a peak and then
decline exponentially as x increases. This behaviour
reflects how the parameter 8 controls the rate of decay
and the concentration of the density.

The corresponding cumulative distribution function

(CDF) is
F(x)
=1— (ﬁz_xz + ZﬂX(,B + 1) + 2(1 + ‘B + ﬁZ))e—Bx (2)

201+ p)
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Figure 2: The plots of the PGM Distribution’s CDF for
various values of the parameter

Figure 2 represents the F(x) plots, which increases from
0to 1 as x increases. For all values of 8, the CDFs rise at
different rates. Larger values of 8, make the CDF rise
more steeply, meaning probabilities accumulate faster
and most of the distribution lies near smaller x.
Conversely, smaller 8 values yield a slower rise in the
CDF, which implies heavier tails and a greater chance of
larger x. This matches the suspicion from the PDF plot:
lower B stretches the distribution, while higher g
compresses it.

Mathematical properties of the PGM distribution

This subsection presents the fundamental mathematical
properties of the new distribution, which are required for
understanding its behaviour and execute statistical
inference.

Let X ~ PGM(f3), then the r'" raw moment is given by:

E(X™) = 1y = f X7 F () dx

0

B [ _
=——— | x""(x + 2)e P*dx
2(1+ ‘B)bf

Ur
_BTT@Br(2+1)+T(B+1)) 3)
- 2(1+p)

Substituting r = 1, 2,3, 4 into equation (3) provides the
first four raw moments as:

3428
SV Py S
_6(2+p)
M2 = g2+ p)
60 +24f
#3_ ﬁ3+ﬁ4
1203+ B)
M =g+ p)
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The variance of X, coefficient of variation (CV),
skewness and kurtosis are derived as follows:

, 3+68+2p°
7 TR+ p)

JB+ 6B +2p7)
B+ B3 +25)

60 + 248
R 3+ 6B + 232

g1+ ﬂ)(*m1 T B)?

_ 1201+ B3 +B)

T (34 6B +2p2)2

CV =

Sk =
)3/2

Rényi entropy

Rényi entropy measures the uncertainty in a probability
distribution. For the PGM distribution, the Rényi entropy
of order y (where y > 0 and y # 1) is given by:

Hy(X) =

1 [oe]
Y
1_ylog ff (x)dx
0

1 2\ [
Hy(X)=1_ylog (2(1+ﬁ)) fx”(x
0

+2)Ye VP*dx

H, (X
() .
-(2y+1)
S i(y) @RI (2y — k +1) v
k
k=0

Order statistics

Order statistics provide a fundamental framework for
inference in reliability engineering and survival analysis.
For a random sample X3, X,, ..., X,, drawn independently
from the PGM distribution, the extreme observations are
defined as X(,,) = max (Xy, ..., Xp,) and X(;) = min (X;
, -, Xy), representing the maximum and minimum
values, respectively. The ordered sequence X1y < X5y <
-+ < Xy represents  the sorted observations. The
probability density function of the k™ order statistic X4,
for the PGM distribution is given by:

|

fxgo ) = Gk=Ditn—k)! fx O [Fx ()] [1

— Fx(0)]" " )
Substituting (1) and (2) into equation (5), the PDF of
X is given as the following:
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fx(k)(x)
3 n! B3x(x + 2)
- (k—l)!(n—k)!-2(1+ﬁ’)[1

D(x)e~B*]" [e—xﬁ(z +2(1+ 08 +x2 +0)O)"

201+ pB)

e Bx

2(1+p)
(6)

Where:
D(x) = (B2x® +2Bx(B+ 1) +2(1 + B + p?))
Now, the PDF of Xy and X, respectively are given by

n!B3x(x + 2)

iw® = G Drm - 2a p ¢

e 2 +2(1+x)B +x2+x)p)]" "

[ 2(1+p) ] 2
and
Fren @)

B n! B3x(x + 2) _px [1

T k=D —k) 20+ °

D(x)e~Px]"
21+ pB) ®

Reliability Property

The reliability characteristics of a probability distribution
are typically examined through its survival function,
S(x) and hazard rate function, h(x), which are derived
as follows:

Sx)=1-F(x)
e +2(1+ 0B +x(2 +x)B?)
B 2(1+pB)
B _fx) x(2+x)B?
™) =50 T Zr2a T 0f @ T 0p7
— =05
0 \ — p=0T5
o |~ — @:1.25
= B=15
Ko
0 [Ty]
0
o |
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Figure 3: The Survival Function plots of the PGM
Distribution for Different Values of
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Figure 3 shows the survival function S(x) =1 — F(x),
which represents the probability that the random variable
exceeds a given value of x. As expected, S(x) starts at 1
when x = 0 and declines toward 0 as x increases. The rate
of decline depends on f. Higher values of § cause the
survival probability drops steeply, reflecting shorter
expected lifetimes or faster decay. Lower values of j
decline more gradually, indicating a higher likelihood of
survival at larger x. This confirms the earlier findings:
small B leads to longer tails and higher persistence, while
large B corresponds to shorter tails and quicker decay.
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Figure 4: The Hazard Function plots of the PGM
Distribution for Different Values of

1. Maximum Likelihood Estimation

The parameters of the PGM distribution can be estimated
using the method of maximum likelihood, which provides
desirable asymptotic properties including consistency,
efficiency and normality. Let X;, X,, ..., X,, be a random
sample of sizenfrom the PGM distribution with
probability density function given in Equation (1). The
likelihood function is expressed as:

n

LBl = | [Fewp)
i=1

Lz +5) ————x;(x; + 2)e Pxi

3 n o
- (2(1[3—%)) [ [ +29e s (10)

The corresponding log-likelihood function simplifies to:

2(B) = 3nin(B) —nin2 —nin(1 + B) + Z Inx;

+Zln(xl +2)— 3le (1)
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To obtain the maximum likelihood estimate (MLE) of 3,
we differentiate the log-likelihood function with respect
to B and set the resulting expresswn to zero:

af’(ﬁ) 3n
= le =0
I 14 /3 4

This yields the estimating equation
3 1
g 1+ 70
Therefore,
_ 3+28
X=——

B(1+R)

The maximum likelihood estimate 3 is obtained by
solving this nonlinear equation numerically using
iterative methods such as Newton-Raphson or Brent's
optimization, as no closed-form solution exists. The
existence and uniqueness of the MLE are guaranteed
for x > 0, which corresponds to the condition where the
empirical mean exceeds the theoretical lower bound of
the distribution's support.

The Fisher information matrix can be derived to construct
asymptotic confidence intervals for the parameter . The
observed Fisher information is given by:
. 0%¢(B) 3n n

10)=-—5 lp-p =%~

op B (+p)
For large samples, the MLE, 8, follows approximately a
normal distribution with mean § and variance I-1(f),
enabling the construction of (1 — a)100% confidence

intervals as f + Z;_a;, [I71(B), where Z;_a/, denotes

the standard normal quantile.

RESULTS AND DISCUSSION
Simulation Study for MLE of the PGM Distribution

In this section we conducted a comprehensive simulation
study to evaluate the finite-sample performance of the
MLE procedure for the PGM distribution. The essence of
this is to assess the consistency, unbiasedness and
efficiency of the parameter estimates across varying
sample sizes.

We employed Monte Carlo simulations with true
parameter value § = 0.5 and sample sizes ranging from

= 50...1000 in increments of 50. For each sample
size configuration, N = 1000 independent replications
were performed to ensure robust statistical inference.
Random samples were generated from the PGM
distribution using the inverse transform method, which
involved numerically solving the quantile function
through root-finding algorithms.
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The parameter estimation was carried out using performance of the estimation procedure was evaluated
maximum likelihood estimation via the L-BFGS-B using multiple metrics: bias, mean squared error (MSE)
optimization algorithm, which efficiently handles and empirical standard deviation.

boundary constraints to ensure parameter positivity. The

Table 1: The results of the simulation study (for g = 0.5)

n B Bias MSE SD

50 0.4885 -0.0115 0.0016 0.0386
100 0.4839 -0.0161 0.0010 0.0273
150 0.4846 -0.0154 0.0007 0.0223
200 0.4843 -0.0157 0.0006 0.0191
250 0.4841 -0.0159 0.0005 0.0167
300 0.4826 -0.0174 0.0005 0.0150
350 0.4831 -0.0169 0.0005 0.0142
400 0.4833 -0.0167 0.0005 0.0137
450 0.4834 -0.0166 0.0004 0.0124
500 0.4833 -0.0167 0.0004 0.0120
550 0.4835 -0.0165 0.0004 0.0114
600 0.4834 -0.0166 0.0004 0.0106
650 0.4835 -0.0165 0.0004 0.0105
700 0.4841 -0.0159 0.0004 0.0101
750 0.4833 -0.0167 0.0004 0.0095
800 0.4828 -0.0172 0.0004 0.0094
850 0.4833 -0.0167 0.0004 0.0090
900 0.4830 -0.0170 0.0004 0.0089
950 0.4834 -0.0166 0.0003 0.0083
1000 0.4832 -0.0168 0.0003 0.0081

bias that is approximately zero. The MSE and SD both
The simulation study results for the PGM distribution, in  declines steadily, reflecting improved estimator precision
Table 1 and Figures 5, show that as the sample size n and efficiency sample size increases. These results
increases from 50 to 1000, the mean estimates of g confirm the asymptotic consistency of the estimators and
remain close to the true value of 0.5, with a small negative ~ improved estimation precision.

Bias
MSE
sD

A
\ -/F*'(Hr‘ \\/\vm i + S
Sambl-e Size (n) ) ) N Samplle:Slze {n) ‘ - : Samﬁle Size n)

Figure 5: The Bias, MSE and SD plots of the simulation study
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Application to Real Dataset 1] Exponentiated Half-Logistic (EHL) with CDF:
In this section we examine the practical performance of _ox\B
the proposed PGM distribution through empirical Feu(x; B) = <1 n e_x) ;x50 >0

applications to three real-world datasets. The model's
performance is evaluated against six well-established
lifetime distributions to assess its comparative advantag,%
in modelling reliability data.

Dataset Descriptions

The first datasets are about Fatigue life of 6061-T3;
aluminum coupons (Birnbaum and Saunders, 1969),
containing 101 observations of aluminum specimens
oscillated at 18 cycles per second with maximum stress
per cycle of 31,000 psi. The second data are on Aircraft
window glass strength (Edwin et al., 1994), consisting of
31 measurements of glass strength from aircraft window4]
This dataset characterizes material failure stresses and is
particularly relevant for structural reliability analysis in
aerospace applications. The third data are on the Glass
fiber strength (Smith and Naylor, 1987), containing 63
measurements of 1.5 cm glass fiber strength obtained ¢*
the National Physical Laboratory, England. This dataScJ

Generalized Half-Logistic (GHL) with CDF;

N
);x./>’>0

Feu(; B) =1-— (1 T e~

Lindley (Li) with CDF:

Bx
1+p

Fi(x; ﬁ)=1—(1+ )e—BX; x,f >0

Inverse Lindley (ILi) with CDF:

B

Fiilx; B) = <1 +m

)e‘ﬁx; x,8 >0

Transmuted Half-Logistic (THL) with CDF:
(e*-1)(1+28+e*)

JOBASR2026 4(1): 31-39

represents material strength properties crucial for Fp ;(x; B) = 5 ; x>0,p1<1
composite material design and failure analysis. (1+e%)
Competing Models 6] Exponential (Exp) with CDF:
Fep(x; p)=1—eP*; x>0, B >0
The following established probability distributions
considered as competing lifetime models (Eliwa et al.,
2021):
Table 2: Results of MLEs and evaluation metrics for the datasets
Distribution Parameters | LogLik AlC AICC BIC HQIC
B)
PGM 0.0433 -476.2584 | 954.5167 954.5575 957.1219 955.5711
Lindley 0.0289 -491.5548 | 985.1097 985.1505 087.7148 986.1640
Dataset1 | GHL 0.0148 -521.4222 | 1044.8444 | 1044.8853 | 1047.4496 | 1045.8988
Exponential 0.0147 -522.4350 | 1046.8700 | 1046.9108 | 1049.4752 | 1047.9244
InverseLindley 10.013 -627.0265 | 1256.0530 | 1256.0938 | 1258.6582 | 1257.1074
EHL 100.01 -6304.515 | 12611.031 | 12611.072 | 12613.636 | 12612.086
PGM 0.0946 -121.0240 | 244.0479 244.1858 245.4819 2445154
Lindley 0.0630 -126.9942 | 255.9884 256.1263 257.4224 256.4558
Dataset 2 | GHL 0.0332 -136.5591 | 275.1182 275.2561 276.5522 275.5856
Exponential 0.0325 -137.2644 | 276.5289 276.6668 277.9629 276.9963
InverseLindley 10.0013 -152.0199 | 306.0398 306.1778 307.4738 306.5073
EHL 100.0103 -790.9062 | 1583.8123 | 1583.9503 | 1585.2463 | 1584.2798
PGM 1.5841 -64.1453 130.2907 130.3563 132.4338 131.1336
EHL 2.0665 -64.2956 130.5912 130.6568 132.7344 131.4341
Dataset 3 | GHL 0.9785 -77.4963 156.9927 157.0583 159.1359 157.8356
Lindley 0.9961 -81.2784 164.5568 164.6224 166.7000 165.3997
InverseLindley 1.8947 -85.8945 173.7891 173.8547 175.9323 174.6320
Exponential 0.6636 -88.8303 179.6606 179.7262 181.8037 180.5035




A Novel Parsimonious Gamma Mixture ...

Table 2 shows the performance results of the proposed
distribution in comparism with the competing existing
ones using three datasets. The PGM distribution indicates
superior performance compared to the competing
distributions. For Dataset 1, the PGM model achieves the
lowest AIC value (954.52), which significantly
outperforms the Lindley (985.11), GHL (1044.84),
Exponential (1046.87), Inverse Lindley (1256.05) and
EHL (12611.03) distributions. Similarly, in Dataset 2, the
PGM distribution maintains its leading position with an
AIC of 244.05, followed by Lindley (255.99), GHL
(275.12), Exponential (276.53), Inverse Lindley (306.04)
and EHL (1583.81). The results from Dataset 3 reveal a
more competitive perspective, the PGM distribution (AIC
= 130.29) slightly edging out the EHL distribution (AIC
= 130.59), while both substantially outperform the
remaining models. Across all the information criteria:
AIC, AICC, BIC and HQIC, the PGM distribution
consistently ranks first. This demonstrates its robust
fitting capability and parameter parsimony.

CONCLUSION

In this study, the Parsimonious Gamma Mixture
distribution is introduced as a robust, one-parameter
model for lifetime data analysis. The proposed
distribution  consistently  outperforms  established
competitors, including Lindley, Generalized Half-
Logistic and Exponential models, across multiple
materials science and engineering datasets, as evidenced
by superior rankings in the metrics used. By integrating
mixture-like flexibility within a single Gamma-based
kernel, the PGM avoids over-parameterization while
maintaining identifiability, closed-form statistical
properties and interpretable tail behaviour governed by
the parameter . Maximum likelihood estimation of 3
demonstrates consistency and increasing precision with
sample size via simulation study. The distribution is
particularly well-suited for reliability applications, with
future work recommended for extensions into regression
frameworks, Bayesian implementations and censored
data scenarios.
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