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ABSTRACT

Credit card fraud detection remains a critical challenge due to highly class
imbalance, changing attack strategies, and the trade-off between recall and
precision. This study evaluates the performance of supervised algorithms and
ensemble methods (Random Forest, Gradient Boosting Machines (GBM), and
Stacking) on a real-world transaction dataset enhanced with temporal,
behavioral, and geographic features. A quantitative experimental design was
employed, incorporating domain-specific feature engineering and the Synthetic
Minority Oversampling Technique (SMOTE) to address imbalance. Models
were assessed using precision, recall, F1-score, balanced accuracy, and ROC-
AUC. Results show that ensemble models consistently outperformed single
classifiers. GBM achieved the highest recall (89.37%), balanced accuracy
(94.47%) and ROC-AUC (99.52%) on the imbalanced dataset with engineered
features, making it highly effective for minimizing undetected fraud, while
Stacking delivered superior precision (95.58%), accuracy (98.90%) and f1-score
(92.07%), highlighting its value in reducing false positives. Feature engineering
substantially improved recall and balanced accuracy in imbalanced scenarios,
while SMOTE enhanced recall for simpler models but sometimes reduced
precision. Overall, GBM with engineered features is best suited for real-time
fraud screening where recall is critical, whereas Stacking is more appropriate for
balanced contexts requiring equal emphasis on recall and precision. These
findings underscore the operational value of combining ensemble learning,
targeted feature engineering, and imbalance handling to strengthen fraud
detection in highly skewed datasets, offering practical guidance for financial
institutions seeking more reliable fraud prevention systems.

INTRODUCTION

Foremost among these is the class imbalance problem,

Financial fraud remains a pervasive and costly threat to
individuals, businesses, and financial institutions
worldwide. The proliferation of digital payment systems,
including credit card transactions, has accelerated the
frequency and scale of fraudulent activities, with global
losses estimated in the tens of billions of dollars annually
(Javelin Strategy & Research, 2022; Association of
Certified Fraud Examiners, 2023). Credit card fraud, in
particular, has emerged as one of the most common forms
of financial crime, driven by increased online commerce,
data breaches, and sophisticated fraud schemes (Chandola
etal., 2021).

Detecting such fraudulent activities presents a unique set
of challenges.

wherein fraudulent cases of transactions represent a very
small portion of the total transaction volume (Wang et
al.,). This imbalance skews model training toward the
majority (legitimate) class, leading to elevated false
negative rates (instances where fraudulent activities are
missed) (Joshi & Malik, 2025). Traditional methods for
detecting fraudulent transactions are struggling to keep
pace with the changing techniques employed by fraudsters
(Chy, 2024).

This study aims to compare selected supervised learning
methods on an imbalanced credit card dataset, evaluating
their effectiveness using accuracy, precision, recall, F1-
score, Balanced-Accuracy & ROC-AUC,
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to identify the optimal statistical learning approach for
accurately detecting fraudulent credit card transactions in
highly imbalanced datasets. The findings will contribute
to the discourse on statistical learning methods in fraud
detection and offer actionable insights for practitioners

Supervised learning algorithms have been widely
applied in fraud detection due to their ability to learn
classification boundaries from labeled historical data.
Logistic regression is easy to interpret and
computationally efficient, but it has difficulty in modeling
complex non-linear patterns. without additional feature
engineering (Christodoulou et al., 2019). Decision trees
can model non-linear relationships and are easy to
visualize, but they are prone to overfitting (particularly on
noisy datasets) unless techniques like pruning or ensemble
methods are applied (Halabaku & Bytyci, 2024). Support
Vector Machines (SVMs) excel in high-dimensional
spaces and can model non-linear boundaries through
kernel functions, but they require careful optimization of
parameters and can become computationally extensive
when applied to large datasets (Rezvani et al., 2024).

Ensemble techniques, which combine multiple
models to enhance predictive accuracy, have become
increasingly popular in detecting fraudulence transactions.
Bagging methods like Random Forest reduce variance and
improve robustness to noise (Du eta al., 2025). Boosting
methods like Gradient Boosting iteratively focus on
misclassified instances, often achieving higher precision
and recall (Imani et al., 2025). Stacking ensembles
leverage the predictions of diverse base learners to train a
meta-model, effectively capturing a wider range of data
patterns (Mienye & Sun,, 2022). Recent studies have
demonstrated that ensembles outperform single classifiers
in detecting subtle and complex fraud behaviors,
particularly in imbalanced datasets (Herath, 2025; Khan et
al., 2024).

The quality of input features plays a critical role
in the success of fraud detection models. Domain-specific
feature engineering such as constructing temporal features
(e.g., inter-transaction time), behavioral profiles (e.g.,
spending patterns), and spatial indicators (e.g., distance
between customer and merchant) can substantially
improve model sensitivity to fraud (Iseal et al., 2024;
Barnty, 2025). Moreover, hybrid approaches that integrate
engineered features with deep learning models achieve
superior detection performance in complex fraud
scenarios (Yu & Luo, 2025).

The extreme imbalance between fraudulent and
legitimate transactions is a core obstacle in fraud
detection. Various strategies have been proposed to
address this, including oversampling methods like
SMOTE (Synthetic Minority Oversampling Technique)
(Gupta et al., 2023), under sampling and cost-sensitive
learning (Makki et al., 2019), and anomaly detection
algorithms such as Isolation Forest and One-Class SVM
(Li et al., 2021). Studies combining ensemble learning
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with imbalance-handling techniques have reported
significant gains in detection rates without inflating false
positives (Khalid et al., 2024; ResearchGate Master’s
study, 2024).

While prior studies have addressed elements of supervised
learning, ensemble modeling, feature engineering, or
imbalance handling individually, few have integrated
these components into a unified and systematically
evaluated framework. This study advances the state of
knowledge by:

1. Integrating domain-specific features (including
behavioral, temporal, aggregated and geographic
attributes) derived from real-world credit card
transaction data.

2. Applying SMOTE to mitigate class imbalance
while preserving the distributional characteristics
of legitimate and fraudulent classes.

3. Conducting a comprehensive comparison of
baseline supervised learning algorithms and
advanced ensemble methods, evaluated using
multiple metrics that reflect operational realities.

4. Demonstrating empirically how the combined
use of engineered features, imbalance handling,
and ensemble learning yields significant
improvements in detection accuracy, recall, and
robustness over baseline approaches.

By bridging methodological advances in machine learning
with practical constraints in financial fraud detection, this
work contributes actionable insights for both academic
research and operational fraud prevention systems.

MATERIALS AND METHODS

Research Design

This study employs a quantitative research method to
assess the effectiveness of supervised and ensemble
learning methods in detecting fraudulent credit card
transactions. The workflow involved data preprocessing,
feature engineering, class imbalance handling, model
development, and performance evaluation. The design
ensured consistent conditions for model comparison,
allowing reliable assessment of the contribution of
ensemble methods and domain-specific features to fraud
detection performance.

Dataset Description

The data employed in this research was obtained from an
online repository
https://www.kaggle.com/datasets/kartik2 1 12/fraud—detec
tion. It contains 555,719 transaction records with 22
attributes covering demographic, temporal, geographic,
and transactional information. The target variable,
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is_fraud, is binary, with 1 indicating fraudulent and 0
indicating legitimate transactions.
Given the high-class imbalance (fraud cases = 2,145,
legitimate = 553,574), a 5% random sample of legitimate
transactions was selected, while all fraudulent transactions
were retained to avoid loss of critical minority-class
information. This resulted in a working dataset of 29,824
records. No missing values were present, ensuring data
completeness for modeling.
Key Features:
» Transaction metadata: Transaction date & time,
transaction  number, unix_time, amount,
merchant, category.

= Customer attributes: Gender, account number,
first name, last name, street, job, location (city,
zip, state, latitude, longitude), date of birth.

=  Merchant attributes:  Location

longitude).

(latitude,

= Geodemographics: City population.

Data Exploration
Data exploration was performed to understand data
structure, establish anomalies, and detect patterns relevant
to fraud detection:
= Class imbalance: Fraudulent transactions
represented only 7.19% of the dataset.

= Numerical features: Transaction amounts and
city population were right-skewed. Geographic
coordinates of cardholders and merchants were
often highly correlated, but larger distances
occasionally signaled fraud.

= Categorical features: Fraud rates varied across
merchants and transaction categories, with higher
fraud observed in shopping_net, grocery_pos,
and misc_net.

= Geographic and demographic indicators: Certain
smaller  cities and  states  exhibited
disproportionately high fraud rates relative to
transaction volume, indicating potential targeted
attacks.

Data Preprocessing
Handling Outliers: High-value outliers in the “amt”
feature were retained, as they may be indicative of fraud.
Encoding Categorical Variables:
e One-hot encoding for nominal variables such as
merchant category.

e Label encoding for ordinal-like variables (e.g.,
transaction hours).

Data Transformation: Skewed continuous features were
normally transformed, while all the numerical variables
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were scaled by employing Standard scaling to safeguard
comparability across features.

Train-Test Splitting: The dataset was divided into 75% for
training and 25% testing, with stratified sampling applied
to maintain the initial class distribution.

Addressing Class Imbalance
In addressing class imbalance, the Synthetic Minority
Oversampling Technique (SMOTE) was applied to the
training set, creating additional minority-class records
(fraud cases) by interpolating between existing minority
instances, thereby balancing the class (Yin et al., 2025).
Algorithm Steps:
i For each minority record x; identify its k-nearest
neighbors from the minority class.
ii. Randomly choose one neighbor xy;.
iii. Generate a new synthetic record using linear
interpolation:

Xnew = X + @ X (x; — x;)
Where; a ~ U(0,1) is a random number drawn from a
uniform distribution.
iv. Repeat until the desired class balance is achieved.

Class Distribution of Training Set Before Balancing

Frequency [Proportion]

Fraud

Figure 1: Class Distribution’s Plot Before Balancing

Class Distribution of Training Set After Balancing

0.5 4

0.4 4

0.3

0.29

Frequency [Proportion]

0.1+

0.0-

Fraud

Figure 2: Class Distribution’s Plot After Balancing
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Feature Engineering

Domain-specific feature engineering was performed to
improve the model’s capability to identify subtle fraud
patterns:

1. Behavioral features: Transaction frequency
within  defined time windows, average
transaction amount per customer, and time since
last transaction.

2. Temporal features: Transaction hour, day of
week, and working day/weekend

3. Geographic  features: Distance  between
cardholder and merchant using latitude and
longitude, and user in same city with merchant

4. Aggregated features: Rolling average transaction
amount, transaction frequency per day, and
standard deviation of amounts per user.

Model Development
1. Baseline Models:
i Logistic Regression (LR)
It models the probability that a transaction is
fraudulent, given the transaction’s features.
Mathematically:

P(Y =1/X) =

1
1 +e—(ﬁo+zj-’=1ﬁ,-xj>
Where; y (fraud=1, legitimate =0) is the target variable, S,
is the intercept, X; is the jth predictor and p; is the jth
coefficient for jth predictor.
ii. Support Vector Classifier (SVC)
It finds a decision boundary that maximizes
the margin between classes (fraudulence and
legitimate classes)

q
.1 24 C
min > Il w I+ ij
j=1
Subject to:

yilw.@(X;)+b) = 1-¢, § =0
Where; w is the weight vector, b is the bias, ¢; slack
variables for misclassifications, C is the penalty, and &(.)
is the kernel mapping function.

iii. Decision Tree Classifier (DTC)
It splits input variables into regions R,, and
predicts output variable (fraud) probability

within each region:
M

900 = D enIX €Ry)
m=1
Where; M is the number of leaf nodes, c,, is the predicted
class (fraud or legitimate) in region R,,, I(.) is the
indicator function, and R,,, are the terminal nodes defined
by a sequence of splitting conditions.
2. Ensemble Models:
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i. Random Forest (RF): Bagging-based ensemble
of multiple decision trees. The final prediction is
the majority vote:

Yrr(X) = mode{y,(X), b=1,2,..,B}
Where 9, (X) is the prediction of b™ tree.
ii. Gradient Boosting Machine (GBM): It
sequentially build tree models; each corrects the
errors of the preceding model. At phase j:

F(X) = F_y (X) + v. by(X)
Where; F;_; is the preceding model, h; is the
weak learner, and v is the learning rate. The weak
learner minimizes:

n
hj = arg mhinz L (yi, F_ (X)) + h(Xi))

i=1
With L(.) is the loss function.
Stacking Ensemble: Meta-learning framework
combining predictions from base leaners (LR,
SVC, RF, and GBM) using logistic regression as
the meta-learner.

Let base learners be {m,,m,,..,m,}. Their
predictions form new variables:
ZL' = (ml(Xi)' mZ(Xi)! ---!mn(Xi))
The meta-learner (h) produces the final
prediction:
ystacked(Xi) = h(Zz)

Models were implemented in Python using scikit-learn
libraries.

Model Validation and Hyperparameter Tuning

A 3-fold cross-validation strategy was employed on the
training set to reduce overfitting risk. Hyperparameters
were tuned using grid search for each model, optimizing
for PR-ROC due to the imbalanced nature of the data.

Evaluation Metrics
Given the imbalanced dataset, model performance was
assessed using:
i Accuracy: It measures the proportion of truly
classified cases among all cases.

TP+TN

TP+ TN + FP + FN
ii. Precision: It measures the proportion of classified

frauds that were truly fraudulent cases.
TP

TP + FP
Recall: It measures the proportion of true fraud

cases correctly detected.
TP

TP+ FN
F1-score: It balances precision and recall.
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Precision X Recall FP
— FPR =
Precision + Recall FP +TN .
V. AUC-ROC: It measures how well model can TP, TN, FP, and FN represent true positives, true
separate between fraudulent and non-fraudulent negatives, false positives, and false negatives

cases across all possible decision thresholds.

1

AUC_ROC =f TPR(FPR) d(FPR)
0

respectively.
These metrics deliver a multi-faceted view of model
performance that goes well beyond simple accuracy
(Ferrer, 2022; Swaminathan & Tantri, 2024).

Vi. Balanced Accuracy: Average of sensitivity and RESULTS AND DISCUSSION

specificity, mitigating class imbalance bias.

Recall + Specificity

2
Where;
erocificity — TN
pecificity = TN + FP
TPR —TP
" TP+FN

The presentations and observations/interpretations of the
results of four experimental scenarios: (i) Imbalanced
dataset without feature engineering, (ii) Balanced dataset
without feature engineering, (iii) Imbalanced dataset with
feature engineering and (iv) Balanced dataset with feature
engineering were made below

Performance was evaluated using accuracy, precision,
balanced accuracy, recall, F1-score, and ROC-AUC.

Table 1. Model performance on imbalanced dataset without feature engineering.

Model Accuracy Precision

LR 0.9650
SVM 0.9811
DT 0.9824
RF 0.9755
GBM 0.9836

Stacked 0.9848

Observation:

0.8481
0.8776
0.8932
0.9514
0.9075
0.9453

Balanced
Accuracy

Recall F1 Score ROC-AUC

0.8082 0.6250 0.7197 0.9614
0.9235 0.8563 0.8669 0.9810
0.9251 0.8582 0.8754 0.9370
0.8456 0.6940 0.8026 0.9839
0.9266 0.8601 0.8831 0.9654

0.9170 0.8377 0.8882 0.9871

Score (88.85%) and ROC-AUC (98.70%), while GBM has
the highest balanced accuracy and Recall (92.66% and

The Stacking ensemble achieved the highest accuracy 86.01% respectively).
(98.48%), higher balanced accuracy (91.78%), highest F1

Table 2. Model performance on balanced dataset without feature engineering.

Model Accuracy Precision
LR 0.8876 0.3798

SVM 0.9686 0.7459
DT 0.9776 0.8312
RF 0.9781 0.8255

GBM 0.9850 0.9030

Stacked 0.9858

Observation:

0.9300

Balanced
Accuracy

Recall F1 Score ROC-AUC

0.8887 0.8899 0.5324 0.9649
0.9160 0.8545 0.7965 0.9731
0.9251 0.8638 0.8472 0.9251
0.9340 0.8825 0.8530 0.9904
0.9394 0.8862 0.8945 0.9858

0.9312 0.8675 0.8977 0.9918

reduced precision sharply (84.81% — 37.98%). GBM
achieved the highest balanced accuracy (93.94%), while

Balancing increased recall for LR (62.50% — 88.99%) but  Stacked achieved highest in accuracy (98.58%), precision
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(93%), F1 score (89.77%) and ROC-AUC (99.18%) with

higher balanced accuracy (93.12%).
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Table 3. Model performance on imbalanced dataset with feature engineering.

Model Accuracy
LR 0.9749
SVM 0.9740
DT 0.9795
RF 0.9748
GBM 0.9883

Stacked 0.9890

Observation:

Feature engineering improved balanced accuracy and values of metrics across all models and scenarios were
recall for top ensemble models. GBM achieved the highest

Precision

0.8674
0.8783
0.8998
0.9833
0.9441
0.9558

0.8798
0.8664
0.8986
0.8298
0.9447
0.9424

AUC (99.52%), while Stacked achieved the best F1-score

Balanced
Accuracy

Recall

0.7687
0.7407
0.8041
0.6604
0.8937
0.8881

F1 Score

0.8150
0.8036
0.8493
0.7902
0.9167
0.9207

ROC-AUC

0.9876
0.9726
0.9747
0.9924
0.9952
0.9947

(92.07%) and accuracy (98.90%). However, the highest

recall (89.37%), balanced accuracy (94.47%) and ROC-

Table 4. Model performance on balanced dataset with feature engineering.

Model Accuracy
LR 0.9484
SVM 0.9545
DT 0.9730
RF 0.9453
GBM 0.9688

Stacked 0.9598

Observation:

Precision

0.8756
0.9227
0.8764
0.9923
0.9662
0.9720

0.6624
0.6993
0.8598
0.6203
0.7921
0.7262

1.0

Decision Tree delivered balanced results, with the highest

balanced accuracy (85.98%), recall (72.76%), F1-score 08 1

(79.51%), and accuracy (97.30%). GBM also performed

strongly, achieving the top ROC-AUC (99.27%) with high
precision. Although Random Forest showed exceptional
precision (99.23%), its very low recall limited its practical

True Positive Rate
o
o

o
»

use, confirming Decision Tree and GBM as the most

balanced performers.

0.2 4

0.0 4

Balanced
Accuracy

Recall

0.3284
0.4011
0.7276
0.2407
0.5858
0.4534

F1 Score

0.4776
0.5592
0.7951
0.3874
0.7294
0.6183

achieved among GBM and Stacking in this scenario.

ROC-AUC

0.9428
0.9147
0.9015
0.9792
0.9927
0.9831

ROC Curves — Imbalanced without Feature Engineering Models

P

— LR (AUC=0.9614)

SVC (AUC=0.9810)
—— DT (AUC=0.9370)
— RF (AUC=0.9839)
—— GBM (AUC=0.9654)
—— Stacking (AUC=0.9871)
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Figure 3: ROC Curves on raw dataset
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ROC Curves — Balanced without Feature Engineering Models

1.0+

0.8 A

=4
o
L

True Positive Rate

o
'S
L

S~ — LR (AUC=0.9649)
SVC (AUC=0.9731)
- —— DT (AUC=0.9251)
Iy —— RF (AUC=0.9904)
- —— GBM (AUC=0.9858)
—— Stacking (AUC=0.9918)

0.2 A i

0.0 1

T T T T
0.4 0.6 0.8 10

False Positive Rate

0.‘0 0.‘2
Figure 4: ROC Curves on Balanced dataset without
Feature Engineering Models

ROC Curves — Imbalanced with Feature Engineering Models
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Figure 5: ROC Curves on Imbalanced dataset with Feature
Engineering
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Figure 6: ROC Curves on Balanced dataset with Feature
Engineering
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Interpretations:

Figures 3-6 show that, without feature engineering,
ensemble models (GBM, Random Forest, and Stacking)
outperform simpler classifying models (Logistic
Regression, Support Vector Classifier and Decision Tree
Classifier). With feature engineering, all models improve
significantly, with ensemble models achieving near
perfect AUCs (>0.99). However, ensemble models benefit
from balancing with feature engineering but reduces the
performance of simpler models. Overall, feature
engineering drives the largest gains, while ensemble
methods remain the most reliable for fraudulent cases
detection.

The findings of this study underscore the critical
role of both feature engineering and ensemble learning in
improving the accuracy and robustness of credit card fraud
detection. Across all four experimental scenarios,
ensemble methods consistently outperformed baseline
models. This is consistent with prior studies showing that
ensembles can effectively capture complex, non-linear
fraud patterns and mitigate the limitations of single
classifiers (Herath, 2025; Khan et al., 2024).

The results also reveal that feature engineering provides
the greatest performance gains, improving recall, balanced
accuracy, and ROC-AUC across almost all models. In the
imbalanced dataset with engineered features, GBM
achieved the highest recall (89.37%) and ROC-AUC
(0.9952), while Stacking achieved the best precision
(95.58%) and accuracy (98.90%). These findings
highlight the value of incorporating domain-specific
behavioral, temporal, and geographic attributes in
capturing the subtle signals of fraudulent activity. Similar
findings have been reported in other fields, where simple
classifier such as SVM and Decision Tree were
recommended for prediction tasks, such as predicting
user’s satisfaction in e-learning system (Imrana et al.,
2025).

The role of data balancing was more nuanced. When
applied without feature engineering, balancing improved
minority class detection and lifted recall, especially for
Logistic Regression. However, when combined with
feature engineering, balancing benefited ensemble models
but reduced the performance of simpler classifiers such as
Logistic Regression and SVC. This suggests that while
resampling techniques (SMOTE) are valuable for
addressing severe class imbalance, their benefits may
diminish when rich engineered features already capture
fraud-specific patterns. This mixed effect aligns with
earlier studies cautioning that oversampling can introduce
noise if not carefully tuned (Makki et al., 2019).

From an operational view, these findings have several
implications. First, financial institutions should prioritize
feature engineering pipelines that incorporate temporal,
behavioral, and geographic patterns into fraud detection
models. Second, ensemble learning methods, particularly
GBM and Stacking, should be favored in production
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systems given their superior precision, recall, and ROC-
AUC. Third, balancing techniques should be applied
selectively, especially when feature-rich datasets are
available, as indiscriminate oversampling may harm
performance for some models.

Overall, the study demonstrates that integrating ensemble
learning, feature engineering, and targeted imbalance
handling vyields substantial improvements in fraud
detection compared to traditional baselines.

CONCLUSION

This study identified the optimal statistical learning
approach for detecting fraudulent credit card transactions
in highly imbalanced datasets by comparing supervised
algorithms and ensemble methods across four scenarios
(imbalanced and balanced datasets, with and without
domain-specific feature engineering). Ensemble models,
particularly Gradient Boosting Machines (GBM) and
Stacked ensembles, consistently outperformed single
classifiers, while Decision Tree showed competitive
results under balanced training with feature engineering.
Feature engineering notably improved recall and balanced
accuracy in imbalanced datasets, whereas balancing
enhanced recall for simpler models but often reduced
precision.

Overall, GBM with engineered features on the imbalanced
dataset emerged as the most effective configuration for
maximizing recall and balanced accuracy, making it well-
suited for real-time fraud detection. Stacked ensembles
proved more appropriate for balanced datasets or use cases
requiring equal emphasis on precision and recall. These
findings provide a validated evaluation framework and
actionable guidance for operational fraud detection.
Future research should explore hybrid approaches
combining deep learning with domain-specific feature
engineering, and incremental learning mechanisms to
further strengthen fraud detection in dynamic and high-
volume environments.
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