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ABSTRACT 

Credit card fraud detection remains a critical challenge due to highly class 

imbalance, changing attack strategies, and the trade-off between recall and 

precision. This study evaluates the performance of supervised algorithms and 

ensemble methods (Random Forest, Gradient Boosting Machines (GBM), and 

Stacking) on a real-world transaction dataset enhanced with temporal, 

behavioral, and geographic features. A quantitative experimental design was 

employed, incorporating domain-specific feature engineering and the Synthetic 

Minority Oversampling Technique (SMOTE) to address imbalance. Models 

were assessed using precision, recall, F1-score, balanced accuracy, and ROC-

AUC. Results show that ensemble models consistently outperformed single 

classifiers. GBM achieved the highest recall (89.37%), balanced accuracy 

(94.47%) and ROC-AUC (99.52%) on the imbalanced dataset with engineered 

features, making it highly effective for minimizing undetected fraud, while 

Stacking delivered superior precision (95.58%), accuracy (98.90%) and f1-score 

(92.07%), highlighting its value in reducing false positives. Feature engineering 

substantially improved recall and balanced accuracy in imbalanced scenarios, 

while SMOTE enhanced recall for simpler models but sometimes reduced 

precision. Overall, GBM with engineered features is best suited for real-time 

fraud screening where recall is critical, whereas Stacking is more appropriate for 

balanced contexts requiring equal emphasis on recall and precision. These 

findings underscore the operational value of combining ensemble learning, 

targeted feature engineering, and imbalance handling to strengthen fraud 

detection in highly skewed datasets, offering practical guidance for financial 

institutions seeking more reliable fraud prevention systems. 

 
 

INTRODUCTION 

Financial fraud remains a pervasive and costly threat to 

individuals, businesses, and financial institutions 

worldwide. The proliferation of digital payment systems, 

including credit card transactions, has accelerated the 

frequency and scale of fraudulent activities, with global 

losses estimated in the tens of billions of dollars annually 

(Javelin Strategy & Research, 2022; Association of 

Certified Fraud Examiners, 2023). Credit card fraud, in 

particular, has emerged as one of the most common forms 

of financial crime, driven by increased online commerce, 

data breaches, and sophisticated fraud schemes (Chandola 

et al., 2021). 

Detecting such fraudulent activities presents a unique set 

of challenges.  

 

 

 

 

 

 

 

Foremost among these is the class imbalance problem, 

wherein fraudulent cases of transactions represent a very 

small portion of the total transaction volume (Wang et 

al.,). This imbalance skews model training toward the 

majority (legitimate) class, leading to elevated false 

negative rates (instances where fraudulent activities are 

missed) (Joshi & Malik, 2025). Traditional methods for 

detecting fraudulent transactions are struggling to keep 

pace with the changing techniques employed by fraudsters 

(Chy, 2024). 

This study aims to compare selected supervised learning 

methods on an imbalanced credit card dataset, evaluating 

their effectiveness using accuracy, precision, recall, F1-

score, Balanced-Accuracy & ROC-AUC,  
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to identify the optimal statistical learning approach for 

accurately detecting fraudulent credit card transactions in 

highly imbalanced datasets. The findings will contribute 

to the discourse on statistical learning methods in fraud 

detection and offer actionable insights for practitioners 

Supervised learning algorithms have been widely 

applied in fraud detection due to their ability to learn 

classification boundaries from labeled historical data. 

Logistic regression is easy to interpret and 

computationally efficient, but it has difficulty in modeling 

complex non-linear patterns. without additional feature 

engineering (Christodoulou et al., 2019). Decision trees 

can model non-linear relationships and are easy to 

visualize, but they are prone to overfitting (particularly on 

noisy datasets) unless techniques like pruning or ensemble 

methods are applied (Halabaku & Bytyçi, 2024). Support 

Vector Machines (SVMs) excel in high-dimensional 

spaces and can model non-linear boundaries through 

kernel functions, but they require careful optimization of 

parameters and can become computationally extensive 

when applied to large datasets (Rezvani et al., 2024).  

Ensemble techniques, which combine multiple 

models to enhance predictive accuracy, have become 

increasingly popular in detecting fraudulence transactions. 

Bagging methods like Random Forest reduce variance and 

improve robustness to noise (Du eta al., 2025). Boosting 

methods like Gradient Boosting iteratively focus on 

misclassified instances, often achieving higher precision 

and recall (Imani et al., 2025). Stacking ensembles 

leverage the predictions of diverse base learners to train a 

meta-model, effectively capturing a wider range of data 

patterns (Mienye & Sun,, 2022). Recent studies have 

demonstrated that ensembles outperform single classifiers 

in detecting subtle and complex fraud behaviors, 

particularly in imbalanced datasets (Herath, 2025; Khan et 

al., 2024). 

The quality of input features plays a critical role 

in the success of fraud detection models. Domain-specific 

feature engineering such as constructing temporal features 

(e.g., inter-transaction time), behavioral profiles (e.g., 

spending patterns), and spatial indicators (e.g., distance 

between customer and merchant) can substantially 

improve model sensitivity to fraud (Iseal et al., 2024; 

Barnty, 2025). Moreover, hybrid approaches that integrate 

engineered features with deep learning models achieve 

superior detection performance in complex fraud 

scenarios (Yu & Luo, 2025).  

The extreme imbalance between fraudulent and 

legitimate transactions is a core obstacle in fraud 

detection. Various strategies have been proposed to 

address this, including oversampling methods like 

SMOTE (Synthetic Minority Oversampling Technique) 

(Gupta et al., 2023), under sampling and cost-sensitive 

learning (Makki et al., 2019), and anomaly detection 

algorithms such as Isolation Forest and One-Class SVM 

(Li et al., 2021). Studies combining ensemble learning 

with imbalance-handling techniques have reported 

significant gains in detection rates without inflating false 

positives (Khalid et al., 2024; ResearchGate Master’s 

study, 2024). 

While prior studies have addressed elements of supervised 

learning, ensemble modeling, feature engineering, or 

imbalance handling individually, few have integrated 

these components into a unified and systematically 

evaluated framework. This study advances the state of 

knowledge by: 

1. Integrating domain-specific features (including 

behavioral, temporal, aggregated and geographic 

attributes) derived from real-world credit card 

transaction data. 

2. Applying SMOTE to mitigate class imbalance 

while preserving the distributional characteristics 

of legitimate and fraudulent classes. 

3. Conducting a comprehensive comparison of 

baseline supervised learning algorithms and 

advanced ensemble methods, evaluated using 

multiple metrics that reflect operational realities. 

4. Demonstrating empirically how the combined 

use of engineered features, imbalance handling, 

and ensemble learning yields significant 

improvements in detection accuracy, recall, and 

robustness over baseline approaches. 

By bridging methodological advances in machine learning 

with practical constraints in financial fraud detection, this 

work contributes actionable insights for both academic 

research and operational fraud prevention systems. 

 

MATERIALS AND METHODS 

 

Research Design 

This study employs a quantitative research method to 

assess the effectiveness of supervised and ensemble 

learning methods in detecting fraudulent credit card 

transactions. The workflow involved data preprocessing, 

feature engineering, class imbalance handling, model 

development, and performance evaluation. The design 

ensured consistent conditions for model comparison, 

allowing reliable assessment of the contribution of 

ensemble methods and domain-specific features to fraud 

detection performance. 

 

Dataset Description 

The data employed in this research was obtained from an 

online repository 

https://www.kaggle.com/datasets/kartik2112/fraud−detec

tion. It contains 555,719 transaction records with 22 

attributes covering demographic, temporal, geographic, 

and transactional information. The target variable, 
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is_fraud, is binary, with 1 indicating fraudulent and 0 

indicating legitimate transactions. 

Given the high-class imbalance (fraud cases = 2,145, 

legitimate = 553,574), a 5% random sample of legitimate 

transactions was selected, while all fraudulent transactions 

were retained to avoid loss of critical minority-class 

information. This resulted in a working dataset of 29,824 

records. No missing values were present, ensuring data 

completeness for modeling. 

Key Features: 

▪ Transaction metadata: Transaction date & time, 

transaction number, unix_time, amount, 

merchant, category. 

▪ Customer attributes: Gender, account number, 

first name, last name, street, job, location (city, 

zip, state, latitude, longitude), date of birth. 

▪ Merchant attributes: Location (latitude, 

longitude). 

▪ Geodemographics: City population. 

Data Exploration 

Data exploration was performed to understand data 

structure, establish anomalies, and detect patterns relevant 

to fraud detection: 

▪ Class imbalance: Fraudulent transactions 

represented only 7.19% of the dataset. 

▪ Numerical features: Transaction amounts and 

city population were right-skewed. Geographic 

coordinates of cardholders and merchants were 

often highly correlated, but larger distances 

occasionally signaled fraud. 

▪ Categorical features: Fraud rates varied across 

merchants and transaction categories, with higher 

fraud observed in shopping_net, grocery_pos, 

and misc_net. 

▪ Geographic and demographic indicators: Certain 

smaller cities and states exhibited 

disproportionately high fraud rates relative to 

transaction volume, indicating potential targeted 

attacks. 

Data Preprocessing 

Handling Outliers: High-value outliers in the “amt” 

feature were retained, as they may be indicative of fraud. 

Encoding Categorical Variables: 

• One-hot encoding for nominal variables such as 

merchant category. 

• Label encoding for ordinal-like variables (e.g., 

transaction hours). 

Data Transformation: Skewed continuous features were 

normally transformed, while all the numerical variables 

were scaled by employing Standard scaling to safeguard 

comparability across features. 

Train-Test Splitting: The dataset was divided into 75% for 

training and 25% testing, with stratified sampling applied 

to maintain the initial class distribution. 

 

Addressing Class Imbalance 

In addressing class imbalance, the Synthetic Minority 

Oversampling Technique (SMOTE) was applied to the 

training set, creating additional minority-class records 

(fraud cases) by interpolating between existing minority 

instances, thereby balancing the class (Yin et al., 2025).  

Algorithm Steps: 

i. For each minority record 𝑥𝑗 identify its k-nearest 

neighbors from the minority class. 

ii. Randomly choose one neighbor 𝑥𝑘𝑖 . 

iii. Generate a new synthetic record using linear 

interpolation: 

𝑥𝑁𝑒𝑤 = 𝑥𝑗 + 𝛼 × (𝑥𝑘𝑗 − 𝑥𝑗) 

 Where; 𝛼 ∼ 𝑈(0,1) is a random number drawn from a 

uniform distribution. 

iv. Repeat until the desired class balance is achieved. 

v.  

Figure 1: Class Distribution’s Plot Before Balancing 

 

 Figure 2: Class Distribution’s Plot After Balancing 
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Feature Engineering 

Domain-specific feature engineering was performed to 

improve the model’s capability to identify subtle fraud 

patterns: 

1. Behavioral features: Transaction frequency 

within defined time windows, average 

transaction amount per customer, and time since 

last transaction. 

2. Temporal features: Transaction hour, day of 

week, and working day/weekend 

3. Geographic features: Distance between 

cardholder and merchant using latitude and 

longitude, and user in same city with merchant 

4. Aggregated features: Rolling average transaction 

amount, transaction frequency per day, and 

standard deviation of amounts per user. 

Model Development 

1. Baseline Models:  

i. Logistic Regression (LR) 

It models the probability that a transaction is 

fraudulent, given the transaction’s features. 

Mathematically: 

𝑃(𝑌 = 1 𝑋⁄ ) =
1

1 + 𝑒
−(𝛽0+∑ 𝛽𝑗𝑋𝑗)

𝑞
𝑗=1

 

Where; y (fraud=1, legitimate =0) is the target variable, 𝛽0 

is the intercept, 𝑋𝑗 is the jth predictor and 𝛽𝑗 is the jth 

coefficient for jth predictor. 

ii.  Support Vector Classifier (SVC) 

It finds a decision boundary that maximizes 

the margin between classes (fraudulence and 

legitimate classes) 

min
𝑤,𝑏,𝜉

1

2
∥ 𝑤 ∥2+ 𝐶 ∑ 𝜉𝑗

𝑞

𝑗=1

 

Subject to: 

𝑦𝑖(𝑤. Φ(𝑋𝑗) + 𝑏) ≥ 1 − 𝜉𝑗 ,              𝜉𝑗 ≥ 0 

Where; w is the weight vector, b is the bias, 𝜉𝑗 slack 

variables for misclassifications, C is the penalty, and Φ(. ) 

is the kernel mapping function. 

 

iii. Decision Tree Classifier (DTC) 

It splits input variables into regions 𝑅𝑚 and 

predicts output variable (fraud) probability 

within each region: 

𝑦̂(𝑋) =  ∑ 𝑐𝑚 . 𝕀(𝑋 ∈ 𝑅𝑚)

𝑀

𝑚=1

 

Where; 𝑀 is the number of leaf nodes, 𝑐𝑚 is the predicted 

class (fraud or legitimate) in region 𝑅𝑚, 𝕀(. ) is the 

indicator function, and 𝑅𝑚 are the terminal nodes defined 

by a sequence of splitting conditions. 

2. Ensemble Models: 

i. Random Forest (RF): Bagging-based ensemble 

of multiple decision trees. The final prediction is 

the majority vote: 

𝑦̂𝑅𝐹(𝑋) = 𝑚𝑜𝑑𝑒{𝑦̂𝑏(𝑋), 𝑏 = 1, 2, … , 𝐵} 

Where 𝑦̂𝑏(𝑋) is the prediction of bth tree. 

ii. Gradient Boosting Machine (GBM): It 

sequentially build tree models; each corrects the 

errors of the preceding model. At phase j:  

𝐹𝑗(𝑋) = 𝐹𝑗−1(𝑋) + 𝑣. ℎ𝑗(𝑋) 

Where; 𝐹𝑗−1 is the preceding model, ℎ𝑗 is the 

weak learner, and 𝑣 is the learning rate. The weak 

learner minimizes: 

ℎ𝑗 = arg min
ℎ

∑ 𝐿 (𝑦𝑖 , 𝐹𝑗−1(𝑋𝑖) + ℎ(𝑋𝑖))

𝑛

𝑖=1

 

With 𝐿(. ) is the loss function. 

iii. Stacking Ensemble: Meta-learning framework 

combining predictions from base leaners (LR, 

SVC, RF, and GBM) using logistic regression as 

the meta-learner. 

Let base learners be {𝑚1, 𝑚2, … , 𝑚𝑛}. Their 

predictions form new variables: 

𝑍𝑖 = (𝑚1(𝑋𝑖),  𝑚2(𝑋𝑖), … , 𝑚𝑛(𝑋𝑖)) 

The meta-learner (ℎ) produces the final 

prediction: 

𝑦̂𝑠𝑡𝑎𝑐𝑘𝑒𝑑(𝑋𝑖) = ℎ(𝑍𝑖) 

Models were implemented in Python using scikit-learn 

libraries. 

 

Model Validation and Hyperparameter Tuning 

A 3-fold cross-validation strategy was employed on the 

training set to reduce overfitting risk. Hyperparameters 

were tuned using grid search for each model, optimizing 

for PR-ROC due to the imbalanced nature of the data. 

 

Evaluation Metrics 

Given the imbalanced dataset, model performance was 

assessed using: 

i. Accuracy: It measures the proportion of truly 

classified cases among all cases. 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

ii. Precision: It measures the proportion of classified 

frauds that were truly fraudulent cases. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

iii. Recall: It measures the proportion of true fraud 

cases correctly detected. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

iv. F1-score: It balances precision and recall. 
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2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

v. AUC-ROC: It measures how well model can 

separate between fraudulent and non-fraudulent 

cases across all possible decision thresholds. 

𝐴𝑈𝐶_𝑅𝑂𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅) 𝑑(𝐹𝑃𝑅)
1

0

 

vi. Balanced Accuracy: Average of sensitivity and 

specificity, mitigating class imbalance bias. 

 
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

Where;  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

TP, TN, FP, and FN represent true positives, true 

negatives, false positives, and false negatives 

respectively. 

These metrics deliver a multi-faceted view of model 

performance that goes well beyond simple accuracy 

(Ferrer, 2022; Swaminathan & Tantri, 2024). 

RESULTS AND DISCUSSION 

The presentations and observations/interpretations of the 

results of four experimental scenarios: (i) Imbalanced 

dataset without feature engineering, (ii) Balanced dataset 

without feature engineering, (iii) Imbalanced dataset with 

feature engineering and (iv) Balanced dataset with feature 

engineering were made below 

Performance was evaluated using accuracy, precision, 

balanced accuracy, recall, F1-score, and ROC-AUC. 

 

Table 1. Model performance on imbalanced dataset without feature engineering.

 

Model Accuracy Precision
Balanced 

Accuracy
Recall F1 Score ROC-AUC

LR 0.9650 0.8481 0.8082 0.6250 0.7197 0.9614

SVM 0.9811 0.8776 0.9235 0.8563 0.8669 0.9810

DT 0.9824 0.8932 0.9251 0.8582 0.8754 0.9370

RF 0.9755 0.9514 0.8456 0.6940 0.8026 0.9839

GBM 0.9836 0.9075 0.9266 0.8601 0.8831 0.9654

Stacked 0.9848 0.9453 0.9170 0.8377 0.8882 0.9871

 

Observation: 

The Stacking ensemble achieved the highest accuracy 

(98.48%), higher balanced accuracy (91.78%), highest F1 

Score (88.85%) and ROC-AUC (98.70%), while GBM has 

the highest balanced accuracy and Recall (92.66% and 

86.01% respectively). 

 

Table 2. Model performance on balanced dataset without feature engineering. 

Model Accuracy Precision
Balanced 

Accuracy
Recall F1 Score ROC-AUC

LR 0.8876 0.3798 0.8887 0.8899 0.5324 0.9649

SVM 0.9686 0.7459 0.9160 0.8545 0.7965 0.9731

DT 0.9776 0.8312 0.9251 0.8638 0.8472 0.9251

RF 0.9781 0.8255 0.9340 0.8825 0.8530 0.9904

GBM 0.9850 0.9030 0.9394 0.8862 0.8945 0.9858

Stacked 0.9858 0.9300 0.9312 0.8675 0.8977 0.9918

 

Observation: 

Balancing increased recall for LR (62.50% → 88.99%) but 

reduced precision sharply (84.81% → 37.98%). GBM 

achieved the highest balanced accuracy (93.94%), while 

Stacked achieved highest in accuracy (98.58%), precision 
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(93%), F1 score (89.77%) and ROC-AUC (99.18%) with 

higher balanced accuracy (93.12%). 

 

 

 

Table 3. Model performance on imbalanced dataset with feature engineering. 

 

Model Accuracy Precision
Balanced 

Accuracy
Recall F1 Score ROC-AUC

LR 0.9749 0.8674 0.8798 0.7687 0.8150 0.9876

SVM 0.9740 0.8783 0.8664 0.7407 0.8036 0.9726

DT 0.9795 0.8998 0.8986 0.8041 0.8493 0.9747

RF 0.9748 0.9833 0.8298 0.6604 0.7902 0.9924

GBM 0.9883 0.9441 0.9447 0.8937 0.9167 0.9952

Stacked 0.9890 0.9558 0.9424 0.8881 0.9207 0.9947  
 

Observation: 

Feature engineering improved balanced accuracy and 

recall for top ensemble models. GBM achieved the highest 

recall (89.37%), balanced accuracy (94.47%) and ROC-

AUC (99.52%), while Stacked achieved the best F1-score 

(92.07%) and accuracy (98.90%). However, the highest  

values of metrics across all models and scenarios were 

achieved among GBM and Stacking in this scenario. 

 

 

Table 4. Model performance on balanced dataset with feature engineering. 

 

Model Accuracy Precision
Balanced 

Accuracy
Recall F1 Score ROC-AUC

LR 0.9484 0.8756 0.6624 0.3284 0.4776 0.9428

SVM 0.9545 0.9227 0.6993 0.4011 0.5592 0.9147

DT 0.9730 0.8764 0.8598 0.7276 0.7951 0.9015

RF 0.9453 0.9923 0.6203 0.2407 0.3874 0.9792

GBM 0.9688 0.9662 0.7921 0.5858 0.7294 0.9927

Stacked 0.9598 0.9720 0.7262 0.4534 0.6183 0.9831

 

Observation: 

Decision Tree delivered balanced results, with the highest 

balanced accuracy (85.98%), recall (72.76%), F1-score 

(79.51%), and accuracy (97.30%). GBM also performed 

strongly, achieving the top ROC-AUC (99.27%) with high 

precision. Although Random Forest showed exceptional 

precision (99.23%), its very low recall limited its practical 

use, confirming Decision Tree and GBM as the most 

balanced performers. 

 
Figure 3: ROC Curves on raw dataset       
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Figure 4: ROC Curves on Balanced dataset without 

Feature Engineering Models 

      
Figure 5: ROC Curves on Imbalanced dataset with Feature 

Engineering 

 
Figure 6: ROC Curves on Balanced dataset with Feature 

Engineering 

Interpretations: 

Figures 3–6 show that, without feature engineering, 

ensemble models (GBM, Random Forest, and Stacking) 

outperform simpler classifying models (Logistic 

Regression, Support Vector Classifier and Decision Tree 

Classifier). With feature engineering, all models improve 

significantly, with ensemble models achieving near 

perfect AUCs (>0.99). However, ensemble models benefit 

from balancing with feature engineering but reduces the 

performance of simpler models. Overall, feature 

engineering drives the largest gains, while ensemble 

methods remain the most reliable for fraudulent cases 

detection. 

The findings of this study underscore the critical 

role of both feature engineering and ensemble learning in 

improving the accuracy and robustness of credit card fraud 

detection. Across all four experimental scenarios, 

ensemble methods consistently outperformed baseline 

models. This is consistent with prior studies showing that 

ensembles can effectively capture complex, non-linear 

fraud patterns and mitigate the limitations of single 

classifiers (Herath, 2025; Khan et al., 2024). 

The results also reveal that feature engineering provides 

the greatest performance gains, improving recall, balanced 

accuracy, and ROC-AUC across almost all models. In the 

imbalanced dataset with engineered features, GBM 

achieved the highest recall (89.37%) and ROC-AUC 

(0.9952), while Stacking achieved the best precision 

(95.58%) and accuracy (98.90%). These findings 

highlight the value of incorporating domain-specific 

behavioral, temporal, and geographic attributes in 

capturing the subtle signals of fraudulent activity. Similar 

findings have been reported in other fields, where simple 

classifier such as SVM and Decision Tree were 

recommended for prediction tasks, such as predicting 

user’s satisfaction in e-learning system (Imrana et al., 

2025). 

The role of data balancing was more nuanced. When 

applied without feature engineering, balancing improved 

minority class detection and lifted recall, especially for 

Logistic Regression. However, when combined with 

feature engineering, balancing benefited ensemble models 

but reduced the performance of simpler classifiers such as 

Logistic Regression and SVC. This suggests that while 

resampling techniques (SMOTE) are valuable for 

addressing severe class imbalance, their benefits may 

diminish when rich engineered features already capture 

fraud-specific patterns. This mixed effect aligns with 

earlier studies cautioning that oversampling can introduce 

noise if not carefully tuned (Makki et al., 2019). 

From an operational view, these findings have several 

implications. First, financial institutions should prioritize 

feature engineering pipelines that incorporate temporal, 

behavioral, and geographic patterns into fraud detection 

models. Second, ensemble learning methods, particularly 

GBM and Stacking, should be favored in production 
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systems given their superior precision, recall, and ROC-

AUC. Third, balancing techniques should be applied 

selectively, especially when feature-rich datasets are 

available, as indiscriminate oversampling may harm 

performance for some models. 

Overall, the study demonstrates that integrating ensemble 

learning, feature engineering, and targeted imbalance 

handling yields substantial improvements in fraud 

detection compared to traditional baselines. 

 

CONCLUSION 

This study identified the optimal statistical learning 

approach for detecting fraudulent credit card transactions 

in highly imbalanced datasets by comparing supervised 

algorithms and ensemble methods across four scenarios 

(imbalanced and balanced datasets, with and without 

domain-specific feature engineering). Ensemble models, 

particularly Gradient Boosting Machines (GBM) and 

Stacked ensembles, consistently outperformed single 

classifiers, while Decision Tree showed competitive 

results under balanced training with feature engineering. 

Feature engineering notably improved recall and balanced 

accuracy in imbalanced datasets, whereas balancing 

enhanced recall for simpler models but often reduced 

precision. 

Overall, GBM with engineered features on the imbalanced 

dataset emerged as the most effective configuration for 

maximizing recall and balanced accuracy, making it well-

suited for real-time fraud detection. Stacked ensembles 

proved more appropriate for balanced datasets or use cases 

requiring equal emphasis on precision and recall. These 

findings provide a validated evaluation framework and 

actionable guidance for operational fraud detection. 

Future research should explore hybrid approaches 

combining deep learning with domain-specific feature 

engineering, and incremental learning mechanisms to 

further strengthen fraud detection in dynamic and high-

volume environments. 
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