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ABSTRACT 

Crop recommendation systems play a crucial role in modern agriculture by aiding 

farmers in making well-informed choices to optimize crop yield and resource 

utilization. Ensemble learning approaches can significantly improve the 

effectiveness of crop recommendation systems. To achieve this, multiple 

forecasts are combined from various models. In this paper, a complete Machine 

Learning Pipeline is used to evaluate the performance of ensemble learning 

models in crop recommendation tasks. A diverse dataset is used to select and train 

four ensemble learning methods, Bagging, Voting, Stacking, and One-Vs-Rest 

(OVR), as separate classifiers. The dataset includes various agricultural factors 

such as soil characteristics, meteorological conditions, and past crop productivity. 

Various metrics, including accuracy, precision, recall, F1-score, and support, are 

utilized for each model. Bagging is considered the most effective ensemble 

learning technique, demonstrating excellent levels of accuracy and overall 

performance. The bagging algorithm achieves a high level of accuracy, reaching 

99.32%. It also achieves perfect precision, recall, and F1-score metrics, with 

values of 0.99, 1.00, and 1.00 respectively. The support value, which represents 

the number of instances used for evaluation, is 141. This study provides valuable 

perspectives on the choice of appropriate ensemble learning models for crop 

recommendation tasks. Consequently, it enables farmers and other individuals 

involved in agriculture to make well-informed choices using data, resulting in 

enhanced agricultural output and sustainability. 

 

INTRODUCTION 

Agriculture serves as the fundamental support for 

numerous economies, supplying sustenance, livelihoods, 

and basic resources for diverse sectors. By 2050, the 

world population is estimated to reach around 10 billion, 

leading to a substantial rise in the need for food (Tripathi, 

Mishra, Maurya, Singh & Wilson, 2019).. This would 

need advancements in agricultural production and 

efficiency (Serraj, Krishnan & Pingali, 2019; Falcon, 

Naylor & Shankar, 2022). Technology plays a significant 

role in modern agriculture, particularly with the progress 

in data science and machine learning. These innovations 

provide new opportunities for improving agricultural 

methods. 

Historically, farmers have traditionally depended on 

practical knowledge and regional experience to make 

informed choices on crop selection, timing of planting, 

and allocation of resources (Chakauya, Materechera, Jiri, 

Chakauya & Machete, 2023). Nevertheless, these 

approaches are frequently constrained by subjectivity, 

fluctuations in environmental circumstances, and the 

incapacity to efficiently handle and interpret substantial 

amounts of data (Limpo et al., 2022; Kom, Nethengwe, 

Mpandeli & Chikoore, 2022). Consequently, there has 

been an increasing interest in utilizing technology to 

provide data-driven methods for making decisions in 

agriculture. 

Machine learning, also known as artificial intelligence, 

has become a powerful tool for analysing agricultural data 

and generating valuable insights (Redhu, Thakur, 

Yashveer & Mor, 2022). Machine learning models may 

utilize algorithms to analyse various datasets, such as soil 

composition, weather patterns, satellite images, and 

historical agricultural production data. Through this 

analysis, these models can find intricate patterns and 

linkages that may not be easily observable by humans 

(Shaikh, Rasool & Lone, 2022). This feature allows for 

the creation of crop recommendation systems that can 

forecast the optimal crops for a certain region by 

considering many parameters. 
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Ensemble learning is the process of amalgamating 

predictions from numerous base models to provide a 

solitary and more precise forecast (Mohammed & Kora, 

2023). Ensembling approaches can enhance overall 

performance by harnessing the variety of various models, 

therefore mitigating the limitations of individual 

classifiers (Ganaie, Hu, Malik, Tanveer & Suganthan, 

2022). Stacking, Bagging, Voting, and One-Vs-Rest 

(OVR) are often employed ensemble learning techniques, 

each employing a distinct strategy for aggregating 

predictions (Zounemat-Kermani, Batelaan, Fadaee & 

Hinkelmann, 2021). 

While there is a growing interest in employing ensemble 

learning for agricultural purposes, there is a lack 

of comprehensive comparative assessments to determine 

the most effective approach for crop recommendation 

tasks (Agrawal, Govil, & Kumar, 2024). This paper aims 

to address this gap by conducting a thorough analysis of 

the efficacy of different ensembling procedures using real 

agricultural data. This research tends to assess the 

precision, resilience, and computational efficiency of 

ensemble learning techniques, including Stacking, 

Bagging, Voting, and OVR. The aim is to get valuable 

information regarding the efficacy of these 

methodologies for crop recommendation (Sajitha, 

Andrushia, Anand & Naser, 2024).  

Furthermore, the paper will examine the impact of 

various dataset factors, such as size, dimensionality, and 

class distribution, on the efficacy of ensembling 

algorithms. A thorough understanding of how these 

factors influence the effectiveness of ensemble learning 

might offer useful insights for the development and 

implementation of more robust crop recommendation 

systems tailored to different agricultural contexts (Shams, 

Gamel & Talaat, 2024).  

The paper enhances agricultural technology by offering 

empirical data on the effectiveness of ensemble learning 

approaches for crop recommendation. The results of this 

study can provide valuable insights for improving the 

accuracy and dependability of crop recommendation 

systems. This, in turn, can enable farmers to make 

informed decisions based on data, leading to increased 

productivity, sustainability, and resilience in agriculture. 

 

MATERIALS AND METHODS 

The paper utilizes the Machine Learning Pipeline or Data 

Science Workflow methodology (Biswas, Wardat & 

Rajan, 2022). The methodology has eight sequential 

steps. The procedure illustrated in Figure 1 comprises 

many stages: data collection, data exploration, pre-

processing, dataset partitioning, model training, model 

testing, performance evaluation, performance 

comparison, and conclusion (Biswas, Wardat & Rajan, 

2022).  This figure was modified from the original work 

of Rana et al. (2015) to align with the research approach 

utilized in this paper. The attainment of this target was 

achieved by the systematic implementation of a well-

structured series of procedures. 

 

 
Figure 1: Data Science Workflow 

Source: Author Based on (Rana et al., 2015) 

 

Dataset Collection 

The initial step involved the collection of the dataset in 

CSV format, followed by its importation into Jupyter 

Notebook for further analysis. 

 

Data Exploration and Pre-processing 

This phase encompassed four key stages. First, a thorough 

exploration of the data was conducted to understand its 

characteristics. Subsequently, features with negative 

correlations to the target variable were identified and 

removed to enhance model performance. Finally, feature 

scaling was applied to ensure that all features were on a 

consistent scale. 

 

Splitting the Dataset 

Following the importation of the dataset, it was divided 

into two distinct subsets. The first subset was utilized for 

training the machine learning models, while the second 

Performance Evaluation 
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subset was employed to evaluate the performance of these 

models. This step was undertaken to assess the 

performance of the models on an independent dataset, 

therefore mitigating the risk of overfitting. 

 

Training the Models 

During the training phase, seven separate ensembling 

learning models were utilized, specifically Stacking, 

Bagging, Voting, and One-Vs-Rest (OVR). The 

aforementioned models were employed to construct 

prediction algorithms. 

 

Validation of Models 

To improve the prediction performance of the machine 

learning models, a validation set was utilized. This 

particular collection played a crucial role in the process 

of adjusting model parameters to maximize their 

performance. 

 

Testing the Models 

The models, having undergone training and validation, 

were rigorously tested using the testing dataset to assess 

their accuracy and predictive power. 

 

Performance Evaluation 

To gauge the effectiveness of the models, a thorough 

performance evaluation was conducted. This evaluation 

employed metrics such as the scikit-learn accuracy score 

and confusion matrix. 

 

Performance Comparison 

The next phase was a thorough comparison of the seven 

machine learning models. The goal of this comparison 

research was to determine which model outperformed the 

others in the essential duty of predicting crops, therefore 

adding vital insights to the area of medical diagnostics. 

 

Source of Dataset  

The dataset was obtained from 

https://www.kaggle.com/datasets/aksahaha/crop-

recommendation  and includes data on the amounts of 

nitrogen, phosphorus, and potassium in the soil as well as 

measurements of temperature, humidity, pH, and rainfall 

and how they affect the growth of crops (Nti et al., 2023). 

This dataset can be utilized to create data-based 

suggestions for achieving the best possible nutrient and 

environmental conditions to enhance crop yield (Gosai et 

al., 2021).  The data size was 2200 records and seven 

predictors (Muhammed, Ahvar, Ahvar & Trocan, 2023). 

The target variable consists of twenty-two classes 

representing different crops (i.e., ‘mungbean’, ‘apple’, 

‘kidney-beans’, ‘banana’ ‘maize’, ‘blackgram’, 

‘chickpea’, ‘mothbeans’, ‘coconut’, ‘coffee’, ‘cotton’, 

‘grapes’, ‘jute’, ‘pigeonpeas’, ‘papaya’, ‘mango’, ‘lentil’, 

‘muskmelon’, ‘orange’, ‘watermelon’, ‘pomegranate’ 

and ‘rice’) each with one hundred (100) samples.  

 

Ensemble Learning Techniques  

Ensemble methods encompass various techniques, with 

common approaches including Bagging (Bootstrap 

Aggregating), Boosting, Stacking, and OVR (Jia, Liang 

& Liang, 2023).  

 

Bagging (Bootstrap Aggregating) 

Bagging is a technique where several models are trained 

separately on various subsets of the dataset (Breiman, 

1996; González, García, Del-Ser, Rokach & Herrera, 

2020; Malek et al.,2023). The Bagging method involves 

the creation of subsets via bootstrapping, which is a 

resampling strategy where instances are randomly picked 

with replacements from the original dataset (Gul, 

Mashwani, Aamir, Aldahmani & Khan, 2023). As a 

consequence, this leads to a variety of subsets that are 

used to train separate models inside the ensemble. 

Bagging, a technique introduced by Nosrati and Rahmani 

in 2023, aims to reduce the influence of noise or outliers 

in the data by training models independently on different 

subsets, thereby introducing variety. An exemplary 

instance of Bagging is the Random Forest method. In a 

Random Forest, several decision trees are trained using 

distinct bootstrap samples of the dataset (Sun et al.,2023). 

During the prediction process, each tree in the forest 

provides its own prognosis individually. The final 

prediction is then derived by combining these individual 

predictions (Becker, Geubbelmans, Rousseau, 

Valkenborg & Burzykowski, 2024).  

The utilization of an ensemble technique frequently 

results in a model that is more robust and precise, with the 

ability to effectively apply its knowledge to unfamiliar 

data (Jitpakdeebodin & Sinapiromsaran, 2023). Bagging 

improves the predictive performance of an ensemble by 

decreasing overfitting and variance. It is an important 

approach in machine learning, especially when dealing 

with complicated and noisy data that may affect the 

performance of individual models.  

 

Boosting 

Boosting is a technique that involves training models in a 

sequential manner to correct the errors made by previous 

models (Emami & Martínez-Muñoz, 2023; Kunapuli, 

2023). The core concept of boosting is to progressively 

enhance the predicted performance of the model by 

assigning greater importance to difficult data points 

(Attri, Awasthi, Sharma & Rathee, 2023). AdaBoost and 

Gradient Boosting are prominent algorithms in the 

boosting family. AdaBoost stands for Adaptive Boosting, 

while Gradient Boosting was developed by Thotad, 

Bharamagoudar, and Kallur in 2023.  

https://www.kaggle.com/datasets/aksahaha/crop-recommendation
https://www.kaggle.com/datasets/aksahaha/crop-recommendation


Crop Recommendation Predictive…  Abdullahi et al., JOBASR2024 2(1): 162-176 

Journal of Basics and Applied Sciences Research  Volume 2(1) 165 

During the boosting process, weak learners, which are 

often basic decision trees known as "stumps," are taught 

one after another in a sequential manner (Avramopoulos 

& Vasiloglou, 2023). 

Following each iteration, greater emphasis is placed on 

misclassified instances, encouraging the succeeding 

learner to concentrate on the previously difficult aspects 

of the material (Miller et al. 2023). This iterative process 

of adjusting weights allows the model to continuously 

improve its capacity to identify intricate patterns and 

connections within the dataset. 

In boosting, the ultimate forecast is usually obtained by 

combining the weak learners' predictions using weights 

that reflect their accuracy during the training phase 

(Demir & Sahin, 2023). Boosting is renowned for its 

ability to enhance model performance, particularly in 

scenarios where individual models may encounter 

difficulties.  

 

Stacking 

Stacking, which is also known as Stacked Generalization, 

is a technique that combines predictions from many 

models using a meta-model (Seireg, Omar & 

Elmahalawy, 2023). During the stacking process, a set of 

base models is trained individually. Each of these models 

captures certain elements or makes unique mistakes on 

the training data (de-Zarzà, de-Curtò, Hernández-Orallo 

& Calafate, 2023). The forecasts produced by these 

foundational models are subsequently combined, and a 

meta-model, often a less complex algorithm such as linear 

regression, is trained using these forecasts (Chen, Zeb, 

Nanehkaran, & Zhang, 2023). The meta-model is 

designed to optimize the combination of outputs from the 

basis models, resulting in a more precise and accurate 

prediction during the testing or validation phase (Liang & 

Liu, 2023).  

The fundamental principle of stacking is its capacity to 

use the synergistic advantages of different models, 

therefore exceeding the predictive capabilities of any one 

model (Yang et al., 2023). Although the concept of 

stacking shows potential for enhancing performance, it is 

important to carefully evaluate the variety of models used 

and select the most suitable meta-model in order to 

achieve the best possible outcomes in practical 

applications. Stacking is a powerful technique in 

ensemble learning that excels in complicated tasks, 

providing better abilities for subtle pattern detection and 

improved overall accuracy.  

 

One-Vs-Rest (OVR) 

The one-versus-rest (OVR) approach, also known as one-

versus-all, is a popular technique used in multi-class 

classification tasks. It involves training a binary classifier 

for each class, where the positive class is the one being 

trained, and all other classes are the negative class (Hsu 

& Lin, 2002; Rifkin & Klautau, 2004).  

The OVR approach involves training a binary classifier 

for each class in the dataset distinctly. During the training 

process, examples that belong to the positive class are 

labeled as such, while instances from all other classes are 

gathered together and labeled as the negative class. Each 

binary classifier is trained to differentiate its assigned 

class from all other classes, resulting in a collection of 

classifiers specifically designed to identify each 

individual class (Crammer & Singer, 2002).  

During the prediction process, each binary classifier is 

provided with the instance, and the predicted class for that 

instance is determined by assigning it the class with the 

highest confidence score or probability. The final 

prediction is determined by the classifier that has the 

highest confidence for its allocated class (Frenay & 

Verleysen, 2014).  

An inherent benefit of the OVR method is its 

straightforwardness and flexibility to be easily expanded. 

OVR, or one-vs-rest, is a technique that breaks down the 

multi-class classification issue into several binary 

classification subproblems. This approach enables the use 

of common binary classifiers like Support Vector 

Machines (SVMs) or Logistic Regression without the 

need for any changes to the underlying methods (Hsu & 

Lin, 2002). 

Furthermore, OVR can be highly efficient in addressing 

unbalanced class distributions by prioritizing the 

differentiation of each class separately rather than taking 

into account the overall class distribution as a whole 

(Rifkin & Klautau, 2004). In addition, OVR (One-vs-

Rest) classification tends to get good results in situations 

when classes are not mutually exclusive or when there is 

a substantial overlap across class boundaries (Hsu & Lin, 

2002).  

 

Performance Metrics for Classification 

The evaluation criteria utilized for gauging the 

effectiveness of this analysis are as follows: 

 

Accuracy  

The effectiveness of a model is evaluated based on the 

ratio of correct predictions generated for various types of 

forecasts (Ricciardi, Ramankutty, Mehrabi, Jarvis & 

Chookolingo, 2018). The assessment technique entails 

evaluating the precision of categorization by comparing 

the number of accurately classified cases to the total 

number of occurrences (Petropoulos & Siemsen, 2023). 

The assessment of accuracy is especially useful in 

situations when the distribution of classes in the target 

variable is evenly distributed across the dataset. Equation 

1 represents this concept. 

 

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
  (1) 
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Sensitivity or Recall  

Sensitivity is a quantitative measure used to determine the 

percentage of positive scenarios that were accurately 

recognized by the model, but mistakenly classified as 

negative. Occasionally referred to as recall or true 

positive rate, as stated by Hutter (2012). Mathematically, 

it is defined as the quotient obtained by dividing the 

number of true positive (TP) occurrences by the total of 

true positive and false negative (FN) cases. The 

mathematical expression is as follows:  

𝑆𝐸𝑁𝑆𝐼𝑇𝐼𝑉𝐼𝑇𝑌 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (2) 

 

Specificity  

Specificity, sometimes referred to as the true negative 

rate, is an important concept in the field of software defect 

analysis (Everitt, Goertzel & Potapov, 2017). Equation 3 

quantifies the proportion of defect-free occurrences in the 

software system that are accurately identified as such by 

the model.  

Specificity =
TN

TN+FP
   (3) 

 

Detection Rate  

The detection rate is the ratio of successfully detected 

events to the total sample size (Flasiński, 2016). This 

statistic measures the efficiency of accurately identifying 

instances within the dataset. 

 

F1 score rate 

The F1 score is a metric that calculates the weighted 

average of accuracy and recall (Bach, 2020). 

Consequently, this score considers the equilibrium 

between incorrect positive results and incorrect negative 

results. 

 

F1 Score = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (6) 

 

Precision 

Precision is a quantitative measure that evaluates the 

correctness of positive predictions generated by a model 

(Davis, 2015). Precision is the quotient obtained by 

dividing the number of accurately anticipated positive 

samples by the total number of samples predicted as 

positive. 

Precision =   
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (5) 

 

Area Under Curve (AUC) 

The AUC, or Area Under the Curve, is a measure of a 

parameter's capacity to differentiate between two 

diagnostic classifications, such as normal and sick 

(Hajian-Tilaki, 2013). The AUC, which ranges from 0 to 

1, measures the degree of discrimination provided by the 

parameter (Varoquaux & Colliot, 2023). A number close 

to 1 suggests a very reliable diagnostic outcome, 

indicating a great capacity to distinguish between the two 

groups. 

 

RESULTS AND DISCUSSION 

Data preprocessing  

The section includes Importing the Libraries, Loading the 

Dataset, Printing the Head and Tail of the Dataset, 

Dataset Structure and Dimensions, Handling Missing 

Values, Dataset Information Overview, Descriptive 

Statistics of the Dataset, Crop Distribution, Crops 

Distribution Chart, and Outliers Detection. 

 

Importing the Libraries 

The Jupyter Notebook was set up with the necessary 

Python libraries, including Numpy, Pandas, Matplotlib, 

and Seaborn. Numpy is a powerful package that allows 

for efficient manipulation and concurrent operations on 

multi-dimensional arrays (Stančin & Jović, 2019). Panda 

is a data analysis and manipulation tool that is open-

source and based on the Python programming language 

(Subasi, 2020). Matplotlib and Seaborn are extensively 

used software tools for data visualization. The program 

provides a user-friendly interface that simplifies the 

process of creating visually appealing and informative 

graphs. Seaborn, a data visualization software, is a subset 

of Matplotlib that offers a more limited set of 

functionalities (Pintor et al., 2019). Figure 2 depicts the 

process of importing the Numpy, Pandas, Matplotlib, and 

Seaborn Python libraries into the Jupyter Notebook. 

 

 
Figure 2: Importing Python Libraries 

 

 

 

 

 



Crop Recommendation Predictive…  Abdullahi et al., JOBASR2024 2(1): 162-176 

Journal of Basics and Applied Sciences Research  Volume 2(1) 167 

Loading the Dataset 

The dataset was loaded into Jupyter Notebook using pd.read_csv. Figure 3 shows the loading of the dataset into Jupyter 

Notebook.  

 
Figure 3: Loading the Dataset 

 

The Head and Tail of the Dataset 

The head () function displays the top records in the dataset depicted in Table 1. By default, python displays only the 

top 5 records while the tail () functions display the last five records of the dataset as illustrated in Table 2. 

 

Table 1: First Five Rows of the Dataset 

 

 
 

Table 2: Last Five Records of the Dataset 

 

 
 

Dataset Structure and Dimensions 

The shape () function displays the number of rows and columns of the dataset. Figure 4 shows there are 2200 number 

of rows and 8 number of columns. 

. 

 
Figure 4: Number of Rows and Columns in the Dataset 

 

Handling Missing Values 

The presence of missing values was evaluated for each attribute in the dataset, and no instances of missing values 

were found. Figure 5 shows that there are no missing values (NaN) in any of the columns. Each column has 0 missing 

values, as indicated by the values in the right column (0 under each column name). 
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Figure 5: Checking for Missing Values in the dataset 

 

Dataset Information Overview 

The dataset was loaded into the Pandas data frame for 

easy analysis, model development, and prediction. Table 

3 depicts the Pandas Data Frame comprising 2200 rows 

and 8 columns representing agricultural parameters. The 

columns include Nitrogen, Phosphorus, Potassium, 

Temperature, Humidity, pH, Rainfall, and Label. The 

data types vary, with 3 integer columns (Nitrogen, 

Phosphorus, Potassium), 4 float columns (Temperature, 

Humidity, pH, Rainfall), and 1 object column (Label).  

 

Table 3: Info of the Dataset 

 
 

Descriptive Statistics of Dataset 

The describe () method provides a concise summary of a 

dataset containing 2200 records and 7 columns, all of 

which include numerical values. Table 4 offers statistical 

data for several factors, including Nitrogen, Phosphorus, 

Potassium, Temperature, Humidity, pH, and Rainfall. 

The dataset consists of statistical metrics, including the 

mean, standard deviation, minimum, maximum, and 

quartiles. These measurements provide valuable insights 

into the average values and variability of agricultural 

indicators, making it easier to analyze and identify any 

abnormal data points. 

 

Table 4: Dataset Descriptive Statistics 

 
Crop Distribution  

The frequency of rows matching each crop type in the 

"label" column is shown in Table 5. The value_counts() 

function computes the occurrence rate of each unique 

value in the given column. The dataset has 100 rows for 

each of the 22 crop varieties, including rice, maize, jute, 

cotton, coconut, papaya, orange, apple, muskmelon, 

watermelon, grapes, mango, banana, pomegranate, lentil, 

black gram, mungbean, mothbeans, pigeonpeas, kidney 

beans, chickpea, and coffee. 
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Table 3: Crop Distribution 

 
 

Crops Distribution Chart 

The pie chart was created using the Matplotlib library, 

illustrating the occurrence of each unique value in the 

"label" column of the Data Frame. The pie chart depicted 

in Figure 6 visually illustrates the distribution of different 

crop types in the dataset. Each segment of the chart 

represents a specific crop, and the size of each segment 

indicates the proportion of that crop in the dataset. 

 
Figure 6: Crops Distribution Chart 

 

Outliers Detection   

The crop outlier distribution is shown using a boxplot 

illustrated in Figure 7. This allows for the comparison of 

quantitative data values across various groups.  From the 

plots, it can be observed that there are many data points 

indicating outliers for all factors except Nitrogen. This is 

due to the different optimal soil conditions for the 

different plants.  
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Figure 7: Outliers Detection of the Crop Distribution  

 

Results  

The results extracted from the findings of the data 

analysis are presented here. The results are presented 

using figures and tables.   

 

Encoding of Target Variable 

This is the conversion of letters in the dataset into figures. 

Figure 8 depicts how the Label Encoder object is created. 

This object was used to transform the categorical labels 

in the target variable y into numerical labels. The 

fit_transform method of the Label Encoder is applied to 

the target variable y. This method both fits the encoder to 

the unique labels in y and transforms the labels into 

numerical equivalents. The resulting encoded labels are 

stored in the variable y_encoded. 

 

 
Figure 8: Encode the target variable into numeric values 

 

Getting the Correlation 

This shows the correlation of each of the features to one 

another. Figure 9 calculates the correlation matrix (corr) 

for the features in the dataset (data) excluding the 'label' 

column. The drop method is used to exclude the 'label' 

column from the dataset.  

 

 
Figure 9: Getting the Correlation 

 

The resulting data frame is then used to calculate the correlation matrix using the corr() method depicted in Figure 

10. 
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Figure 10: Correlation Matrix 

 

Feature Scaling  

The dataset was standardized using the Standard Scaler to 

improve model performance. Figure 11 illustrates the 

scaling and standardization of both the training and test 

data through the use of a standard scaler. 

 

 
Figure 11: Feature scaling 

 

Splitting the Dataset into two  

The dataset is split into input variables (x) and the output 

variable (y).  The (x) contains the features (independent 

variables) for each data point. The (y) containing the 

target label (dependent variable) corresponds to each data 

point illustrated in Figure 12. 

 

 
Figure 12: Splitting the dataset into x and y 

 

Discussion  

Table 6 shows the comparative performance analysis of 

ensembling learning models. Four ensembling learning 

models. —namely, Stacking, Bagging, Voting, and One-

Vs-Rest (OVR) were selected for this study. The models 

were trained and evaluated as individual classifiers for 

crop recommendation. The result of the models was 

analyzed and compared to derive insights to determine the 

model performance based on standard evaluation metrics 

such as accuracy, precision, recall, f1-score, and support.  

 

Table 1: Accuracy Table of the Models  

S/N Model  Accuracy (%) Precision Recall F1-score Support 

1 Bagging 99.32 0.99 1.00 1.00 141 

2 OVR 91.81 1.00 0.96 0.98 141 

3 Stacking 96.14 0.96 0.99 0.97 141 

4 Voting 99.09 1.00 1.00 1.00 141 

 

In comparing the performance of various machine 

learning models, it is evident that Bagging and Voting 

outperform other models in terms of accuracy. Bagging 

achieves the highest accuracy of 99.32% (Nti et al., 

2023), closely followed by Voting with an accuracy of 

99.09%. These two techniques, Bagging and Voting, 

consistently demonstrate exceptional accuracy across 



Crop Recommendation Predictive…  Abdullahi et al., JOBASR2024 2(1): 162-176 

Journal of Basics and Applied Sciences Research  Volume 2(1) 172 

different datasets, suggesting their robustness and 

reliability. 

OVR (One vs Rest) approach achieves a relatively lower 

accuracy of 91.81% (Nti et al., 2023) compared to 

Bagging and Voting. However, it still demonstrates 

remarkable performance in efficiently differentiating 

between classes, as indicated by its high recall and F1-

score values. Despite its lower accuracy, OVR remains a 

viable approach for tasks requiring class differentiation. 

Stacking, although not reaching the same level of 

accuracy as Bagging or Voting, still achieves a 

respectable accuracy of 96.14%. It demonstrates balanced 

performance across various evaluation metrics, indicating 

its capability to make accurate predictions while 

minimizing false positives and false negatives. 

Comparatively, other models such as Deep 

Reinforcement Learning (Khaki & Wang, 2019), 

traditional classifiers like KNN, NB, MLR, ANN, RF 

(Palanivel & Surianarayana, 2019), linear regression, 

LASSO, Light GBM, and ensemble methods like 

AdaBoost GB, and Stacked TBEL (Kalimuthu, Vaishnavi 

& Kishore, 2020), exhibit varying levels of performance, 

with accuracies ranging from 72.33% to 99.32%. These 

results highlight the importance of selecting appropriate 

machine learning techniques based on the specific 

requirements and characteristics of the dataset. The 

findings are displayed in a bar chart seen in Figure 13. 

 

 
Figure 13: Comparative Analysis of All Models 

 

CONCLUSION 

The performed comparison analysis in this paper provides 

insights into the performance features of several 

ensemble learning models in the specific context of crop 

recommendation. By assessing Bagging, Voting, 

Stacking, and One-Vs-Rest (OVR), we have acquired 

a significant understanding of the merits and limitations 

of each method. Bagging and Voting are the most 

accurate and high-performing techniques. These models 

exhibit resilience in successfully forecasting crop 

recommendations, as seen by their high accuracy scores 

and excellent precision, recall, and F1-score values. Their 

capacity to combine forecasts from numerous 

foundational models significantly enhances their 

exceptional performance. Farmers and agricultural 

stakeholders in search of precise and dependable crop 

recommendation systems may find Bagging and Voting 

methods especially well-suited for their requirements. 

Nevertheless, Stacking and OVR emerge as feasible 

alternatives, showcasing robust accuracy and recall skills. 

Although Bagging and Voting may have somewhat 

higher accuracy compared to Stacking and OVR, the 

latter two techniques provide more subtle methods for 

ensemble learning. Stacking utilizes meta-modeling to 

merge predictions from many base models, whereas OVR 

adopts a one-vs-all technique to tackle challenges 

involving multi-class categorization. These models are 

more suitable in situations when achieving high levels of 

accuracy and completeness are crucial, or where the 

capacity to understand and explain the model's decisions 

is a top concern. 
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