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ABSTRACT 

This research presents a hybrid Convolutional Neural Network–Support Vector 

Machine (CNN-SVM) approach for accurate plant disease detection, integrating 

CNN’s feature extraction capabilities with SVM’s robust classification 

performance. The methodology began with data acquisition and preprocessing, 

including image normalization, augmentation, and resizing to ensure model 

compatibility and improve generalization. The CNN component was trained to 

automatically extract discriminative features from plant leaf images, which were 

subsequently fed into an SVM classifier optimized through hyperparameter 

tuning. Performance evaluation employed standard metrics, including accuracy, 

precision, recall, and F1-score, alongside the Receiver Operating Characteristic 

(ROC) curve analysis. Experimental results demonstrate the hybrid CNN-SVM 

model’s superiority over standalone CNN and SVM models. The proposed model 

achieved an accuracy of 96.3%, precision of 95.8%, recall of 96.7%, and F1-score 

of 96.2%, outperforming the CNN (93.5% accuracy) and SVM (88.4% accuracy) 

baselines. Hyperparameter tuning was shown to significantly enhance 

classification results, as visualized in the tuning heat map. The ROC curve for the 

hybrid model exhibited an Area Under the Curve (AUC) close to 1.0, indicating 

excellent sensitivity and specificity. 

 

INTRODUCTION 

Agricultural productivity is critical for global food 

security and economic development. However, plant 

diseases remain a major challenge, causing substantial 

yield losses and economic setbacks worldwide (Mohanty 

et al., 2020). Early and accurate disease detection is 

therefore essential for minimizing crop damage and 

ensuring sustainable agricultural practices. 

Traditional methods of disease detection rely on expert 

visual inspections, which are time-consuming, labor-

intensive, and prone to subjective errors. With the advent 

of machine learning (ML) and deep learning (DL), 

automated plant disease detection systems using leaf 

images have demonstrated significant potential. 

Convolutional Neural Networks (CNNs) have been highly 

effective in extracting discriminative features from 

images, while Support Vector Machines (SVMs) are 

known for their robust classification performance, 

especially in high-dimensional spaces (Kaur & Singh, 

2022; Reddy et al., 2023). 

Despite these advances, important challenges remain. 

CNNs often require large, balanced datasets to achieve 

high accuracy and may overfit when training data is 

limited or imbalanced (Li et al., 2023).  

 

 

 

 

 

 

SVMs, on the other hand, depend heavily on handcrafted 

or pre-extracted features and typically struggle with raw 

image data. Existing research has explored hybrid CNN-

SVM architectures to address these issues (Ezigbo & 

Chibueze, 2025; Tonmoy et al., 2025), but most studies 

focus on controlled or single-crop datasets, limiting their 

applicability to real-world scenarios with diverse crop 

conditions. 

To bridge this gap, the present study develops a hybrid 

CNN-SVM model that integrates automatic feature 

extraction with robust classification for plant disease 

detection. The model is evaluated using both publicly 

available datasets and field-collected images of sorghum, 

maize, and millet leaves, ensuring coverage across 

multiple crops and environmental conditions. Its 

performance is compared with standalone CNN and SVM 

models using standard metrics, including accuracy, 

precision, recall, F1-score, and ROC-AUC, to demonstrate 

the advantages of the hybrid approach. 

By combining the representation power of CNNs with the 

strong decision boundaries of SVMs, this research 

contributes a more accurate, robust, and generalizable 

solution for automated plant disease detection, offering a 

practical tool for early intervention and improved crop 

management in real-world agricultural settings. 
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Several studies have explored machine learning 

techniques for plant disease detection. Recent research 

(Zhang et al., 2023) has demonstrated the effectiveness of 

deep learning approaches such as CNNs for automatic 

disease classification. However, CNNs alone may struggle 

with small datasets and complex decision boundaries. 

SVM has been employed for robust classification in 

various domains, including agriculture (Kumar & Singh, 

2024). Hybrid approaches combining CNN and SVM have 

recently gained attention, proving to be more efficient than 

standalone models (Li et al., 2023). 

Despite advancements, existing methods often lack 

generalizability across different plant species and disease 

types. This study addresses these challenges by integrating 

CNN for feature extraction and SVM for classification, 

thereby improving accuracy and robustness. 

 

Ezigbo & Chibueze (2025) presented a hybrid framework 

in their research titled "ResNet50 and XGBoost-Based 

Detection of Regional Plant Diseases in West Africa". The 

method leverages the representational power of ResNet50, 

a deep CNN pretrained on ImageNet, to extract 

meaningful features from leaf images. These deep features 

are then passed into an XGBoost classifier, which excels 

in handling structured data for final disease classification. 

This approach demonstrated high accuracy (98.81%) and 

was specifically adapted for mobile deployment, 

addressing the practical constraints of agricultural 

applications in sub-Saharan Africa. 

 

 In the ConRXG model (2022), developed under the 

topic "A Hybrid ResNet50-XGBoost Model for Robust 

Plant Disease Detection", researchers employed 

ResNet50 as a fixed feature extractor to derive deep spatial 

features from plant images. These features were 

subsequently classified using the XGBoost gradient-

boosted decision tree algorithm. The model was trained 

using Adam optimization with batch normalization and 

ReLU activation functions, achieving nearly perfect 

validation scores on the PlantVillage dataset. The 

hybridization of deep learning and machine learning 

techniques enabled both high accuracy and computational 

efficiency. 

 

 Tonmoy et al. (2025), in their work titled 

"MobilePlantViT: A Lightweight Vision Transformer for 

Mobile-Based Plant Disease Detection", introduced a 

hybrid model integrating a streamlined CNN with a 

compact Vision Transformer. This architecture, tailored 

for low-resource environments, was designed to run 

efficiently on mobile devices. With just 0.69 million 

parameters, the model balanced performance and 

computational load, achieving test accuracies ranging 

from 80% to 99% across several public datasets. The 

approach showcases a scalable solution for real-time, in-

field plant disease monitoring. 

 In a 2022 study titled "PlantViT: CNN and Vision 

Transformer-Based Plant Disease Classification", 

researchers developed a dual-stage model combining 

CNN feature extraction with a transformer-based attention 

mechanism. The CNN module extracted discriminative 

local features, which were then fed into a Vision 

Transformer head that modeled long-range dependencies. 

The model achieved 98.6% accuracy on the PlantVillage 

dataset and 87.9% on the more complex Embrapa dataset, 

demonstrating robustness across both synthetic and real-

world scenarios. 

 

 Thai & Le (2024) introduced the "MobileH-

Transformer", a compact hybrid CNN-Transformer 

architecture optimized for smartphone deployment. The 

CNN segment comprises convolutional layers and dual-

convolution blocks to extract primary spatial features, 

which are tokenized and processed by a transformer 

encoder for global feature learning. Designed for real-time 

inference, the model achieved competitive F1-scores 

while maintaining a high frame rate (~30 FPS) on mobile 

CPUs, emphasizing practical usability in agricultural 

settings. 

 

 In a specialized 2021 study titled "CAE-CNN: 

Autoencoder-Aided CNN for Peach Disease Detection", 

researchers applied a hybrid model where a convolutional 

autoencoder (CAE) performed unsupervised 

dimensionality reduction. The encoded features were then 

used as input to a shallow CNN classifier. The model, 

containing fewer than 10,000 parameters, achieved a high 

accuracy of 98.4% on peach bacterial spot images. Its 

simplicity and performance make it ideal for niche 

applications with constrained computational resources. 

 

 In a 2024 application-focused study titled "YOLOv5-

Swin: Object Detection and Classification Pipeline for 

Field Environments", the authors combined YOLOv5’s 

detection capabilities with Swin Transformer’s 

classification power. YOLOv5 was used to locate leaf 

regions from full-plant images, which were then cropped 

and passed to the Swin Transformer for disease 

identification. This two-stage pipeline achieved a mean 

average precision (mAP) of 95.2% and was designed for 

deployment in harsh agricultural conditions, though it 

incurred greater computational demand. 

 

 A 2023 study titled "CNN-LSTM Hybrid Model for 

Spatiotemporal Plant Disease Prediction" explored the 

integration of CNNs and recurrent neural networks 

(LSTM and CfC variants) for modeling time-series image 

data. The CNN layers extracted spatial features from each 

frame, while the LSTM layers captured temporal patterns 

in sequential imagery. Achieving an accuracy of ~97%, 

the model was well-suited for applications involving crop 
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monitoring over time, though it required sequential data 

collection and processing 

 

MATERIALS AND METHODS 

 

Methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Diagram of the plant disease detection  

using hybrid machine learning 

 

 

Data Collection: 

 

The dataset used in this study comprises 450 high-

resolution images of sorghum, maize, and millet leaves, 

each affected by different types of diseases or healthy 

conditions. The images were collected under controlled 

lighting and background conditions to ensure consistency 

and clarity. Expert annotation was employed to label the 

images into distinct disease categories.  Public datasets 

such as PlantVillage have been widely used for plant 

disease detection due to their large variety of labeled 

samples (Mohanty et al., 2020; Kaur & Singh, 2022). Field 

data collection ensures that the model accounts for real-

world variability (Reddy et al., 2023). 

 

The foundation of any machine learning model is a 

robust and diverse dataset. For plant disease detection, 

images of healthy and diseased plant leaves are collected. 

These images can be sourced from: 

1. Public Datasets: Such as PlantVillage, which 

contains over 450 images of plant leaves 

categorized by species and disease type. 

2. Field Data: Captured using smartphones or 

cameras in various agricultural settings to ensure 

real-world variability.𝑒−𝑡𝑖𝜃  

 

Table 1: Sample Plant leaf Dataset Table ( A Semi Arid Crop Sorghum) 

 

Image Id Plant 

Type 

Health 

Status 

Disease Type (if 

Infected 

Image Size Resolution Remarks 

IMG001 Sorghum  Healthy  Downy Mildew 128x128px 72 DPI Clean Leaf 

IMG002 Sorghum  Healthy  Anthracnose 128x128px 72 DPI Good Color 

Contrast 

IMG003 Sorghum  Healthy  Rust 128x128px 72 DPI No Blemish 

IMG004 Sorghum  Infected  Anthracnose 128x128px 72 DPI Dark Spots 

Visible  

IMG005 Sorghum  Infected Rust  128x128px 72 DPI Yellow-brown 

rings 

IMG006 Sorghum  Infected Downy Mildew 128x128px 72 DPI Powdery 

patches 

IMG0075 Sorghum  Healthy  Rust 128x128px 72 DPI Final healthy 

Sample 

IMG0076 Sorghum  Infected  Anthracnose 128x128px 72 DPI Leaf curling  

IMG0077 Sorghum  Infected  Rust  128x128px 72 DPI  Edges 

browning  

IMG0150 Sorghum  Infected  Downedy 

Mildew  

128x128px 72 DPI Final infected 

sample  

 

 

 

 

 

 

 

 

Data Collection  

Preprocessing 

CNN for feature extraction 

SVM for classification 

Hybrid Model   
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Table 2: Summary of Dataset 

 

 

Preprocessing 

To improve model performance, preprocessing steps such 

as resizing, normalization, and data augmentation were 

applied. Uniform resizing of images to fixed dimensions 

has been shown to standardize model input and reduce 

computation (Gupta & Sharma, 2021). Data augmentation 

through rotation, flipping, and brightness adjustment 

enhances generalization and reduces overfitting (Zhang et 

al., 2023). Normalization of pixel values improves 

convergence speed during training (Li et al., 2023). 

To enhance the quality and consistency of the dataset, 

several preprocessing steps are undertaken: 

The Plant Village dataset was used, which contains over  

450 labelled images of healthy and diseased plant leaves  

spanning 38 classes. 

 

CNN for Feature Extraction 

CNNs are powerful for automatically extracting spatial 

features from plant leaf images, leveraging convolution 

and pooling layers for hierarchical feature learning (Kaur 

& Singh, 2022). Prior research has demonstrated CNN’s 

capability in capturing complex disease patterns in leaves 

with high accuracy (Gupta & Sharma, 2021; Zhang et al., 

2023).  They automatically and adaptively learn spatial 

hierarchies of features through backpropagation by using 

multiple building blocks, such as convolution layers, 

pooling layers, and fully connected layers. 

• Convolutional Layers: Apply filters to the input 

image to create feature maps that detect various 

features like edges, textures, and patterns. 

• Pooling Layers: Reduce the spatial dimensions 

of the feature maps, retaining the most significant 

information and reducing computational load. 

• Activation Functions: Introduce non-linearities 

into the model, allowing it to learn complex 

patterns. ReLU (Rectified Linear Unit) is 

commonly ussed. 

• Flattening: Converts the 2D feature maps into a 

1D feature vector to be fed into the classifier. 

 

SVM for Classification 

SVMs classify feature vectors by constructing an optimal 

hyperplane in high-dimensional space (Kumar & Singh, 

2024). When paired with CNN features, SVMs can 

improve classification accuracy for plant disease 

detection, especially with limited datasets (Reddy et al., 

2023) . 

The feature vector extracted by the CNN is fed into the 

SVM, which then classifies the image into the appropriate 

disease category. 

Input: Combine CNN features with pre-extracted features 

(e.g., color and texture). 

Train SVM: Use the radial basis function (RBF) kernel for 

classification. 

 

Hybrid Model 

Combining CNN’s feature extraction with SVM’s 

classification strength results in improved accuracy and 

robustness over standalone models (Gupta & Sharma, 

2021; Li et al., 2023). Several recent studies confirm that 

hybrid CNN-SVM architectures outperform single 

approaches in agricultural disease detection tasks (Ezigbo 

& Chibueze, 2025; Tonmoy et al., 2025). 

The hybrid model leverages the strengths of both CNNs 

and SVMs: 

• CNN: Efficiently extracts hierarchical features 

from images. 

• SVM: Provides robust classification, especially 

effective with limited datasets. 

Workflow: 

i. Input: Preprocessed images are fed into the 

CNN. 

ii. Feature Extraction: The CNN processes the 

images through its layers, outputting a feature 

vector. 

iii. Classification: The feature vector is passed to 

the SVM, which classifies the image into a 

specific disease category. 

This hybrid approach has been successfully applied in 

various studies, demonstrating its effectiveness in 

accurately detecting and classifying plant diseases from 

leaf images. 

Fusion: Concatenate CNN and handcrafted features. 

Classification: Train SVM on fused feat 

 

Image Preprocessing 

All images were resized to 128×128 pixels and normalized 

to bring pixel values into a common scale. To enhance the 

generalization capability of the model and prevent 

overfitting, several data augmentation techniques were 

applied, including: 

                Rotation 

              Horizontal and vertical flipping 

Class Disease Types No of Samples 

Healthy  None 200 

Infected  Anthracnose, Rust, 

Downy Mildew 

250 

Total   450 
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                Zooming 

  

Model Architecture 

 

 

 

• CNN Layer: Extracts features from plant 

 leaf images using convolutional and pooling layers. 

 

• SVM Layer:  

Classifies the extracted features Figure 1:  

Sample Plant Leaf Images from the Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Sample Plant Leaf Images from the Dataset 

 

 

 
 

Figure 2: Hybrid CNN-SVM Architecture 

 

Model Development 

The hybrid CNN-SVM model for plant disease detection 

was developed through a structured pipeline, starting from 

data collection to model training and evaluation, with each 

step carefully designed for reproducibility. 

The dataset comprised 450 high-resolution images of 

sorghum, maize, and millet leaves, covering both healthy 

and diseased categories. To ensure variability, two 

complementary sources were used: the Plant Village 

public dataset, widely recognized in plant disease 

detection research (Mohanty et al., 2020; Kaur & Singh, 

2022), and field-collected images captured using mobile 

cameras under natural lighting conditions (Reddy et al., 

2023). Expert annotation was performed to label disease 

types accurately, ensuring high-quality ground truth for 

supervised learning. 

Preprocessing was applied to enhance data quality and 

model robustness. All images were resized to 128×128 

pixels to maintain uniformity and reduce computational 

complexity (Gupta & Sharma, 2021). Pixel values were 

normalized to [0,1] to accelerate convergence during 

training (Li et al., 2023). To prevent overfitting and 

improve generalization, data augmentation techniques 

such as rotation, horizontal/vertical flipping, and zooming 

were used, introducing artificial variability consistent with 

best practices in deep learning (Zhang et al., 2023). 

Feature extraction was performed using a CNN, which 

learns hierarchical representations of plant leaf patterns 

directly from image data (Kaur & Singh, 2022). The CNN 

architecture consisted of convolutional layers with ReLU 

activation functions, followed by max-pooling layers to 

reduce dimensionality while preserving essential features. 

The output feature maps were flattened into one-

dimensional vectors for classification. The choice of CNN 

was motivated by its proven ability to capture complex 

spatial features in agricultural disease images (Gupta & 

Sharma, 2021). 

Classification was carried out using a Support Vector 

Machine (SVM) with a radial basis function (RBF) kernel, 

selected for its robustness in high-dimensional spaces and 

strong performance with limited datasets (Kumar & Singh, 

2024). Grid search optimization was applied to tune the 

hyperparameters C and γ, ensuring optimal decision 

boundary placement (Li et al., 2023). The hybrid design—

using CNN for feature extraction and SVM for 

classification—was based on evidence that this 

combination achieves superior accuracy compared to 

standalone CNN or SVM models (Ezigbo & Chibueze, 

2025; Tonmoy et al., 2025). 
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The experimental setup followed standard ML 

reproducibility guidelines. The dataset was split into 80% 

training, 10% validation, and 10% testing, ensuring a fair 

evaluation of model performance (Kaur & Singh, 2022). 

The model was implemented using Python 3.9, Tensor 

Flow 2.x for CNN training, and Scikit-learn 1.x for SVM 

classification. Hyperparameter tuning was performed via 

grid search on the training and validation sets, while the 

final model was evaluated on the unseen test set. All 

experiments were run on an NVIDIA GTX 1080Ti GPU 

with 32GB RAM and an Intel Core i7 processor to ensure 

consistent hardware settings for replication. 

Model performance was measured using accuracy, 

precision, recall, F1-score, confusion matrix, and ROC-

AUC metrics, providing a comprehensive assessment of 

both classification correctness and class balance (Zhang et 

al., 2023). The Adam optimizer and a learning rate 

schedule were used during training for faster convergence, 

with the model trained for 50 epochs based on early 

stopping criteria to prevent overfitting. 

 

Experimental Setup 

The experimental framework was established to ensure 

reproducibility and fair comparison of models, following 

best practices in machine learning research (Gupta & 

Sharma, 2021; Mohanty et al., 2020). The dataset included 

images from the Plant Village repository and additional 

field-collected samples of sorghum, maize, and millet 

leaves, covering both healthy and diseased categories 

(Kaur & Singh, 2022; Reddy et al., 2023). 

Data preprocessing included resizing all images to 

128×128 pixels, normalizing pixel values to the range 

[0,1], and applying augmentation techniques such as 

rotation, flipping, and zooming to increase variability 

(Zhang et al., 2023; Li et al., 2023). The dataset was split 

into 80% training, 10% validation, and 10% testing, 

consistent with prior plant disease detection studies 

(Kumar & Singh, 2024). 

The model was implemented in Python 3.9 using 

TensorFlow 2.x for CNN training and Scikit-learn 1.x for 

SVM classification (Ezigbo & Chibueze, 2025). 

Hyperparameter tuning was conducted via grid search to 

determine optimal CNN filter sizes, learning rates, and 

SVM parameters, as suggested in recent hybrid ML 

optimization research (Tonmoy et al., 2025). The 

experiments were run on an NVIDIA GTX 1080Ti GPU 

with 32GB RAM and an Intel Core i7 processor. 

 

Model Training and Evaluation 

• Data Split: 80% training, 10% validation, 10% testing 

• Optimizer: Adam 

• Epochs: 50 

• Metrics: Accuracy, Precision, Recall, F1-score,  

Confusion Matrix, AUC-ROC 

 

RESULTS AND DISCUSSION 

The following metrics were used to evaluate model 

performance: 

These metrics are used when the task is to classify data 

into predefined categories (Spam vs. not spam). 

• Accuracy: The proportion of correctly predicted 

instances over the total instances. 

o Formula: 𝐴𝑐𝑐𝑢𝑎𝑐𝑦 𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

…3.0 

Where: 

▪ TP: True Positive 

▪ TN: True Negative 

▪ FP: False Positive 

▪ FN: False Negative 

 If CNN-SVM gives TP = 96, TN = 88, FP = 4, FN = 3 

Accuracy =        96 + 88  

                         96 + 88 + 4 + 3 = 184     96.3% 

                                                191      96.3% 

 

• Precision: The proportion of true positive 

predictions relative to all positive predictions. 

o Formula: Precision=         P 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

• Precision =    96       =    96    ≈ 96% 

                     96 + 4         100  

• Recall (Sensitivity, True Positive Rate): The 

proportion of true positive predictions relative to 

all actual positives. 

o Formula: Recall = 
𝑇𝑃 

𝑇𝑃+𝐹𝑁
 

• Example: 

Recall = 96          96     ≈ 96.97 % 

            96 + 3 =    99  

• F1-Score: The harmonic mean of precision and 

recall, useful for imbalanced classes. 

▪ Formula: F1=2×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

• Example: 

F1 = 2 x  0.96 x0.9697    ≈ 96.4% 

                0.96 + 0.9697       

• ROC-AUC: (Receiver Operating Characteristic 

– Area Under Curve)  
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The area under the Receiver Operating Characteristic 

curve, indicating the model's ability to distinguish 

between classes. 

The AUC is computed as the integral under the ROC 

curve — in practice, most frameworks (like `scikit-

learn`) calculate it automatically: 

```python 

from sklearn.metrics import roc_auc_score 

auc = roc_auc_score(y_true, y_pred_prob) 

• Confusion Matrix: A table showing actual vs. 

predicted classifications, helping to calculate 

precision, recall, and other metrics. 

 

Table 3: Model Performance Comparison (This Study) 

 

Model Accuracy 

(%) 

Precision 

(%) 

Recall  F1-

Score 

(%) 

CNN  93.5 91.5 92.0 91.9 

SVM   88.4 86.5 86.7 86.6 

Hybrid 

CNN-

SVM 

96.3 95.8 96.7 96.2 

 

Table 4: Performance Comparison between Existing Baselines and Hybrid Models 

 

Study/Dataset     Model Accuracy 

(%) 

Precision 

(%) 

Recall  F1-Score (%) 

Hybrid CNN-SVM 

This study 

CNN (feature extractor) + 

SVM (classifier)  

      96.3      95.8      96.7   96.2 

Mohanty et al. (2016)   Transfer-learned CNN 

(GoogLeNet)   

     99.35     Not 

Reported  

     Not 

Reported 

    0.993 

Brahimi et al. (2017) CNN (AlexNet/GoogLeNet 

variants) 

    99.18     Not 

Reported 

    Not 

Reported 

    Not  

Reported 

 

Figure 3: Metrics Performance Comparison 

 

Figure 4: Training vs. Validation Accuracy for CNN-

SVM Model 

❖ The training and validation accuracy trends show 

a steady improvement as the number of epochs 

increases. 

❖ Both training and validation accuracy increase 

rapidly in the first few epochs, indicating the 

model is learning effectively. 

❖ Around epoch 12, the training accuracy reaches 

approximately 96%, while validation accuracy 

approaches 94%, showing minimal over fitting. 
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❖ The gap between training and validation 

accuracy remains small, which suggests good 

generalization of the model. 

❖ The model converges well after around epoch 18, 

indicating an optimal stopping point for training. 

A heatmap showing the impact of different 

hyperparameter combinations on accuracy 

 
Figure 5: Grid Search Results for 

Hyperparameter Tuning 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Confusion Matrix of CNN-SVM Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: ROC Curve of CNN-SVM Model 

The findings of this study reveal that the Hybrid CNN-

SVM architecture delivers superior performance in plant 

disease detection compared to standalone CNN and SVM 

models. The integration of CNN for deep feature 

extraction and SVM for classification effectively 

combines the strengths of both techniques, resulting in 

improved generalization and reduced misclassification 

rates. The hybrid model achieved an accuracy of 96.3%, 

precision of 95.8%, recall of 96.7%, and an F1-score of 

96.2%, significantly surpassing the performance of CNN 

(93.5% accuracy) and SVM (88.4% accuracy) 

individually. Similar performance improvements were 

reported by Zhang et al. (2020) and Brahimi et al. (2017), 

who demonstrated that CNN-SVM hybrids outperform 

single models in agricultural disease detection tasks. 

The performance metrics comparison chart visually 

confirms the hybrid model’s stability and reliability, 

showing consistent results across all evaluation 

parameters. This aligns with Too et al. (2019), who 

emphasized that hybrid architectures often deliver better 

accuracy and robustness under varying test conditions. 

The hyperparameter tuning heat map in this study further 

highlights the critical role of parameter optimization in 

maximizing model efficiency—a finding consistent with 

Kamilaris & Prenafeta-Boldú (2018), who stressed that 

tuning CNN layers and SVM kernels is essential for peak 

performance in image-based plant diagnostics. 

Moreover, the ROC curve for the hybrid model, with an 

AUC approaching 1.0, indicates excellent discriminative 

ability between healthy and diseased plant classes. Similar 

high sensitivity and specificity levels were observed by 

Sladojevic et al. (2016), confirming that hybrid 

architectures minimize false positives while enhancing 

early disease detection, a vital requirement for real-world 

agricultural applications. 
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Overall, this study reinforces the conclusions of 

Ferentinos (2018) and Mohanty et al. (2016) that 

combining CNN’s automated feature extraction with 

SVM’s classification strengths yields a scalable, highly 

accurate detection framework. Such hybrid approaches are 

increasingly recommended in precision agriculture to 

enable timely interventions, reduce agrochemical overuse, 

and enhance crop health and productivity. 

 

CONCLUSION 

The experimental results and accompanying visual 

analyses provide compelling evidence that the Hybrid 

CNN-SVM model significantly outperforms standalone 

CNN and SVM architectures in the domain of plant 

disease detection. By leveraging the deep feature 

extraction strength of Convolutional Neural Networks and 

the robust classification capability of Support Vector 

Machines, the hybrid approach achieves consistently 

superior outcomes across all evaluated performance 

metrics. Specifically, the model attained an impressive 

accuracy of 96.3%, precision of 95.8%, recall of 96.7%, 

and F1-score of 96.2%, clearly surpassing the results of 

the individual CNN and SVM models. 

The Performance Metrics Comparison and accuracy charts 

illustrate this dominance visually, confirming not only the 

hybrid model’s high predictive power but also its stability 

across varying test scenarios. The hyperparameter tuning 

heat map further highlights the importance of careful 

parameter optimization, revealing how the fine-tuning of 

both CNN layers and SVM kernel parameters directly 

contributed to improved model generalization and reduced 

misclassification rates. 

Moreover, the Receiver Operating Characteristic (ROC) 

curve for the hybrid model demonstrates an Area Under 

the Curve (AUC) value approaching 1.0, signifying an 

excellent balance between sensitivity and specificity. This 

means the model is equally proficient at detecting diseased 

plants and correctly identifying healthy samples, an 

essential trait for minimizing false alarms in agricultural 

practice. 

Despite these promising outcomes, this study has some 

limitations. The dataset was relatively limited in terms of 

size and diversity, with images collected under controlled 

conditions that may not fully reflect the variability present 

in real-world farming environments. Additionally, the 

study focused on static image data and did not incorporate 

temporal disease progression, environmental factors, or 

multi-spectral imaging, which could influence disease 

detection accuracy. 

Future research could address these gaps by integrating 

larger and more diverse datasets from multiple geographic 

regions, exploring temporal and environmental data 

fusion, and incorporating advanced hybridization 

approaches such as CNN-SVM ensembles with deep 

transfer learning. Furthermore, real-time deployment on 

low-power agricultural devices, coupled with Internet of 

Things (IoT) integration, represents an exciting direction 

for translating the proposed model into a practical, 

scalable solution for precision agriculture. 
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