Journal of Basics and Applied Sciences Research (JOBASR)
ISSN (print): 3026-9091, ISSN (online): 1597-9962

Volume 3(5) September 2025
DOI: https://dx.doi.org/10.4314/jobasr.v3i5.8

\ERSIT),
o 9

w

Q

w

v

~ <,
S '\'i
H

s €

Plant Disease Detection Using a Hybrid Machine Learning Model

Abidu Abdu Yandoma!*, Muhammad Sani? & Jamil A. Bashir 3
12&3Federal University Dutsin-Ma, Katsina State, Nigeria
“Corresponding Author Email: abiduabdu@gmail.com

ABSTRACT

This research presents a hybrid Convolutional Neural Network—Support Vector
Machine (CNN-SVM) approach for accurate plant disease detection, integrating
CNN’s feature extraction capabilities with SVM’s robust classification
performance. The methodology began with data acquisition and preprocessing,
including image normalization, augmentation, and resizing to ensure model
compatibility and improve generalization. The CNN component was trained to
automatically extract discriminative features from plant leaf images, which were
subsequently fed into an SVM classifier optimized through hyperparameter
tuning. Performance evaluation employed standard metrics, including accuracy,
precision, recall, and F1-score, alongside the Receiver Operating Characteristic
(ROC) curve analysis. Experimental results demonstrate the hybrid CNN-SVM
model’s superiority over standalone CNN and SVM models. The proposed model
achieved an accuracy of 96.3%, precision of 95.8%, recall of 96.7%, and F1-score
of 96.2%, outperforming the CNN (93.5% accuracy) and SVM (88.4% accuracy)
baselines. Hyperparameter tuning was shown to significantly enhance
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Hybrid Model, classification results, as visualized in the tuning heat map. The ROC curve for the
Machine Learning, hybrid model exhibited an Area Under the Curve (AUC) close to 1.0, indicating
Plant Village excellent sensitivity and specificity.

INTRODUCTION

Agricultural productivity is critical for global food
security and economic development. However, plant
diseases remain a major challenge, causing substantial
yield losses and economic setbacks worldwide (Mohanty
et al., 2020). Early and accurate disease detection is
therefore essential for minimizing crop damage and
ensuring sustainable agricultural practices.

Traditional methods of disease detection rely on expert
visual inspections, which are time-consuming, labor-
intensive, and prone to subjective errors. With the advent
of machine learning (ML) and deep learning (DL),
automated plant disease detection systems using leaf
images have demonstrated significant potential.
Convolutional Neural Networks (CNNs) have been highly
effective in extracting discriminative features from
images, while Support Vector Machines (SVMs) are
known for their robust -classification performance,
especially in high-dimensional spaces (Kaur & Singh,
2022; Reddy et al., 2023).

Despite these advances, important challenges remain.
CNNs often require large, balanced datasets to achieve
high accuracy and may overfit when training data is
limited or imbalanced (Li et al., 2023).

SVMs, on the other hand, depend heavily on handcrafted
or pre-extracted features and typically struggle with raw
image data. Existing research has explored hybrid CNN-
SVM architectures to address these issues (Ezigho &
Chibueze, 2025; Tonmoy et al., 2025), but most studies
focus on controlled or single-crop datasets, limiting their
applicability to real-world scenarios with diverse crop
conditions.

To bridge this gap, the present study develops a hybrid
CNN-SVM model that integrates automatic feature
extraction with robust classification for plant disease
detection. The model is evaluated using both publicly
available datasets and field-collected images of sorghum,
maize, and millet leaves, ensuring coverage across
multiple crops and environmental conditions. Its
performance is compared with standalone CNN and SVM
models using standard metrics, including accuracy,
precision, recall, F1-score, and ROC-AUC, to demonstrate
the advantages of the hybrid approach.

By combining the representation power of CNNs with the
strong decision boundaries of SVMs, this research
contributes a more accurate, robust, and generalizable
solution for automated plant disease detection, offering a
practical tool for early intervention and improved crop
management in real-world agricultural settings.
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Several studies have explored machine learning
techniques for plant disease detection. Recent research
(Zhang et al., 2023) has demonstrated the effectiveness of
deep learning approaches such as CNNs for automatic
disease classification. However, CNNs alone may struggle
with small datasets and complex decision boundaries.
SVM has been employed for robust classification in
various domains, including agriculture (Kumar & Singh,
2024). Hybrid approaches combining CNN and SVM have
recently gained attention, proving to be more efficient than
standalone models (Li et al., 2023).

Despite advancements, existing methods often lack
generalizability across different plant species and disease
types. This study addresses these challenges by integrating
CNN for feature extraction and SVM for classification,
thereby improving accuracy and robustness.

Ezigbo & Chibueze (2025) presented a hybrid framework
in their research titled "ResNet50 and XGBoost-Based
Detection of Regional Plant Diseases in West Africa™. The
method leverages the representational power of ResNet50,
a deep CNN pretrained on ImageNet, to extract
meaningful features from leaf images. These deep features
are then passed into an XGBoost classifier, which excels
in handling structured data for final disease classification.
This approach demonstrated high accuracy (98.81%) and
was specifically adapted for mobile deployment,
addressing the practical constraints of agricultural
applications in sub-Saharan Africa.

In the ConRXG model (2022), developed under the
topic "A Hybrid ResNet50-XGBoost Model for Robust
Plant Disease Detection", researchers employed
ResNet50 as a fixed feature extractor to derive deep spatial
features from plant images. These features were
subsequently classified using the XGBoost gradient-
boosted decision tree algorithm. The model was trained
using Adam optimization with batch normalization and
ReLU activation functions, achieving nearly perfect
validation scores on the PlantVillage dataset. The
hybridization of deep learning and machine learning
techniques enabled both high accuracy and computational
efficiency.

Tonmoy et al. (2025), in their work titled
"MobilePlantViT: A Lightweight Vision Transformer for
Mobile-Based Plant Disease Detection”, introduced a
hybrid model integrating a streamlined CNN with a
compact Vision Transformer. This architecture, tailored
for low-resource environments, was designed to run
efficiently on mobile devices. With just 0.69 million
parameters, the model balanced performance and
computational load, achieving test accuracies ranging
from 80% to 99% across several public datasets. The
approach showcases a scalable solution for real-time, in-
field plant disease monitoring.
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In a 2022 study titled "PlantViT: CNN and Vision
Transformer-Based Plant Disease Classification",
researchers developed a dual-stage model combining
CNN feature extraction with a transformer-based attention
mechanism. The CNN module extracted discriminative
local features, which were then fed into a Vision
Transformer head that modeled long-range dependencies.
The model achieved 98.6% accuracy on the PlantVillage
dataset and 87.9% on the more complex Embrapa dataset,
demonstrating robustness across both synthetic and real-
world scenarios.

Thai & Le (2024) introduced the "MobileH-
Transformer”, a compact hybrid CNN-Transformer
architecture optimized for smartphone deployment. The
CNN segment comprises convolutional layers and dual-
convolution blocks to extract primary spatial features,
which are tokenized and processed by a transformer
encoder for global feature learning. Designed for real-time
inference, the model achieved competitive F1-scores
while maintaining a high frame rate (~30 FPS) on mobile
CPUs, emphasizing practical usability in agricultural
settings.

In a specialized 2021 study titled "CAE-CNN:
Autoencoder-Aided CNN for Peach Disease Detection™,
researchers applied a hybrid model where a convolutional
autoencoder (CAE) performed unsupervised
dimensionality reduction. The encoded features were then
used as input to a shallow CNN classifier. The model,
containing fewer than 10,000 parameters, achieved a high
accuracy of 98.4% on peach bacterial spot images. Its
simplicity and performance make it ideal for niche
applications with constrained computational resources.

In a 2024 application-focused study titled *"YOLOv5-

Swin: Object Detection and Classification Pipeline for
Field Environments", the authors combined YOLOV5’s
detection  capabilities with Swin  Transformer’s
classification power. YOLOvV5 was used to locate leaf
regions from full-plant images, which were then cropped
and passed to the Swin Transformer for disease
identification. This two-stage pipeline achieved a mean
average precision (mAP) of 95.2% and was designed for
deployment in harsh agricultural conditions, though it
incurred greater computational demand.

A 2023 study titled "CNN-LSTM Hybrid Model for
Spatiotemporal Plant Disease Prediction' explored the
integration of CNNs and recurrent neural networks
(LSTM and CfC variants) for modeling time-series image
data. The CNN layers extracted spatial features from each
frame, while the LSTM layers captured temporal patterns
in sequential imagery. Achieving an accuracy of ~97%,
the model was well-suited for applications involving crop
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monitoring over time, though it required sequential data
collection and processing

MATERIALS AND METHODS

Methodology

Data Collection

Preprocessing

CNN for feature extraction

SVM for classification

!
Hybrid Model

Figure 1: Diagram of the plant disease detection
using hybrid machine learning
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Data Collection:

The dataset used in this study comprises 450 high-
resolution images of sorghum, maize, and millet leaves,
each affected by different types of diseases or healthy
conditions. The images were collected under controlled
lighting and background conditions to ensure consistency
and clarity. Expert annotation was employed to label the
images into distinct disease categories. Public datasets
such as PlantVillage have been widely used for plant
disease detection due to their large variety of labeled
samples (Mohanty et al., 2020; Kaur & Singh, 2022). Field
data collection ensures that the model accounts for real-
world variability (Reddy et al., 2023).

The foundation of any machine learning model is a
robust and diverse dataset. For plant disease detection,
images of healthy and diseased plant leaves are collected.
These images can be sourced from:

1. Public Datasets: Such as PlantVillage, which
contains over 450 images of plant leaves
categorized by species and disease type.

2. Field Data: Captured using smartphones or
cameras in various agricultural settings to ensure
real-world variability.e ~¢%

Table 1: Sample Plant leaf Dataset Table ( A Semi Arid Crop Sorghum)

Image Id Plant Health Disease Type (if Image Size Resolution Remarks
Type Status Infected
IMGO001 Sorghum Healthy Downy Mildew | 128x128px 72 DPI Clean Leaf
IMG002 Sorghum Healthy Anthracnose 128x128px 72 DPI Good Color
Contrast
IMGO003 Sorghum Healthy Rust 128x128px 72 DPI No Blemish
IMG004 Sorghum Infected Anthracnose 128x128px 72 DPI Dark Spots
Visible
IMGO005 Sorghum Infected Rust 128x128px 72 DPI Yellow-brown
rings
IMGO006 Sorghum Infected Downy Mildew | 128x128px 72 DPI Powdery
patches
IMGO0075 Sorghum Healthy Rust 128x128px 72 DPI Final healthy
Sample
IMG0076 Sorghum Infected Anthracnose 128x128px 72 DPI Leaf curling
IMGO0077 Sorghum Infected Rust 128x128px 72 DPI Edges
browning
IMGO0150 Sorghum Infected Downedy 128x128px 72 DPI Final infected
Mildew sample
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Table 2: Summary of Dataset

Class Disease Types No of Samples
Healthy None 200
Infected Anthracnose, Rust, 250
Downy Mildew
Total 450

Preprocessing

To improve model performance, preprocessing steps such
as resizing, normalization, and data augmentation were
applied. Uniform resizing of images to fixed dimensions
has been shown to standardize model input and reduce
computation (Gupta & Sharma, 2021). Data augmentation
through rotation, flipping, and brightness adjustment
enhances generalization and reduces overfitting (Zhang et
al., 2023). Normalization of pixel values improves
convergence speed during training (Li et al., 2023).

To enhance the quality and consistency of the dataset,
several preprocessing steps are undertaken:

The Plant Village dataset was used, which contains over
450 labelled images of healthy and diseased plant leaves
spanning 38 classes.

CNN for Feature Extraction

CNNs are powerful for automatically extracting spatial
features from plant leaf images, leveraging convolution
and pooling layers for hierarchical feature learning (Kaur
& Singh, 2022). Prior research has demonstrated CNN’s
capability in capturing complex disease patterns in leaves
with high accuracy (Gupta & Sharma, 2021; Zhang et al.,
2023). They automatically and adaptively learn spatial
hierarchies of features through backpropagation by using
multiple building blocks, such as convolution layers,
pooling layers, and fully connected layers.

e Convolutional Layers: Apply filters to the input
image to create feature maps that detect various
features like edges, textures, and patterns.

e Pooling Layers: Reduce the spatial dimensions
of the feature maps, retaining the most significant
information and reducing computational load.

e Activation Functions: Introduce non-linearities
into the model, allowing it to learn complex
patterns. ReLU (Rectified Linear Unit) is
commonly ussed.

e Flattening: Converts the 2D feature maps into a
1D feature vector to be fed into the classifier.

SVM for Classification

SVMs classify feature vectors by constructing an optimal
hyperplane in high-dimensional space (Kumar & Singh,
2024). When paired with CNN features, SVMs can
improve classification accuracy for plant disease
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detection, especially with limited datasets (Reddy et al.,
2023) .

The feature vector extracted by the CNN is fed into the
SVM, which then classifies the image into the appropriate
disease category.

Input: Combine CNN features with pre-extracted features
(e.g., color and texture).

Train SVM: Use the radial basis function (RBF) kernel for
classification.

Hybrid Model

Combining CNN’s feature extraction with SVM’s
classification strength results in improved accuracy and
robustness over standalone models (Gupta & Sharma,
2021; Li et al., 2023). Several recent studies confirm that
hybrid CNN-SVM architectures outperform single
approaches in agricultural disease detection tasks (Ezigho
& Chibueze, 2025; Tonmoy et al., 2025).

The hybrid model leverages the strengths of both CNNs
and SVMs:

e CNN: Efficiently extracts hierarchical features
from images.

e SVM: Provides robust classification, especially
effective with limited datasets.

Workflow:

i. Input: Preprocessed images are fed into the
CNN.

ii. Feature Extraction: The CNN processes the
images through its layers, outputting a feature
vector.

iii. Classification: The feature vector is passed to
the SVM, which classifies the image into a
specific disease category.

This hybrid approach has been successfully applied in
various studies, demonstrating its effectiveness in
accurately detecting and classifying plant diseases from
leaf images.

Fusion: Concatenate CNN and handcrafted features.
Classification: Train SVM on fused feat

Image Preprocessing

All images were resized to 128x128 pixels and normalized
to bring pixel values into a common scale. To enhance the
generalization capability of the model and prevent
overfitting, several data augmentation techniques were
applied, including:

—> Rotation

Horizontal and vertical flipping
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—,> Zooming

Model Architecture

. CNN Layer: Extracts features from plant
leaf images using convolutional and pooling layers.

. SVM Layer:
Classifies the extracted features Figure 1:
Sample Plant Leaf Images from the Dataset

Figure 1: Sample Plant Leaf Images from the Dataset

’

Input

CNN

Feature Extraction

SWM

Classifier

v

Output

Hybrid CNN-SVM Model Architecture

Figure 2: Hybrid CNN-SVM Architecture

Abidu et al.

JOBASR2025 3(5): 61-70

Model Development

The hybrid CNN-SVM model for plant disease detection
was developed through a structured pipeline, starting from
data collection to model training and evaluation, with each
step carefully designed for reproducibility.

The dataset comprised 450 high-resolution images of
sorghum, maize, and millet leaves, covering both healthy
and diseased categories. To ensure variability, two
complementary sources were used: the Plant Village
public dataset, widely recognized in plant disease
detection research (Mohanty et al., 2020; Kaur & Singh,
2022), and field-collected images captured using mobile
cameras under natural lighting conditions (Reddy et al.,
2023). Expert annotation was performed to label disease
types accurately, ensuring high-quality ground truth for
supervised learning.

Preprocessing was applied to enhance data quality and
model robustness. All images were resized to 128x128
pixels to maintain uniformity and reduce computational
complexity (Gupta & Sharma, 2021). Pixel values were
normalized to [0,1] to accelerate convergence during
training (Li et al., 2023). To prevent overfitting and
improve generalization, data augmentation techniques
such as rotation, horizontal/vertical flipping, and zooming
were used, introducing artificial variability consistent with
best practices in deep learning (Zhang et al., 2023).

Feature extraction was performed using a CNN, which
learns hierarchical representations of plant leaf patterns
directly from image data (Kaur & Singh, 2022). The CNN
architecture consisted of convolutional layers with ReLU
activation functions, followed by max-pooling layers to
reduce dimensionality while preserving essential features.
The output feature maps were flattened into one-
dimensional vectors for classification. The choice of CNN
was motivated by its proven ability to capture complex
spatial features in agricultural disease images (Gupta &
Sharma, 2021).

Classification was carried out using a Support Vector
Machine (SVM) with a radial basis function (RBF) kernel,
selected for its robustness in high-dimensional spaces and
strong performance with limited datasets (Kumar & Singh,
2024). Grid search optimization was applied to tune the
hyperparameters C and vy, ensuring optimal decision
boundary placement (Li et al., 2023). The hybrid design—
using CNN for feature extraction and SVM for
classification—was based on evidence that this
combination achieves superior accuracy compared to
standalone CNN or SVM models (Ezigho & Chibueze,
2025; Tonmoy et al., 2025).
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The experimental setup followed standard ML
reproducibility guidelines. The dataset was split into 80%
training, 10% validation, and 10% testing, ensuring a fair
evaluation of model performance (Kaur & Singh, 2022).
The model was implemented using Python 3.9, Tensor
Flow 2.x for CNN training, and Scikit-learn 1.x for SVM
classification. Hyperparameter tuning was performed via
grid search on the training and validation sets, while the
final model was evaluated on the unseen test set. All
experiments were run on an NVIDIA GTX 1080Ti GPU
with 32GB RAM and an Intel Core i7 processor to ensure
consistent hardware settings for replication.

Model performance was measured using accuracy,
precision, recall, F1-score, confusion matrix, and ROC-
AUC metrics, providing a comprehensive assessment of
both classification correctness and class balance (Zhang et
al., 2023). The Adam optimizer and a learning rate
schedule were used during training for faster convergence,
with the model trained for 50 epochs based on early
stopping criteria to prevent overfitting.

Experimental Setup

The experimental framework was established to ensure
reproducibility and fair comparison of models, following
best practices in machine learning research (Gupta &
Sharma, 2021; Mohanty et al., 2020). The dataset included
images from the Plant Village repository and additional
field-collected samples of sorghum, maize, and millet
leaves, covering both healthy and diseased categories
(Kaur & Singh, 2022; Reddy et al., 2023).

Data preprocessing included resizing all images to
128x128 pixels, normalizing pixel values to the range
[0,1], and applying augmentation techniques such as
rotation, flipping, and zooming to increase variability
(Zhang et al., 2023; Li et al., 2023). The dataset was split
into 80% training, 10% validation, and 10% testing,
consistent with prior plant disease detection studies
(Kumar & Singh, 2024).

The model was implemented in Python 3.9 using
TensorFlow 2.x for CNN training and Scikit-learn 1.x for
SVM classification (Ezigbo & Chibueze, 2025).
Hyperparameter tuning was conducted via grid search to
determine optimal CNN filter sizes, learning rates, and
SVM parameters, as suggested in recent hybrid ML
optimization research (Tonmoy et al., 2025). The

Abidu et al.

JOBASR2025 3(5): 61-70
RESULTS AND DISCUSSION

The following metrics were used to evaluate model
performance:

These metrics are used when the task is to classify data
into predefined categories (Spam vs. not spam).

e Accuracy: The proportion of correctly predicted
instances over the total instances.

o Formula:
...3.0

TP+TN
TP+TNFFPTFN

Accuacy A =

Where:

= TP: True Positive
= TN: True Negative
= FP: False Positive
= FN: False Negative
If CNN-SVM gives TP =96, TN =88, FP =4, FN =3
Accuracy = 96 + 88
96+88+4+3=184 96.3%
191  96.3%

e Precision: The proportion of true positive
predictions relative to all positive predictions.
TP

o Formula: Precision= P

e Precision= 96 =
96 + 4

TP+FP
96 ~96%
100

e Recall (Sensitivity, True Positive Rate): The
proportion of true positive predictions relative to
all actual positives.

o Formula: Recall = —=
TP+FN
e Example:
Recall = 96 96 =96.97 %
9% +3= 99

e F1-Score: The harmonic mean of precision and
recall, useful for imbalanced classes.

= Formula: F1=2x
Precision x Recall

P
experiments were run on an NVIDIA GTX 1080Ti GPU e Example: receion
with 32GB RAM and an Intel Core i7 processor. F1=2x 0.96 x0.9697 =96.4%
0.96 + 0.9697
Model Training and Evaluation
. Data Split: 80% training, 10% validation, 10% testing ROC-AUC: (Receiver Operating Characteristic
: Optimizer: Adam — Area Under Curve)
. Epochs: 50
. Metrics: Accuracy, Precision, Recall, F1-score,

Confusion Matrix, AUC-ROC
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The area under the Receiver Operating Characteristic

Abidu et al.
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curve, indicating the model's ability to distinguish Table 3: Model Performance Comparison (This Study)

between classes.

The AUC is computed as the integral under the ROC
curve — in practice, most frameworks (like “scikit-
learn’) calculate it automatically:

“python

from sklearn.metrics import roc_auc_score

auc = roc_auc_score(y_true, y_pred_prob)

e Confusion Matrix: A table showing actual vs.
predicted classifications, helping to calculate
precision, recall, and other metrics.

Model | Accuracy | Precision | Recall F1-
(%) (%) Score
(%)
CNN 93.5 91.5 92.0 91.9
SVM 88.4 86.5 86.7 86.6
Hybrid | 96.3 95.8 96.7 96.2
CNN-
SVM

Table 4: Performance Comparison between Existing Baselines and Hybrid Models

Study/Dataset Model Accuracy Precision Recall F1-Score (%)
(%) (%)

Hybrid CNN-SVM CNN (feature extractor) + 96.3 95.8 96.7 96.2

This study SVM (classifier)

Mohanty et al. (2016) Transfer-learned CNN 99.35 Not Not 0.993
(GoogL eNet) Reported Reported

Brahimi et al. (2017) CNN (AlexNet/GoogLeNet 99.18 Not Not Not
variants) Reported Reported Reported

Performance Metrics Comparison
100

W Accuracy
Precision

W Recal

L m Fl-Score

60

Performance Metrics (26)

0

O S
Models

Hybrid CNN-SVM

Figure 3: Metrics Performance Comparison

Training vs. Validation Accuracy

09

Accuracy
=
=

0.6

—e— Training Accuracy
Validation Accuracy

34 5 6 1

Epochs

8 9 1 1 1 13 W 15 16 1 18 1 2

Figure 4: Training vs. Validation Accuracy for CNN-
SVM Model

«+ The training and validation accuracy trends show

a steady improvement as the number of epochs
increases.

% Both training and validation accuracy increase

rapidly in the first few epochs, indicating the
model is learning effectively.

% Around epoch 12, the training accuracy reaches

approximately 96%, while validation accuracy
approaches 94%, showing minimal over fitting.
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% The gap between training and validation
accuracy remains small, which suggests good
generalization of the model.

«+ The model converges well after around epoch 18,

indicating an optimal stopping point for training.

heatmap showing the impact of different
hyperparameter combinations on accuracy

Hyperparameter Tuning Heatmap
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Figure 5: Grid Search Results for
Hyperparameter Tuning
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Figure 6: Confusion Matrix of CNN-SVM Model
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ROC Curve

Hybrid CNN-SVM
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S
>
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False Positive Rate

0.0 0.2 0.8 1.0

Figure 7: ROC Curve of CNN-SVM Model

The findings of this study reveal that the Hybrid CNN-
SVM architecture delivers superior performance in plant
disease detection compared to standalone CNN and SVM
models. The integration of CNN for deep feature
extraction and SVM for classification effectively
combines the strengths of both techniques, resulting in
improved generalization and reduced misclassification
rates. The hybrid model achieved an accuracy of 96.3%,
precision of 95.8%, recall of 96.7%, and an F1-score of
96.2%, significantly surpassing the performance of CNN
(93.5% accuracy) and SVM (88.4% accuracy)
individually. Similar performance improvements were
reported by Zhang et al. (2020) and Brahimi et al. (2017),
who demonstrated that CNN-SVM hybrids outperform
single models in agricultural disease detection tasks.

The performance metrics comparison chart visually
confirms the hybrid model’s stability and reliability,
showing consistent results across all evaluation
parameters. This aligns with Too et al. (2019), who
emphasized that hybrid architectures often deliver better
accuracy and robustness under varying test conditions.
The hyperparameter tuning heat map in this study further
highlights the critical role of parameter optimization in
maximizing model efficiency—a finding consistent with
Kamilaris & Prenafeta-Boldu (2018), who stressed that
tuning CNN layers and SVM kernels is essential for peak
performance in image-based plant diagnostics.

Moreover, the ROC curve for the hybrid model, with an
AUC approaching 1.0, indicates excellent discriminative
ability between healthy and diseased plant classes. Similar
high sensitivity and specificity levels were observed by
Sladojevic et al. (2016), confirming that hybrid
architectures minimize false positives while enhancing
early disease detection, a vital requirement for real-world
agricultural applications.
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Overall, this study reinforces the conclusions of
Ferentinos (2018) and Mohanty et al. (2016) that
combining CNN’s automated feature extraction with
SVM’s classification strengths yields a scalable, highly
accurate detection framework. Such hybrid approaches are
increasingly recommended in precision agriculture to
enable timely interventions, reduce agrochemical overuse,
and enhance crop health and productivity.

CONCLUSION

The experimental results and accompanying visual
analyses provide compelling evidence that the Hybrid
CNN-SVM model significantly outperforms standalone
CNN and SVM architectures in the domain of plant
disease detection. By leveraging the deep feature
extraction strength of Convolutional Neural Networks and
the robust classification capability of Support Vector
Machines, the hybrid approach achieves consistently
superior outcomes across all evaluated performance
metrics. Specifically, the model attained an impressive
accuracy of 96.3%, precision of 95.8%, recall of 96.7%,
and F1-score of 96.2%, clearly surpassing the results of
the individual CNN and SVM maodels.

The Performance Metrics Comparison and accuracy charts
illustrate this dominance visually, confirming not only the
hybrid model’s high predictive power but also its stability
across varying test scenarios. The hyperparameter tuning
heat map further highlights the importance of careful
parameter optimization, revealing how the fine-tuning of
both CNN layers and SVM kernel parameters directly
contributed to improved model generalization and reduced
misclassification rates.

Moreover, the Receiver Operating Characteristic (ROC)
curve for the hybrid model demonstrates an Area Under
the Curve (AUC) value approaching 1.0, signifying an
excellent balance between sensitivity and specificity. This
means the model is equally proficient at detecting diseased
plants and correctly identifying healthy samples, an
essential trait for minimizing false alarms in agricultural
practice.

Despite these promising outcomes, this study has some
limitations. The dataset was relatively limited in terms of
size and diversity, with images collected under controlled
conditions that may not fully reflect the variability present
in real-world farming environments. Additionally, the
study focused on static image data and did not incorporate
temporal disease progression, environmental factors, or
multi-spectral imaging, which could influence disease
detection accuracy.
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Future research could address these gaps by integrating
larger and more diverse datasets from multiple geographic
regions, exploring temporal and environmental data
fusion, and incorporating advanced hybridization
approaches such as CNN-SVM ensembles with deep
transfer learning. Furthermore, real-time deployment on
low-power agricultural devices, coupled with Internet of
Things (10T) integration, represents an exciting direction
for translating the proposed model into a practical,
scalable solution for precision agriculture.
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