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ABSTRACT

This study modified Wilks” Lambda Test Statistic in Multivariate Analysis of
Variance Test. Simulation was done using R. The sample sizes utilized were 5, 10,
15, 20, 25, 50 and 100; Number of variables and Number of groupsp=9g =2, 3
and 4 with equal, unequal samples sizes and variance co — variance matrix. The
comparison were done at one level of o = 0.05 using power of the test and type |
error rate. From the result obtained under type | error rate, it was indicated that
wheng=2,p=2,p=3,p=4,9=3p=2,p=3,p=4,9=4,p=2,wheng =4,
p =3, when g =4, p =4 and compares with chi — square value. It was noticed that
the proposed test statistic performs better at all sample sizes and across all
variables when the sample sizes were large (i.e 50 and 100) but not perform better
when the sample sizes are small. Under power of the test, it was obsrved that when
g=2andp=2,p=3andp=4,g=3andp=2,p=3,p=4,0=4,p=2,p=3,
p = 4 and compares all with chi — square value. It was noticed that the proposed

Power of the test, Manova.

test statistic does not performs better at all sample sizes and across all variables.

INTRODUCTION
Over the years, many researchers compared the the

performance of the four multavariate analyis of variance
test statistic (MANOVA) when the sample size is high
and small, when the mean vectors are different, and when
the mean vectors are equal. Groups are compared on a
collection of dependent variables at the same time using
multivariate analysis of variance (MANOVA). The
MANOVA approach makes a single compariason rather
than testing group differences with many independent
ANOVASs and running the risk of increasing family — wise
error (chance of one or more Type | errors). Only when
there is a relationship between the several dependent
variables and the expected pattern of group differences for
each dependent variable points in the same direction is the
MANOVA appropriate (Winter, 2025). Individual items,
multiple scale scores, or other related measures might be
used as the multiple measures. The ability of various
psychotherapy approaches (independent variables) to
lessen psychological distress could be an example, where
a number of psychological distress measures, such as
depression, anxiety, and perceived stress, are examined
collectively (as dependent variables).

As an alternative, one might examine a number of
depression  subscales, including somaticsymptoms,
positive and negative effects, and others. The convenience
of a different kind of omnibus test of all the measures at
once is offered by MANOVA.

The majority of researchers across a wide range of
specializations gather data sets that are multivariate in
nature. It may make sense in certain situations to look at
each variable independently, but in the majority of
circumstances, all the variables must be looked at once in
order to completely undrestand the structure and important
aspects of the data. A collection of measurements or
observations performed on various topics, patients,
objects, or other entities of interest make up the data that
we are mainly interested in. A measure of the overall
probability of selecting two or more random vectors or
means is provided by the MANOVA test statistic
(Chatfield and Collins, 1995). This method uses a set of
factors functioning as independent variables to evaluate
group differences across several dependent variables at
once. MANOVA is a statistical method that examiners the
connection between two or more dependent variables and
a number of independent variables, often known as
treatments (Tabachnick and Fidel, 2012).
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Consequently, it is a continuation of univariate analysis
of variance. After the experiment, the effect of any
uncontrolled independent factors, or covariates on the
dependent variables is eliminated using multivariate
analysis of covariance in conjunction with MANOVA.
Covariates are the name given to these uncontrollable
independent variables. Measurement of several variables
is a common task for researchers in the biological,
physical, and social sciences (Richard and Michael, 1987).
Multivariate analysis is intrinsically challenging since it
requirs an understanding of the relationships between
numerous response variables, and the sheer volume of the
data may definitely overwhelm the human mind.
Specifically, compared to univariate contexts, certain
matrix algebraic principles are needed for the various
multivariate statistical procedures.

It is crucial to compare the new modified test statistic’s
performance to that of the Wilks’ Lamda, in order to
determine whether the modified test statistic performs
better than the original Wilks’ Lambda test statistic. This
is meant to be done in order to provide an alternate method
for the original Wilks Lambda when the sample size is
bigger. The aim of this study is to propose a new modified
Wilks’ Lambda test statistic and its objective is to compare
the performance of modified Wilks” Lambda test statistic
with the existing Wilks’ Lambda and evaluate how well
the new test statistic performs in comparison to the current
process when sample size varies and variance — covariance
matrices are known and unknown.

(Hend, 2020), In his dissertation, to more effectively
smooth raw data, a revolutionary multivariate
nonparametric techniques was put forth, which narrowed
the solution’s dimension to a few intriguing parameters.
The suggested strategy made use of techniques that took
use of kernel density estimated (KDE), which may be used
to test hypotheses regarding the primary effects and
interaction effect in the two — way layout as well as the
equality of location parameters in the one — way layout. In
order to do multivariate analysis of variance (MANOVA)
and test hypotheses against different group means in a
variety of contexts, including one, multivariate kernel —
based tests were first created. After that, the asymptotic
distributions and asymptotic properties of the suggested
approaches were examined. The small — sample behaviour
of the suggested nonparametric kernel — based test
statistics for the one — and twp — way layout was then
examined  using  simulations.  The  suggested
nonparametric kernel — based techniques were then
contrasted with their conventional parametric counterparts
for one — way and two — way layout. Lastly, an actual
picture dataset was wused to test the suggested
nonparametric kernel — based techniques. The findings oft
this dissertation demonstrated that when the underlying
distribution of the data is non — normal, the suggested
nonparametric kernel — based methods have power than
the corresponding parametric methods, such as
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MANOVA, in identifying group differences in
multivariate settings.

(Sheu, 2020), evaluates, using power analysis , the
effectiveness of multivariate treatment tests (Wilk’s
Lambda, Hoteling Lawley, Roy’s biggest root, and Pillai)
on multivariate Sudoku square design, models. The power
of these four tests for the four multivariate Sudoku square
design models was compared using Monte Carlo
simulation. In his research, the power difference between
two tests with the same sample size was measured as an
interval value of + 0.062. If the difference between the
test’s powers is + 0.062, the test is deemed powerful or
advantageous. According to the power test results,
Hoteling — Lawley outperforms the other three tests at p =
2, but at p = 3, in all multivariate Sudoku models, Wilks’
Lambda test has a power advantage over other tests.
(Iftikhar, 2020) uses simulated data from agricultural trials
to demonstrate MANOVA. On simulated data, the proper
design techniques for analysis, interpretation, and
conclusion are applied. For example, in a completely
randomized design (CRD), three elements are taken into
account in a factorial layout. All possible combinations of
the two levels of each irrigation, variety, and nitrogen
source are taken into consideration in order to quantify the
yield and plant height, two linearly connected responses.
Two parameters, let’s say plant height and yield, are
simulated using data with with different correlation
coefficient magnitudes (low, moderate and high) between
the two response variables. The comparison of MANOVA
and ANOVA shows that even a slight correlation between
dependent variables significantly impacts the main effects
and interactions of the three independent variables. When
the linear relationship between traits is low to moderate,
ANOVA and MANOVA vyield contrasting results for
some main effects and interactions. Moreover, with highly
correlated traits, MANOVA drastically changes the
interpretation of effects compared to separate ANOVAS
for each trait.

(Béatrice, 2022) emphasizes the construction and
examination of residuals in the so called GMANOVA —
MANOVA model. The Extended Growth Curve Model is
the model’s special case. It consists of two terms, one of
which models the growth curves or profiles and the other
of which represents the relevant covariables. In disciplines
includeing biology, medicine, epimdemiology, and
economics, this model is helpful for examining growth
curves in brief time series. Additionally, residuals have
been thoroughly examined and utilized in the literature to
assess the adequacy of univariate linear models. The
maximum likelihood estimators of the model’s parameters
are used in this thesis to build a fresh pair of residuals. An
individual’s distance from the group means is shown by
one residual, and assumptions on the mean structure are
verified by a second residual. Theses residuals’ various
attributes are checked, and their meaning is examined.
Additionally, the empirical distributions of the extreme
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elements in the residuals are obtained using parametric
bootsrap. Lastly, the MANOVA model’s testing of
bolinear limitation is examined. It is possible to
demonstrate that the MANOVA model with bilinear
constraints is only a GMANOVAMANOVA model,
Additionally, it can be demonstrated that the likelihood
ratio test is provided as a function of the GMANOVA —
MANOVA model’s residuals, which may be used to
assess the model’s suitability and test the bilinear
hypothesis.

(Sarah, 2017) a contemporary and reliable analysis of
longitudinal and multivariate data in factorial
experiments, non — parametric statistical inference
technigues are crucial. Although statistical software
packages implement existing approaches that rely on
particular distributional assumptions of the data
(multivariate normality and/ or equal covariance
matrices), user — friendly software that can be used for the
analysis of the data that do not fulfill the afformentioned
assumptions and provide accurate estimates of the p value
and confidence interval is needed. Thus, the publicly
accessible R package MANOVA. RM incorporates
recently created nonparametric statistical techniques
based on bootstrap and permutation procedures, which do
not need multivariate normality or particular covariance
matrices. A graphical user interface is included in the
software for believable acafemic and other educational
uses. The methods’ use is demonstrated by a number of
inspiring cases.

(Okoli, 2022). Lawley — Hoteling, Pillai’s trace, Roy’s
biggest root, and Wilks’ lambda are the four test statistics
used in MANOVA that were compared for power. The
data used to compare the four test statistics under the
Multivariate Gamma and Multivariate Normal distribution
was simulated using R Statistics. Sample sizes of 10, 20,
30, 40, 100, 200, 300, 400, 600, 700, 800 and 1000 were
employed; there were also equal and unequal samples for
variables (p = 2, 3 and 4) and a variance — covariance
matrix. Using test power, the comparison was conducted
at two levels of significance (o = 0.01 and 0.05). Because
it has the highest powers, the results showed that the Roy’s
largest Root test statistic is superior to all other test
statistic taken into consideration when p = g = 2. The
analysis’s outcome also demonstrated that, for both small
and large sanple sizes, Wilks’ lambda outperformed all
other test statistics for p =g =3 and p = g = 4. The results
equally showed that when the data are multivariate normal
and Gamma with g =2 and p = 2 the power of the four test
statistics from best to least is Roy’s largest root, followed
Lawley’s trace = Pillai’s trace and the least is Wilks’
Lambda at significant levels of 0.01 and 0.05 for equal and
unequal samples. The power of the four statistics, arranged
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from best to least, is Wilks’ Lambda, Pillai’s trace =
Lawley’s trace, and Roy’s greatest root, respectively,
when the data are multivariate normal and gamma, and p
=g=3and p =g =4. The results clearly show that Wilks’
Lambda should be used whenp=g=3andp=g =4, and
Roy’s biggest root should be applied when p =g =2. In
order to get definitive results as efficiently as possible, this
study will assist researchers in designing investigations
with regulated odds of discovering a relevant effect.
(Abdullahi, 2020). The two — way multivariate analysis of
variance (MANOVA), which is extremely sensitive to the
effects of outliers, is mostly employed to test hypotheses
using the ttraditional Wilks’ statistic. Many academics
have looked at alternative options due to the non —
robustness of test statistics based on normal theory. In this
work, we introduced a robust version of the Wilks’ test
statistic that is based on reweighted minimum covariance
determinant estimates (RMCD), which are extremely
efficient and resilient. The performance of the test
statistics under different distributions is assessed using
Monte Carlo simukation, Furthermore, test power and
type | error rate data are regarded as statistical tools for
comparing test statistics.

MATERIALS AND METHODS

Although MANOVA can be used with any number of
groups (i.e., levels of any independent variable), k, and
any number of dependent variables, p, the Hotelling’s T?
is expressed equation® in terms of two groups. Typically,
MANOVA software processes (such as R — package)
generate a number of closely similar tests. When the result
is significant, it means that there are differences between
the groups on the dependent variables taken together.
Wilks’ lambda is the most basic and direct in terms of its
analogous relation to F in univariate ANOVA, Mirroring
the ratio of mean square between to mean square in the
equation. Equation? below is displayed using E and H,
which are matrices of the sums of square of y and their
cross — products (the variace and covariance matrices
without dividing by df )

T? = 2 (5 = 7,)'S T (5 — 72) ()
Wilks Lambda

_s L _ _IEl
A= i1 757 = T @)

Equ? above can also be expressed as the function of eigen
values A;,4,, ....4; of (E"*H) where A = tr(E~1H) and
for which Arange forOto1lie 0 <A< 1.

Where

E=Xioy X0ey (o — %) (xyj — %)* (3)
H=Xiim( — %) — %) @
Power = P(Reject Ho|lH,is true) = PQ >

XGa-adf1Q ~xas N
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Equivalently, since the Type Il error probability (B) is
the probility of failing to reject Ho when Hs is true, the
power is

Power=1-8

Power =1 - Fxéf(A*)(xfl_ wdf) (5)

s 1 _ _IB .
1=1143;  |E+H|

The existing Wilks’ lambda A= []
modified to

N'=Tiag = rl(E )]

for A*~)(,§(p_1)(g_1) for which n; represents total sample
size, g = group size and p = population size and when i
>1.

The modified Wilks’ lambda A* was iterated in k™" times
in which k = 1000. The k™" iterated result was checked with
the chi — square to know how many time will test statistic
greater than chi — square value at varying sample sizes of
5, 10, 15, 20, 25, 50 and 100 for group sizes (g) are 2, 3
and 4 and number of variables (p) are also 2, 3 and 4. At
a various level of groups, observing which of them
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perform better under type | error rate, power of the test for
both null hypothesis and alternative hypothesis using
varying sample size.

Data generation processes
The data used for this study was simulated and analyzed

using R statistical package. The n covariates were
simulated X;, X,... X, from the multivariate normal
distribution with mean vector and variance — covariance
matrix vector as shown below

. O1n

254 011

L

=1 r= .
P W

With varying sample size n =5, 10, 15, 20 25, 50, and 100,
the variance covariance matrix of the covariates is
obtained for the various values of n and o is fixed as 95%

012
022

## When p =4, group =4
test44 <- function(k,m,n) {
library(MASS)
ml=c(4,8,12,18)
m2=ml*m

m3=m2*m

m4=m3*m

return(output
test <- function(k,n) {
library(MASS)
ml=c(2,3,4)
m2=c(2,3,4)
m3=c(2,3,4)
s=matrix(c(2,1,1,1,4,2,2,2,8),ncol=3)

s=matrix(c(2,1,1,1,1,4,2,1,1,2,6,1,1,1,1,8),ncol=4)

for (i in 1:k) {
x1=mvrnorm(n,m1,s)
X2=mvrnorm(n,m2,s)
x3=mvrnorm(n,m3,s)
x4=mvrnorm(n,m4,s)
x=rbind(x1,x2,x3,x4)
factor=sort(rep(1:4,n))

fit = manova(x~factor)

ss <- summary.manova(fit)$SS
e <- ss$Residuals

h <- ss$factor

wl <- solve(e)%*%h

wll <- eigen(wl)$values
wwl <- as.numeric(sum(w11l))
output <- c(output, ww1l)

}

return(output)

for (i in 1:k) {
x1=mvrnorm(n,m1,s)
x2=mvrnorm(n,m2,s)
x3=mvrnorm(n,m3,s)
x=rbind(x1,x2,x3)
factor=sort(rep(1:3,n))
fit = manova(x~factor)
ss <- summary.manova(fit)$SS
e <- ss$Residuals
h <- ss$factor
w <- solve(e)%*%h
w2 <- eigen(w)$values
ww2<- as.numeric(1l/sum(w2))
output <- c(output,ww?2)

}
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RESULTS AND DISCUSSION 15 0.004
TABLE 1: Type I error rate a.= 0.05 whne g = 2 4 gg 8883
- - Chi —square = 50 0.000
Number variable (p) (S;l)mple size tF;rsc;posed 9487729 100 0.000
5 0.003 .
10 0.000 Table 2 shows the result _obtaln«::-d wheng=3andp :_2, p
15 0.000 = 3 and p = 4. Comparing chi — square value obtalped
2 20 0.000 (5.991465, 7.8147729 and_ 9.487729) to all t_he group size,
o5 0'000 variables and sa_mple sizes. It was noticed that the
Chi — square = 50 OI 000 p_rop_osed test statistic performs better at when t_he group
5.991465 100 0'000 size is 3, number of variables is 2 for all sample sizes. But,
: when group size is 3, number of variables is 3, it was
> 0.066 noticed that the proposed test statistic performs better
10 0.002 when the sample sizes are larger and it was also noticed
15 0.000 that the proposed test statistic performs better when the
3 20 0.000 sample sizes are larger at group size is 3 and number of
) 25 0.000 variables is 4.
Chi — square = 50 0.000
7.814728 100 0.000 Table 3: Type I Error Rate when o = 0.05 when g = 4
5 0.274
10 0.020 Number variable Sample size | Proposed test
15 0.001 (p) (n)
4 20 0.000 5 0.000
) 25 0.000 10 0.000
Chi —square = 50 0.000 15 0.000
9.487729 100 0.000 2 20 0.000
25 0.000
Table 1 shows the result obtained wheng=2andp=2, p Chi —square = 50 0.000
=3 and p = 4. Comparing chi — square value obtained | 5991465 100 0.000
(5.991465, 7.8147729 and 9.487729) to all the group size, 5 0.013
variables and sample sizes. It was noticed that the 10 0.000
proposed test statistic performs better at when the group 15 0.000
size is 2, number of variable is 2 and at larger sample sizes. 3 20 0.000
25 0.000
Table 2: Type I Error Rate when a = 0.05 when g = 3 Chi — square = 50 0.000
_ i 9.487729 100 0.000
Number variable (p) Sample size | Proposed 5 0.119
(n) test 10 0.007
5 0.000 15 0.001
10 0.000 4 20 0.000
15 0.000 o5 0.000
2 20 0.000 Chi — square = 50 0.000
. 25 0.000 9.487729 100 0.000
Chi —square = 50 0.000 .
>.991465 100 0.000 Table 3 above shows the result obtained when g =4 and p
> 0.036 =2, when g=4and p=3and when g =4,p =4
10 0.001 Comparing chi — square value obtained (5.991465,
15 0.000 7.8147729 and 9.487729) to all the group size, variables
3 20 0.000 and sample sizes. It was noticed that the proposed test
. 25 0.000 statistic performs better at when the group size is 4,
Chi —square = 50 0.000 number of variables is 2 for all sample sizes. But, when
7.814728 100 0.000 group size is 4, number of variable is 3, it was noticed that
5 0.214 the proposed test statistic performs better when the sample
10 0.029 sizes are larger value i.e from 20, 25, 50 and 100 and it
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was also noticed that the proposed test statistic performs
better when the sample sizes are larger at group size is 4
and number of variable is 4, the proposed test statistic
perform better at sample sizes are 20, 25, 50 and 100.

Table 4: Power of the test when a = 0.05 for g =2
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Chi —square = 100 1.000
5.991465

5 0.999

10 1.000

15 1.000

3 20 1.000

25 1.000

Chi —square = 50 1.000

7.8147729 100 1.000

5 1.000

10 1.000

15 1.000

4 20 1.000

25 1.000

Chi —square = 50 1.000

9.487729 100 1.000

Number variable (p) Sample size | Proposed
(n) test
5 0.036
10 0.002
15 0.000
2 20 0.000
25 0.000
Chi — square = 50 0.000
5.991465 100 0.000
5 0.778
10 0.601
15 0.496
3 20 0.452
25 0.388
Chi — square = 50 0.239
5.991465 100 0.102
5 0.989
10 0.988
15 0.990
4 20 0.986
25 0.998
Chi — square = 50 0.999
5.991465 100 1.000

Table 4 shows the result obtained wheng=2andp=2,p
= 3 and p = 4. Comparing chi — square value obtained
(5.991465, 7.8147729 and 9.487729) to all the group size,
variables and sample sizes. It was noticed that there is no
evidence that the proposed test statistic does not performs
better when the group size is 2, number of variables is 2
and at a larger sample sizes, but when the group size is 3,
number of variable is 3, it was noticed that there is
evidence that the proposed test statistic does not performs
better at all level of sample sizes and also there is evidence
that the proposed test statistic does not perform better
when the sample sizes at both smaller and larger sample
sizes.

Table 5: Power of the test when o = 0.05 for g=3

Number variable (p) Sample size | Proposed
(n) test
5 0.411
10 0.204
15 0.108
2 20 0.107
25 0.030
50 0.001

Table 5 shows the result obtained wheng=3andp =2, p
= 3 and p = 4. Comparing chi — square value obtained
(5.991465, 7.8147729 and 9.487729) to all the group size,
variables and sample sizes. It was noticed that there is
evidence that the proposed test statistic does not performs
better at all sample sizes except at the sample size is = 50.
When the group size is 3, number of variables is 3 and at
all sample sizes, the proposed test statistic performs
considerably better. But when the group size is 3, number
of variables is 4, it was noticed that there is evidence that
the proposed test statistic does not performs better at all
sample sizes.

Table 6: Power of the test when a = 0.05 for g =4

Number variable Sample size | Proposed
() (n) test
5 0.905
10 0.931
15 0.950
2 20 0.971
25 0.974
Chi —square = 50 0.997
5.991465 100 1.000
5 1.000
10 1.000
15 1.000
3 20 1.000
25 1.000
Chi —square = 50 1.000
7.8147729 100 1.000
5 0.999
10 1.000
15 1.000
4 20 1.000
25 1.000
50 1.000

76




Modification of Wilks’ Lambda Test ... Isiak et al. JOBASR2025 3(5): 71-77
Chi — square = 100 1.000 Béatrice, B. (2022). Residual Analysis in the
9.487729 GMANOVA-MANOVA Model. Linkdping Studies in

Table 6 shows the result obtained wheng=4andp=2,p
= 3 and p = 4. Comparing chi — square value obtained
(5.991465, 7.8147729 and 9.487729) to all the group size,
variables and sample sizes. It was noticed that there is
evidence that the proposed test statistic does not performs
better at all sample sizes and across all variables.

The results obtained in Table 1, g=2 and p=2, p=3 and
p=4; Table 2, g=3 and p=2, p=3 and p=4; and Table 3, g=4
and p=2, and when g=4 and p=3, show that the proposed
test statistic performs better when the group size is 2, 3, or
4 and the number of variables is 2 and at larger sample
sizes. This goes alongside the result obtained by Okoli
(2022) that Wilks' Lambda should be used when p=g=3
and p=g=4, and Roy's biggest root should be applied when
p=g=2 at a larger sample size in order to get definitive
results as efficiently as possible. Also, the results obtained
in Table 4, Table 5 and Table 6 when g=2 and p=2, p=3
and p=4, g=3 and p=2, p=3 and p=4 and g=4 and p=2, p=3
and p=4 go alongside the result obtained by Sheu (2020),
who evaluates, using power analysis, the effectiveness of
multivariate treatment tests (Wilk's Lambda, Hoteling
Lawley, Roy's biggest root, and Pillai). The power of these
four tests were compared and. According to the power test
results, Hoteling-Lawley outperforms the other three tests
atp =2, but at p = 3, in all multivariate Sudoku models,
Wilks' Lambda test has a power advantage over other tests.

CONCLUSION

The new modified wilks’ Lambda 1" test statistic has been
studied. The new test statistic was used to carried out
analysis for a simulated data under type | error rate and
power of the test for varying sample sizes. Based on the
result obtained from the table and the analysis, it was
concluded that the proposed test statistic (modified wilks’
Lambda 1) perform better under both type | error rate and
power of the test when the sample sizes are larger and at
all number of groups and all number of variables.
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