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ABSTRACT 

This study modified Wilks’ Lambda Test Statistic in Multivariate Analysis of 

Variance Test. Simulation was done using R. The sample sizes utilized were 5, 10, 

15, 20, 25, 50 and 100; Number of variables and Number of groups p = g = 2, 3 

and 4 with equal, unequal samples sizes and variance co – variance matrix. The 

comparison were done at one level of α = 0.05 using power of the test and type I 

error rate. From the result obtained under type I error rate, it was indicated that 

when g = 2, p = 2, p = 3, p = 4, g = 3 p = 2, p = 3, p = 4, g = 4, p = 2, when g = 4, 

p = 3, when g = 4, p = 4 and compares with chi – square value. It was noticed that 

the proposed test statistic performs better at all sample sizes and across all 

variables when the sample sizes were large (i.e 50 and 100) but not perform better 

when the sample sizes are small. Under power of the test, it was obsrved that when 

g = 2 and p = 2, p = 3 and p = 4, g = 3 and p = 2, p = 3, p = 4, g = 4, p = 2, p = 3, 

p = 4 and compares all with chi – square value. It was noticed that the proposed 

test statistic does not performs better at all sample sizes and across all variables. 

 
 

INTRODUCTION 

Over the years, many researchers compared the the 

performance of the four multavariate analyis of variance 

test statistic (MANOVA)  when the sample size is high 

and small, when the mean vectors are different, and when 

the mean vectors are equal. Groups are compared on a 

collection of dependent variables at the same time using 

multivariate analysis of variance (MANOVA). The 

MANOVA approach makes a single compariason rather 

than testing group differences with many independent 

ANOVAs and running the risk of increasing family – wise 

error (chance of one or more Type I errors). Only when 

there is a relationship between the several dependent 

variables and the expected pattern of group differences for 

each dependent variable points in the same direction is the 

MANOVA appropriate (Winter, 2025). Individual items, 

multiple scale scores, or other related measures might be 

used as the multiple measures. The ability of various 

psychotherapy approaches (independent variables) to 

lessen psychological distress could be an example, where 

a number of psychological distress measures, such as 

depression, anxiety, and perceived stress, are examined 

collectively (as dependent variables).  

 

 

 

 

As an alternative, one might examine a number of 

depression subscales, including somaticsymptoms, 

positive and negative effects, and others. The convenience 

of a different kind of omnibus test of all the measures at 

once is offered by MANOVA.  

The majority of researchers across a wide range of 

specializations gather data sets that are multivariate in 

nature. It may make sense in certain situations to look at 

each variable independently, but in the majority of 

circumstances, all the variables must be looked at once in 

order to completely undrestand the structure and important 

aspects of the data. A collection of measurements or 

observations performed on various topics, patients, 

objects, or other entities of interest make up the data that 

we are mainly interested in. A measure of the overall 

probability of selecting two or more random vectors or 

means is provided by the MANOVA test statistic 

(Chatfield and Collins, 1995). This method uses a set of 

factors functioning as independent variables to evaluate 

group differences across several dependent variables at 

once. MANOVA is a statistical method that examiners the 

connection between two or more dependent variables and 

a number of independent variables, often known as 

treatments (Tabachnick and Fidel, 2012). 
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 Consequently, it is a continuation of univariate analysis 

of variance. After the experiment, the effect of any 

uncontrolled independent factors, or covariates on the 

dependent variables is eliminated using multivariate 

analysis of covariance in conjunction with MANOVA. 

Covariates are the name given to these uncontrollable 

independent variables. Measurement of several variables 

is a common task for researchers in the biological, 

physical, and social sciences (Richard and Michael, 1987). 

Multivariate analysis is intrinsically challenging since it 

requirs an understanding of the relationships between 

numerous response variables, and the sheer volume of the 

data may definitely overwhelm the human mind. 

Specifically, compared to univariate contexts, certain 

matrix algebraic principles are needed for the various 

multivariate statistical procedures. 

It is crucial to compare the new modified test statistic’s 

performance to that of the Wilks’ Lamda,  in order to 

determine whether the modified test statistic performs 

better than the original Wilks’ Lambda test statistic. This 

is meant to be done in order to provide an alternate method 

for the original Wilks Lambda when the sample size is 

bigger. The aim of this study is to propose a new modified 

Wilks’ Lambda test statistic and its objective is to compare 

the performance of modified Wilks’ Lambda test statistic 

with the existing Wilks’ Lambda and evaluate how well 

the new test statistic performs in comparison to the current 

process when sample size varies and variance – covariance 

matrices are known and unknown. 

(Hend, 2020), In his dissertation, to more effectively 

smooth raw data, a revolutionary multivariate 

nonparametric techniques was put forth, which narrowed 

the solution’s dimension to a few intriguing parameters. 

The suggested strategy made use of techniques that took 

use of kernel density estimated (KDE), which may be used 

to test hypotheses regarding the primary effects and 

interaction effect in the two – way layout as well as the 

equality of location parameters in the one – way layout. In 

order to do multivariate analysis of variance (MANOVA) 

and test hypotheses against different group means in a 

variety of contexts, including one, multivariate kernel – 

based tests were first created. After that, the asymptotic 

distributions and asymptotic properties of the suggested 

approaches were examined. The small – sample behaviour 

of the suggested nonparametric kernel – based test 

statistics for the one – and twp – way layout was then 

examined using simulations. The suggested 

nonparametric kernel – based techniques were then 

contrasted with their conventional parametric counterparts 

for one – way and two – way layout.  Lastly, an actual 

picture dataset was used to test the suggested 

nonparametric kernel – based techniques. The findings oft 

this dissertation demonstrated that when the underlying 

distribution of the data is non – normal, the suggested 

nonparametric kernel – based methods have power than 

the corresponding parametric methods, such as 

MANOVA, in identifying group differences in 

multivariate settings. 

(Sheu, 2020), evaluates, using power analysis , the 

effectiveness of multivariate treatment tests (Wilk’s 

Lambda, Hoteling Lawley, Roy’s biggest root, and Pillai) 

on multivariate Sudoku square design, models. The power 

of these four tests for the four multivariate Sudoku square 

design models was compared using Monte Carlo 

simulation. In his research, the power difference between 

two tests with the same sample size was measured as an 

interval value of ± 0.062. If the difference between the 

test’s powers is ± 0.062, the test is deemed powerful or 

advantageous. According to the power test results, 

Hoteling – Lawley outperforms the other three tests at p = 

2, but at p = 3, in all multivariate Sudoku models, Wilks’ 

Lambda test has a power advantage over other tests. 

(Iftikhar, 2020) uses simulated data from agricultural trials 

to demonstrate MANOVA. On simulated data, the proper 

design techniques for analysis, interpretation, and 

conclusion are applied. For example, in a completely 

randomized design (CRD), three elements are taken into 

account in a factorial layout. All possible combinations of 

the two levels of each irrigation, variety, and nitrogen 

source are taken into consideration in order to quantify the 

yield and plant height, two linearly connected responses. 

Two parameters, let’s say plant height and yield, are 

simulated using data with with different correlation 

coefficient magnitudes (low, moderate and high) between 

the two response variables. The comparison of MANOVA 

and ANOVA shows that even a slight correlation between 

dependent variables significantly impacts the main effects 

and interactions of the three independent variables. When 

the linear relationship between traits is low to moderate, 

ANOVA and MANOVA yield contrasting results for 

some main effects and interactions. Moreover, with highly 

correlated traits, MANOVA drastically changes the 

interpretation of effects compared to separate ANOVAs 

for each trait. 

(Béatrice, 2022) emphasizes the construction and 

examination of residuals in the so called GMANOVA – 

MANOVA model. The Extended Growth Curve Model is 

the model’s special case. It consists of two terms, one of 

which models the growth curves or profiles and the other 

of which represents the relevant covariables. In disciplines 

includeing biology, medicine, epimdemiology, and 

economics, this model is helpful for examining growth 

curves in brief time series. Additionally, residuals have 

been thoroughly examined and utilized in the literature to 

assess the adequacy of univariate linear models. The 

maximum likelihood estimators of the model’s parameters 

are used in this thesis to build a fresh pair of residuals. An 

individual’s distance from the group means is shown by 

one residual, and assumptions on the mean structure are 

verified by a second residual. Theses residuals’ various 

attributes are checked, and their meaning is examined. 

Additionally, the empirical distributions of the extreme 
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elements in the residuals are obtained using parametric 

bootsrap. Lastly, the MANOVA model’s testing of 

bolinear limitation is examined. It is possible to 

demonstrate that the MANOVA model with bilinear 

constraints is only a GMANOVAMANOVA model, 

Additionally, it can be demonstrated that the likelihood 

ratio test is provided as a function of the GMANOVA – 

MANOVA model’s residuals, which may be used to 

assess the model’s suitability and test the bilinear 

hypothesis. 

(Sarah, 2017) a contemporary and reliable analysis of 

longitudinal and multivariate data in factorial 

experiments, non – parametric statistical inference 

technigues are crucial. Although statistical software 

packages implement existing approaches that rely on 

particular distributional assumptions of the data 

(multivariate normality and/ or equal covariance 

matrices), user – friendly software that can be used for the 

analysis of the data that do not fulfill the afformentioned 

assumptions and provide accurate estimates of the p value 

and confidence interval is needed. Thus, the publicly 

accessible R package MANOVA. RM incorporates 

recently created nonparametric statistical techniques 

based on bootstrap and permutation procedures, which do 

not need multivariate normality or particular covariance 

matrices. A graphical user interface is included in the 

software for believable acafemic and other educational 

uses. The methods’ use is demonstrated by a number of 

inspiring cases. 

(Okoli, 2022). Lawley – Hoteling, Pillai’s trace, Roy’s 

biggest root, and Wilks’ lambda are the four test statistics 

used in MANOVA that were compared for power. The 

data used to compare the four test statistics under the 

Multivariate Gamma and Multivariate Normal distribution 

was simulated using R Statistics. Sample sizes of 10, 20, 

30, 40, 100, 200, 300, 400, 600, 700, 800 and 1000 were 

employed; there were also equal and unequal samples for 

variables (p = 2, 3 and 4) and a variance – covariance 

matrix. Using test power, the comparison was conducted 

at two levels of significance (α = 0.01 and 0.05). Because 

it has the highest powers, the results showed that the Roy’s 

largest Root test statistic is superior to all other test 

statistic taken into consideration when p = g = 2. The 

analysis’s outcome also demonstrated that, for both small 

and large sanple sizes, Wilks’ lambda outperformed all 

other test statistics for p = g = 3 and p = g = 4. The results 

equally showed that when the data are multivariate normal 

and Gamma with g =2 and p = 2 the power of the four test 

statistics from best to least is Roy’s largest root, followed 

Lawley’s trace = Pillai’s trace and the least is Wilks’ 

Lambda at significant levels of 0.01 and 0.05 for equal and 

unequal samples. The power of the four statistics, arranged 

from best to least, is Wilks’ Lambda, Pillai’s trace = 

Lawley’s trace, and Roy’s greatest root, respectively, 

when the data are multivariate normal and gamma, and p 

= g = 3 and p = g = 4. The results clearly show that Wilks’ 

Lambda should be used when p = g = 3 and p = g = 4, and 

Roy’s biggest root should be applied when p = g = 2. In 

order to get definitive results as efficiently as possible, this 

study will assist researchers in designing investigations 

with regulated odds of discovering a relevant effect. 

(Abdullahi, 2020). The two – way multivariate analysis of 

variance (MANOVA), which is extremely sensitive to the 

effects of outliers, is mostly employed to test hypotheses 

using the ttraditional Wilks’ statistic. Many academics 

have looked at alternative options due to the non – 

robustness of test statistics based on normal theory. In this 

work, we introduced a robust version of the Wilks’ test 

statistic that is based on reweighted minimum covariance 

determinant estimates (RMCD), which are extremely 

efficient and resilient. The performance of the test 

statistics under different distributions is assessed using 

Monte Carlo simukation, Furthermore, test power and 

type I error rate data are regarded as statistical tools for 

comparing test statistics. 

 

MATERIALS AND METHODS 

 

Although MANOVA can be used with any number of 

groups (i.e., levels of any independent variable), k, and 

any number of dependent variables, p, the Hotelling’s T2 

is expressed equation1 in terms of two groups. Typically, 

MANOVA software processes (such as R – package) 

generate a number of closely similar  tests. When the result 

is significant, it means that there are differences between 

the groups on the dependent variables taken together. 

Wilks’ lambda is the most basic and direct in terms of its 

analogous relation to F in univariate ANOVA, Mirroring 

the ratio of mean square between to mean square in the 

equation. Equation2  below is displayed using E and H, 

which are matrices of the sums of square of y and their 

cross – products (the variace and covariance matrices 

without dividing by df ) 

𝑇2 = 
𝑛1𝑛2

𝑛1+𝑛2
(𝑦̅1 − 𝑦̅2)

′𝑆−1(𝑦̅1 − 𝑦̅2)   (1)

  

Wilks Lambda 

∧= ∏
1

1+𝜆𝑖

𝑠
𝑖=1 =

|𝐸|

|𝐸+𝐻|
     (2) 

Equ2 above can also be expressed as the function of eigen 

values  𝜆1, 𝜆2, … . 𝜆𝑖 of (𝐸−1𝐻) where ∧ = 𝑡𝑟(𝐸−1𝐻) and 

for which ∧ range for 0 to 1 i.e 0 ≤ ∧ ≤ 1. 
Where 

E = ∑ ∑ (𝑥𝑖𝑗 − 𝑥̅𝑖.
𝑏
𝑗=1 )(𝑥𝑖𝑗 − 𝑥̅𝑖.)

1𝑡
𝑖=1      (3) 

H = ∑ 𝑛𝑖(𝑥̅𝑖. − 𝑥̅..
𝑡
𝑖=1 )(𝑥̅𝑖. − 𝑥̅..)

1   (4) 

Power = P(Reject H0|𝐻1 is true) = P(Q > 

𝜒(1− 𝛼)
2 𝑑𝑓|𝑄 ~𝜒𝑑𝑓

2 ∧∗)      
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Equivalently, since the Type II error probability (β) is 

the probility of failing to reject H0 when H1 is true, the 

power is  

Power = 1 – β 

Power = 1 -  𝐹𝜒𝑑𝑓
2 (∧∗)(𝜒(1− 𝛼)

2 𝑑𝑓)       (5)        

  

The existing Wilks’ lambda ∧= ∏
1

1+𝜆𝑖

𝑠
𝑖=1 =

|𝐸|

|𝐸+𝐻|
 is 

modified to 

                                ∧∗= ∑
1

𝜆𝑖

𝑠
𝑖=1 = 𝑡𝑟[(𝐸− 1𝐻)]− 1  

for ∧∗ ̴ 𝜒𝑛(𝑝−1)(𝑔−1)
2  for which 𝑛𝑖 represents total sample 

size, g = group size and p = population size and when i 

≥1. 

The modified Wilks’ lambda ∧∗ was iterated in kth times 

in which k = 1000. The kth iterated result was checked with 

the chi – square to know how many time will test statistic 

greater than chi – square value at varying sample sizes of 

5, 10, 15, 20, 25, 50 and 100 for group sizes (g) are 2, 3 

and 4 and number of variables (p) are also 2, 3 and 4.  At 

a various level of groups, observing which of them 

perform better under type I error rate, power of the test for 

both null hypothesis and alternative hypothesis using 

varying sample size.  

 

Data generation processes 

The data used for this study was simulated and analyzed 

using R statistical package. The n covariates were 

simulated X1, X2,... Xn from the multivariate normal 

distribution with mean vector and variance – covariance 

matrix vector as shown below  

         𝜇 =

(

 
 

𝜇1
𝜇2.
..
𝜇𝑛)

 
 

            ∑ =

(

 
 

𝜎11 𝜎12 . . . 𝜎1𝑛
𝜎21 𝜎22 . . . 𝜎2𝑛
.
..
𝜎𝑛1

.

..
𝜎𝑛2

.

..

.

.

..

.

. .

. .

. .

. 𝜎𝑛𝑛)

 
 

  

With varying sample size n = 5, 10, 15, 20 25, 50, and 100, 

the variance covariance matrix of the covariates is 

obtained for the various values of n and α is fixed as 95% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

## When p = 4, group = 4                            return(output                                    

test44 <- function(k,m,n) {                           test <- function(k,n) {                                   

library(MASS)  library(MASS)                                                               

m1=c(4,8,12,18)                                          m1=c(2,3,4) 

m2= m1*m             m2=c(2,3,4) 

m3= m2*m            m3=c(2,3,4) 

m4= m3*m                      s=matrix(c(2,1,1,1,4,2,2,2,8),ncol=3) 

s=matrix(c(2,1,1,1,1,4,2,1,1,2,6,1,1,1,1,8),ncol=4) 

for (i in 1:k) {                     for (i in 1:k) { 

x1=mvrnorm(n,m1,s)                               x1=mvrnorm(n,m1,s) 

x2=mvrnorm(n,m2,s)        x2=mvrnorm(n,m2,s) 

x3=mvrnorm(n,m3,s)        x3=mvrnorm(n,m3,s) 

x4=mvrnorm(n,m4,s)        x=rbind(x1,x2,x3) 

x=rbind(x1,x2,x3,x4)                      factor=sort(rep(1:3,n))                              

factor=sort(rep(1:4,n))      fit = manova(x~factor) 

fit = manova(x~factor)      ss <- summary.manova(fit)$SS 

ss <- summary.manova(fit)$SS    e <- ss$Residuals 

e <- ss$Residuals      h <- ss$factor 

h <- ss$factor       w <- solve(e)%*%h 

w1 <- solve(e)%*%h      w2 <- eigen(w)$values 

w11 <- eigen(w1)$values     ww2<- as.numeric(1/sum(w2)) 

ww1 <- as.numeric(sum(w11))    output <- c(output,ww2) 

output <- c(output, ww1)     } 

} 

return(output) 

} 
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RESULTS AND DISCUSSION 

TABLE 1: Type I error rate α = 0.05 whne g = 2  

 

Number variable (p) Sample size 

(n) 

Proposed 

test 

 

 

 

2 

 

    Chi – square = 

5.991465 

5 0.003 

10 0.000 

15 0.000 

20 0.000 

25 0.000 

50 0.000 

100 0.000 

 

 

 

3 

 

    Chi – square = 

7.814728 

5 0.066 

10 0.002 

15 0.000 

20 0.000 

25 0.000 

50 0.000 

100 0.000 

 

 

 

4 

 

    Chi – square = 

9.487729 

5 0.274 

10 0.020 

15 0.001 

20 0.000 

25 0.000 

50 0.000 

100 0.000 

 

Table 1 shows the result obtained when g = 2 and p = 2, p 

= 3 and p = 4. Comparing chi – square value obtained 

(5.991465, 7.8147729 and 9.487729) to all the group size, 

variables and sample sizes. It was noticed that the 

proposed test statistic performs better at when the group 

size is 2, number of variable is 2 and at larger sample sizes. 

 

Table 2: Type I Error Rate when α = 0.05 when g = 3 

 

Number variable (p) Sample size 

(n) 

Proposed 

test 

 

 

 

2 

 

   Chi – square = 

5.991465 

5 0.000 

10 0.000 

15 0.000 

20 0.000 

25 0.000 

50 0.000 

100 0.000 

 

 

 

3 

 

    Chi – square = 

7.814728 

5 0.036 

10 0.001 

15 0.000 

20 0.000 

25 0.000 

50 0.000 

100 0.000 

 

 

5 0.214 

10 0.029 

 

4 

  

    Chi – square = 

9.487729 

15 0.004 

20 0.001 

25 0.000 

50 0.000 

100 0.000 

 

Table 2 shows the result obtained when g = 3 and p = 2, p 

= 3 and p = 4. Comparing chi – square value obtained 

(5.991465, 7.8147729 and 9.487729) to all the group size, 

variables and sample sizes. It was noticed that the 

proposed test statistic performs better at when the group 

size is 3, number of variables is 2 for all sample sizes. But, 

when group size is 3, number of variables is 3, it was 

noticed that the proposed test statistic performs better 

when the sample sizes are larger and it was also noticed 

that the proposed test statistic performs better when the 

sample sizes are larger at group size is 3 and number of 

variables is 4. 

 

Table 3: Type I Error Rate when α = 0.05 when g = 4 

 

Number variable 

(p) 

Sample size 

(n) 

Proposed test 

 

 

 

2 

 

     Chi – square = 

5.991465 

5 0.000 

10 0.000 

15 0.000 

20 0.000 

25 0.000 

50 0.000 

100 0.000 

 

 

 

3 

 

     Chi – square = 

9.487729 

5 0.013 

10 0.000 

15 0.000 

20 0.000 

25 0.000 

50 0.000 

100 0.000 

 

 

 

4 

 

Chi – square = 

9.487729 

5 0.119 

10 0.007 

15 0.001 

20 0.000 

25 0.000 

50 0.000 

100 0.000 

 

Table 3 above shows the result obtained when g = 4 and p 

= 2, when g = 4 and p = 3 and when g = 4, p = 4. 

Comparing chi – square value obtained (5.991465, 

7.8147729 and 9.487729) to all the group size, variables 

and sample sizes. It was noticed that the proposed test 

statistic performs better at when the group size is 4, 

number of variables is 2 for all sample sizes. But, when 

group size is 4, number of variable is 3, it was noticed that 

the proposed test statistic performs better when the sample 

sizes are larger value i.e from 20, 25, 50 and 100 and it 
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was also noticed that the proposed test statistic performs 

better when the sample sizes are larger at group size is 4 

and number of variable is 4, the proposed test statistic 

perform better at sample sizes are 20, 25, 50 and 100. 

 

Table 4: Power of the test when α = 0.05 for g = 2 

 

Number variable (p) Sample size 

(n) 

Proposed 

test 

 

 

 

2 

 

Chi – square = 

5.991465 

5 0.036 

10 0.002 

15 0.000 

20 0.000 

25 0.000 

50 0.000 

100 0.000 

 

 

 

3 

 

Chi – square = 

5.991465 

5 0.778 

10 0.601 

15 0.496 

20 0.452 

25 0.388 

50 0.239 

100 0.102 

 

 

 

4 

 

Chi – square = 

5.991465 

5 0.989 

10 0.988 

15 0.990 

20 0.986 

25 0.998 

50 0.999 

100 1.000 

 

Table 4 shows the result obtained when g = 2 and p = 2, p 

= 3 and p = 4. Comparing chi – square value obtained 

(5.991465, 7.8147729 and 9.487729) to all the group size, 

variables and sample sizes. It was noticed that there is no 

evidence that the proposed test statistic does not performs 

better when the group size is 2, number of variables is 2 

and at a larger sample sizes, but when the group size is 3, 

number of variable is 3, it was noticed that there is 

evidence that the proposed test statistic does not performs 

better at all level of sample sizes and also there is evidence 

that the proposed test statistic does not perform better 

when the sample sizes at both smaller and  larger sample 

sizes. 

 

Table 5: Power of the test when α = 0.05 for g = 3 

 

Number variable (p) Sample size 

(n) 

Proposed 

test 

 

 

 

2 

 

5 0.411 

10 0.204 

15 0.108 

20 0.107 

25 0.030 

50 0.001 

Chi – square = 

5.991465 

100 1.000 

 

 

 

3 

 

Chi – square = 

7.8147729 

5 0.999 

10 1.000 

15 1.000 

20 1.000 

25 1.000 

50 1.000 

100 1.000 

 

 

 

4 

 

Chi – square = 

9.487729 

5 1.000 

10 1.000 

15 1.000 

20 1.000 

25 1.000 

50 1.000 

100 1.000 

 

Table 5 shows the result obtained when g = 3 and p = 2, p 

= 3 and p = 4. Comparing chi – square value obtained 

(5.991465, 7.8147729 and 9.487729) to all the group size, 

variables and sample sizes. It was noticed that there is 

evidence that the proposed test statistic does not performs 

better at all sample sizes except at the sample size is = 50. 

When the group size is 3, number of variables is 3 and at 

all sample sizes, the proposed test statistic performs 

considerably better. But when the group size is 3, number 

of variables is 4, it was noticed that there is evidence that 

the proposed test statistic does not performs better at all 

sample sizes. 

 

Table 6: Power of the test when α = 0.05 for g = 4 

 

        Number variable 

(p) 

Sample size 

(n) 

Proposed 

test 

 

 

 

2 

 

Chi – square = 

5.991465 

5 0.905 

10 0.931 

15 0.950 

20 0.971 

25 0.974 

50 0.997 

100 1.000 

 

 

 

3 

 

Chi – square = 

7.8147729 

5 1.000 

10 1.000 

15 1.000 

20 1.000 

25 1.000 

50 1.000 

100 1.000 

 

 

 

4 

 

5 0.999 

10 1.000 

15 1.000 

20 1.000 

25 1.000 

50 1.000 
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Chi – square = 

9.487729 

100 1.000 

 

Table 6 shows the result obtained when g = 4 and p = 2, p 

= 3 and p = 4. Comparing chi – square value obtained 

(5.991465, 7.8147729 and 9.487729) to all the group size, 

variables and sample sizes. It was noticed that there is 

evidence that the proposed test statistic does not performs 

better at all sample sizes and across all variables.  

 

The results obtained in Table 1, g=2 and p=2, p=3 and 

p=4; Table 2, g=3 and p=2, p=3 and p=4; and Table 3, g=4 

and p=2, and when g=4 and p=3, show that the proposed 

test statistic performs better when the group size is 2, 3, or 

4 and the number of variables is 2 and at larger sample 

sizes. This goes alongside the result obtained by Okoli 

(2022) that Wilks' Lambda should be used when p=g=3 

and p=g=4, and Roy's biggest root should be applied when 

p=g=2 at a larger sample size in order to get definitive 

results as efficiently as possible. Also, the results obtained 

in Table 4, Table 5 and Table 6 when g=2 and p=2, p=3 

and p=4, g=3 and p=2, p=3 and p=4 and g=4 and p=2, p=3 

and p=4 go alongside the result obtained by Sheu (2020), 

who evaluates, using power analysis, the effectiveness of 

multivariate treatment tests (Wilk's Lambda, Hoteling 

Lawley, Roy's biggest root, and Pillai). The power of these 

four tests were compared and. According to the power test 

results, Hoteling-Lawley outperforms the other three tests 

at p = 2, but at p = 3, in all multivariate Sudoku models, 

Wilks' Lambda test has a power advantage over other tests. 

CONCLUSION 

The new modified wilks’ Lambda λ* test statistic has been 

studied. The new test statistic was used to carried out 

analysis for a simulated data under type I error rate and 

power of the test for varying sample sizes. Based on the 

result obtained from the table and the analysis, it was 

concluded that the proposed test statistic (modified wilks’ 

Lambda λ*) perform better under both type I error rate and 

power of the test when the sample sizes are larger and at 

all number of groups and all number of variables. 
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