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ABSTRACT 

This study explores the sensitivity analysis and implementation of the Laplace-

Adomian Decomposition Method (LADM) in solving a fractional-order malaria 

transmission model utilizing the Caputo fractional derivative. A deterministic 

compartmental model comprising eight ordinary differential equations is 

formulated to capture the dynamics of malaria spread. Key mathematical 

properties of the model, including the positivity of solutions and the existence of 

an invariant region, are rigorously examined. Stability analysis reveals that the 

disease-free equilibrium remains locally stable when the basic reproduction 

number is less than one, based on the next-generation matrix approach. To 

approximate solutions of the fractional-order system, LADM is employed, 

generating a rapidly converging infinite series under appropriate conditions. 

Parameter values are estimated using MATLAB’s fmincon optimization 

algorithm, calibrated with empirical malaria data extracted from published 

sources. LADM integrates the Laplace transform with the Adomian 

Decomposition Method by first applying the Laplace transform, breaking down 

nonlinear terms via Adomian polynomials, and finally applying the inverse 

Laplace transform to derive the solution. The study successfully applies LADM 

to obtain approximate solutions for the malaria model and reaffirms that the 

disease-free equilibrium is stable when the reproduction number falls below one. 

Findings also show that enhancing treatment efficacy within the human 

population leads to a marked decline in malaria prevalence. Sensitivity analysis 

identifies key parameters that influence disease transmission, highlighting that 

reducing contact between susceptible individuals and infectious mosquitoes, 

alongside prompt treatment of infected individuals, is vital for disease control. 

Unlike previous models based solely on classical ADM, this work integrates the 

Laplace transform to improve both convergence speed and solution accuracy. 

Moreover, real malaria data from Nigeria is incorporated to ensure practical 

relevance and accuracy of the model. 

 
 

INTRODUCTION 

Malaria continues to pose a major public health threat, 

particularly in tropical and subtropical regions where 

Anopheles mosquitoes—its primary vectors—are 

widespread.  

 

 

 

The World Health Organization (WHO, 2023) reported 

approximately 247 million malaria cases worldwide in 

2021, with nearly 95% occurring in Sub-Saharan Africa. 

The disease is caused by Plasmodium parasites, with 

Plasmodium falciparum recognized as the deadliest 

species.  
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Transmission occurs via infected mosquito bites, meaning 

environmental conditions and socio-economic 

circumstances play a significant role in influencing malaria 

distribution and prevalence (Bhatt et al, 2022; Cator et al, 

2023; Ghosh et al, 2022). Mathematical modeling has been 

vital for understanding malaria transmission patterns. 

Compartmental models, in particular, have provided 

frameworks to represent the interactions between human 

and mosquito populations (Chitnis et al, 2008). These 

models help simulate transmission under different 

scenarios, allowing researchers to evaluate control 

measures such as insecticide-treated nets (ITNs) and 

antimalarial drugs (Reiner et al, 2023). Despite notable 

advancements, malaria control continues to face significant 

obstacles, including the emergence of drug-resistant 

Plasmodium falciparum strains in Southeast Asia and parts 

of Africa, underscoring the need for new treatments and 

vigilant surveillance (Ashley et al., 2023). In addition, 

resistance to pyrethroid insecticides used in ITNs and 

indoor residual spraying (IRS) has weakened vector 

control efforts (Hemingway et al, 2022). Climate change 

also threatens to shift malaria transmission zones by 

expanding mosquito habitats, further complicating 

eradication strategies (Ryan et al, 2023). In this context, 

mathematical models have become indispensable for 

forecasting transmission patterns and designing adaptive 

public health interventions. 

Recent advancements in modeling have introduced greater 

complexity, including the use of fractional-order 

differential equations, which offer a refined framework for 

incorporating memory-dependent processes in disease 

dynamics (Diethelm, 2022). Such models more accurately 

represent real-world malaria transmission by accounting 

for factors like delayed immunity and uneven exposure 

across populations (Ngonghala et al, 2021). Sensitivity 

analysis within these models has been instrumental in 

pinpointing the most influential parameters such as 

mosquito biting frequency, recovery rates, and the basic 

reproduction number (ℝ0) which help determine whether a 

malaria outbreak will persist or decline (Ndii et al, 2020; 

Bhattacharya et al, 2023). Simulations have shown that 

targeted interventions, including timely treatment and 

effective mosquito control, can drastically reduce infection 

rates (Yang and Xiao, 2023). Current strategies to combat 

malaria emphasize both pharmaceutical approaches and 

vector control. WHO recommendations include broad 

deployment of ITNs, the use of IRS, and mass 

administration of antimalarial drugs (WHO, 2023). Recent 

breakthroughs, such as the RTS,S malaria vaccine, have 

shown encouraging results in lowering infection rates 

among children in high-transmission areas (Draper et al, 

2022). The impact and efficiency of these interventions are 

frequently assessed through mathematical modeling, 

helping decision-makers optimize how resources are 

allocated and interventions are timed (Winskill et al, 2023; 

Pamungkas and Eljatin, 2024). Furthermore, models 

that integrate variables such as climate change and 

socio-economic conditions provide more 

comprehensive insights into malaria’s persistence and 

potential resurgence (Parham and Michael, 2022). 

 

MATERIALS AND METHODS 

Model Formulation 

A deterministic compartmental model has been 

formulated to analyze the transmission dynamics of 

malaria. The total human population ( )HN t , is 

divided into five (5) distinct compartments: susceptible 

humans  
HS ,exposed humans to malaria 

ME , infected 

humans with malaria  
MI   treated humans due to 

malaria   
MT , and recovered humans from malaria R . 

Likewise, the mosquito vector population is categorized 

into three (3) compartments: susceptible vectors  
VS

exposed vectors  
VE and infected vectors

VI .Humans 

are recruited into the susceptible class at a rate denoted 

by  
H , while 

M represents the effective contact rate, 

incorporating the probability of infection per contact 

between a susceptible human and a mosquito infected 

with malaria. The progression rate from the exposed to 

the infected human class is indicated by 
M . Recovery 

from malaria in humans occurs at a rate of 
M . 

Individuals who have recovered may lose immunity and 

return to the susceptible class at a rate given by 
M . 

The natural death rate of humans is 
H , and the 

malaria-induced mortality rate is
M . The rate of 

compliance with treated bed net usage, aimed at 

reducing malaria transmission, is represented by  , and 

the mosquito biting rate per unit time is given as m . 

The recruitment rate of malaria-transmitting Anopheles 

mosquitoes is represented by V , with 
V  being the 

effective contact rate that includes the probability of 

mosquito infection per bite from an infected human. 

Exposed vectors progress to the infected stage at a rate 

of V . The natural death rate of mosquito vectors is  V

, while the mortality rate associated with the search for 

a blood meal is represented by 
V . 
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  Figure 1: Schematic diagram for the model  

 

The  Model equations 

The differential equations that describe the above 

illustrations are. 

 

( )H
H M H H M

dS
S R

dt
  =  − + +  

( )M
M H M H M

dE
S E

dt
  = − +

                                      

 

( )M
M M M M H M

dI
E I

dt
   = − + +  

( )M
M M M M H M

dT
I T

dt
   = − + + (5) 

4M M

dR
T K R

dt
= −  

( )V
V V V V

dS
S

dt
 =  − +  

5
V

V V V

dE
S K E

dt
= −  

6
V

V V V

dI
E K I

dt
= −     

(1)

 

Where: 

( )1 M V

M

H

m I

N

 


−
= , 

V M
V

H

m I

N


 =  

 

 

 

 

 

 

 

Table 1. Description of Variables and Model 

parameters. 

 

Variable Description 

Susceptible individuals  
HS  

Exposed individuals to malaria  
ME  

Infected  individuals with malaria  
MI  

Treated individuals  due to malaria  
MT  

Recovered Humans R  

Susceptible vectors 
VS  

Exposed Vectors 
VE  

 

Parameter Description 

H  Recruitment rate of humans 

M  Contact of susceptible humans and 

infected mosquitoes 
m  Biting ate of vectors 

M  Progression rate of exposed malaria to 

infected malaria class 

H  Natural death rate of humans 

V  Natural death rate of mosquito vectors 

M  Treatment rate of infected humans with 

malaria 

M  Disease induced death rate of infected 

malaria 

M  Re-infection rate of recovered malaria 

individuals. 

V  Recruitment rate of malaria vectors 

V  Contact rate susceptible mosquitoes 

and infected humans with malaria 

V  Progression rate from exposed to 

infected vector classes. 

V  Mortality due to quest for blood meal 

by the mosquitoes  

  Rate of compliance to the usage of 

treated bed nets. 

  

 

 

Invariant Region of the Malaria Model 

 The total populations for both humans and vectors are : 

Human population: H H M M MN S E I T R= + + + +  

Vector population: V V V VN S E I= + +  

 

For the human population: 

Taking the derivative: 
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H H M M MdN dS dE dI dT dR

dt dt dt dt dt dt
= + + + +  

 

Substituting the equations: 

( ) ( )H
H H H M M M M M M

dN
S E I T R I T

dt
 =  − + + + + − +  

( )H
H H H M M M

dN
N I T

dt
 =  − − +  

Therefore: 

H
H H H

dN
N

dt
  −  

Solving this differential inequality: 

( ) ( (0) ) H tH H
H H

H H

N t N e 

 

− 
 + −  

As t → : 

0 H
H

H

N



   

The invariant region for the malaria model is the region 

where H
H

H

N



 . 

Positivity of Model Solutions 

Lemma 3.1: Let the initial data 
( (0), (0), (0), (0), (0), (0), (0), (0)) 0H M M M V V VS E I T R S E I 

. Then the solutions are positive for all 0t  . 

Proof: 

Let 
sup{ 0: 0, 0, 0, 0, 0, 0, 0, 0, [0, ]}H M M M V V Vt t S E I T R S E I t=            

For HS : 

( )H
H M H H M

dS
S R

dt
  =  − + +  

( )H
M H H

dS
S

dt
  − +  

Integrating: 
( )( ) (0) 0M H t

H HS t S e  − +   

Similar steps can be followed for the remaining variables 

to show they remain positive. For example: 

For VS : 

( )V
V V V V

dS
S

dt
 =  − +  

( )V
V V V

dS
S

dt
  − +  

Integrating: 
( )

( ) (0) 0V V t

V VS t S e
 − +

   

Therefore, all solutions of the malaria model remain 

positive for all 0t  . 

 

Asymptotic stability of the disease free equilibrium 

point of the malaria only sub-model 

Setting 0M V = =  and solving the system: 

H
H H H

dS
S

dt
=  − , 0MdE

dt
= , 0MdI

dt
=

, 0MdT

dt
= , 0

dR

dt
= ,

V
V V V

dS
S

dt
=  − , 

0VdE

dt
= , 0VdI

dt
=  

From 0HdS

dt
= : 

* H
H

H

S



=  

From 0VdS

dt
= : 

* H H
V

H V

S





=


 

Therefore, the disease free equilibrium of the point is: 

* * * * * * * *

0 ( , , , , , , , ) ,0,0,0,0, ,0,0H H H
H M M M V V V

H H V

E S E I T R S E I


 

  
= =  

 

 

Basic Reproduction Number of the malaria only sub-

model 

For the infected compartments , , , ,M M M V VE I T E I , 

the new matrices F and V are: 

 

(1 )
0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

M H

H

V H

H

m

F

m

  

 

− 
 
 
 
 

=  
 
 

 
  

 

 

1

2

3

5

6

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

M

M

V

K

K

V K

K

K







 
 
−
 
 = −
 
 
 − 
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1

1 2 2

1

1 2 3 2 3 3

5

5 6 6

1
0 0 0 0 0

1
0 0 0 0

1
0 0 0

1
0 0 0 0 0

1
0 0 0 0

M

M M M

V

K

K K K

V
K K K K K K

K

K K K



  



−

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 

 

 

1 2 2

1

1 2 2

(1 ) (1 )
0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

M H M M H

H H

V H M V H

H H

m m

K K K

FV

m m

K K K

      

    

−

− − 
  
 
 
 

=  
 
 

  
  

 

The basic reproduction number 0M  is the spectral radius 

of 
1FV −

: 

2 2

0 2

1 2 5 6

(1 ) M V M V H
M

H

m

K K K K

     −
=


 

Substituting the K values: 
2 2

0 2

(1 )

( )( )( )( )

M V M V H
M

H M H M M H V V V V

m     

        

−
=

 + + + + +

 

I'll help prove the local and global asymptotic stability of 

the DFE for the malaria model following the TB guide 

(Olumuyiwa et al, 2024). 

Where, ( )1 M HK  = + , ( )2 M M HK   + += , 

( )3 M M HK   + += , ( )4 M HK  = + ,  

( )5 V VK  = + , ( )6 V VK  = + . 

 

 Local Asymptotic Stability of the Disease-Free 

Equilibrium of the Malaria Model 

The disease-free equilibrium (DFE) of the malaria model 

is: 

0 ,0,0,0,0, ,0,0H H H

H H V

E


 

  
=  

 
 

To analyze local asymptotic stability, we examine the 

Jacobian matrix at the DFE: 

1

2

3

0

4

5

6

( ) 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
( )

0 0 0 0 0 0

0 0 0 0 0 ( ) 0 0

0 0 0 0 0 0

0 0 0 0 0 0

M H M

M

M

M

M

V V

V

V

K

K

K
J E

K

K

K

  









 





− + 
 

−
 
 −
 

− =
 −
 

− + 
 −
 

−  

 

The characteristic polynomial is: 
8 7 6 5 4 3 2

1 2 3 4 5 6 7 8( )P b b b b b b b b        = + + + + + + + +  

where: 
3

1 ( )( )( )H H M H M V Vb       = + + +  

2

2 ( )( )( )H H M H M V Vb       = + + +  

3 ( )( )( )H H M H M V Vb       = + + +  

4 ( )( )( )H M H M V Vb      = + + +  

5 ( ) ( ) ( )H M H M V Vb      = + + + + +  

6 ( ) ( ) ( )H M H M H Mb      = + + + + +  

7 ( ) ( )H M V Vb    = + + +  

4 2 2 2

8 0( ) ( ) (1 )H V H M V Vb      = + + −  

If 0 1M  , then 8 0b  . By the Routh-Hurwitz 

stability criterion, all eigenvalues have negative real 

parts, making the DFE locally asymptotically stable 

when 0 1M   ( Olumuyiwa et al, 2024). 

 

Fractional Order of the Malaria-TB   Model 

The Caputo derivative is utilized as the fractional 

differential operator in our model. In this section, we 

outline several established definitions and properties 

that will be applied consistently throughout the course 

of this study. 

Definition 1  (Acheneje et al 2024)  The Caputo 

fractional order derivative of a function ( f ) on the 

interval [ TO, ] is defined by: 

  
−−−

−
=

t

nnC dssfst
n

tfD
0

)(1

0 ,)()(
)(

1
)( 



     (2) 

Where 1][ += n  and ][  represents the integer part 

of . In particular, for 0 1,   the Caputo derivative 

becomes:  
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   −−
=

t

C ds
st

sf
tfD

0

0 ,
)(

)(

)1(

1
)(






  

      (3) 

Definition 2 Laplace transform of Caputo derivatives is 

defined as 

1

0

[ ( )] ( ) (0),
n

C i k

K

D q t S h S S y   − −

=

= −L

 

,1 nn − 
 

,Nn
  (4)

 

For arbitrary , 0,1,2,... 1,  [ ] 1ic R i n n  = − = +

and ][ represents the non-integer part of  . 

Lemma 1. (Acheneje et al 2024), The following results 

hold for fractional differentiation equations 


−

=

+=
1

0

)(

,
!

)0(
)()]([

n

i

i
t

c t
i

h
ththDI 

  

      (5) 

For arbitrary ,1,...,2,1,0,0 −= ni where 

1][ += n and ][ represents the integer part of 
 

 

 

 

 

 

 

By incorporating a fractional-order derivative into the 

model, we now introduce a new mathematical 

formulation represented by a system of fractional 

differential equations of a specified order   for 

10  
 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

,

.

,

,

H

M

V

H M M H H

M M H M H M

M M M M H M

M M M M M H M

M M M H

V V V V

V V V V V

V V V

V

VV V

D S

D E

D I

D

D R

D S

R S

S E

E I

T I T

T R

S

S E

I

D E

D EI

















  

  

   

   

  

 

  

  

=


=

 + − +

− +

− + +

− + +

− +

 − +

− +

− +




= 
= 


= 


= 
=

= 

  

(6) 

The Laplace-Adomian Decomposition Method 

(LADM) Implementation 

We consider the general procedure of this method with 

the initial conditions. Applying Laplace transforms to 

both sides of the equation (1), and then we have:

 

 

( )

( )

( )

( )

( )

1
( ) (0)

1
( ) (0)

1
( ) (0)

1
( ) (0)

1
( ) (0)

( )

S S S S R S
H H H M M H H

S E S E S E
M H M H M H M

S I S I E I
M M M M M M H M

BS T S T I T
M M M M M M H M

BS R S R T R
M M M H

BS S S
V

 
  

 
  

 
   


   


  



−  − =  + − +
  

−  − = − +
  

−  − = − + +
  

−  − = − + +
  

−  − = − +
  

−

L L

L L

L L

L L

L L

L ( )

( )

( )

(7)

1
(0)

1
( ) (0)

1
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With initial conditions 
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Dividing eqn. (7) by (
S  ) we have:
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Decomposing the non-linear term of equation (6) 

whereby we assume the solution of 

( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )H M M M V V VS t E t I t T t R t S t E t I t

are in the form of infinite series given by:   
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            (9) 

We have three (5) non-linear terms. The non-linear term 

in equation (6) are decomposed by Adomian polynomial 

as follows: 

( ) ( ) ( ), ( ) ( ) ( ), (10)

0 0
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M
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Where ( ), ( ),A n B n  are Adomian polynomials 

given by 
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The polynomials are given by  
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          12)
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Substituting equation (9), (10) into equation (8) we 

obtained: 
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Evaluating the Laplace transform of the 2nd terms in the 

RHS of (13), we obtain 
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Taking the inverse Laplace transform of both sides of (14) 

( )

( )

( )

( )

( )

( ) ( )
( )

( ) ( )

(1 )

0( ) ( )
1 10 0

(1 )

0
2 1

3

0

0 0

(

0 0

R n
HNn H

E n E n
M MNn nH

I n E n
M

m A n
M tnS n

M M

n R S n
H H M H

n n

m A n
M tnn

M H

n
M M

n n





 




 



 








 
− 

  == +  +  
 += = 

 
 
 

− 
 ==

 
 

  
− −  

=  
 
 

 
 


+ + 

 + 
 
 

= +

 
−  

= = 
 
 

 
− + + 

= =
( )

( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )

( )

( )
( )6

)

0

0 0 0

(

0 0 0

1

4 1

5 1

0

0 10

M

M

V V

M

I n
H M

n

T n I n T n
M M M

n n n

R n T n R n
M H

n n n

m B n
V

nS n S n
V VNn nH

t

t
n

M M H

t

t

V

n

n

E











  







  






 
 

 +  

 
=



=

  
−  

= = =

  
− +  

= = =
 

 
  =− −  
= = 

 


+ + + 
 +  

 
= +  

 +  
 
 
 

= +  
 + 

 
 

( )

( )

( )
( )

( ) ( ) ( )
( )

0 (

0 0

(15)

7 1

8
( )

0 10 0

V

V V

m B n
V

nn E n
V VNn nH

I n E n I n
V V V V

n n

t
n

n

t
n











 

  





































  
  
  

= +  
 +  

  
  
  

= +  
 +  

 
 

  = − +  
= = 

 
 

  
− +  

= = =

   

      

    

When 0n = we obtain, 
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When 2n = , we obtain, 
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The series solution of each compartment can be expressed 

as: 

 ( ) (0) (1) (2) ...H H H HS t S S S= + + +  

 ( ) (0) (1) (2) ...M M M ME t E E E= + + +  

 ( ) (0) (1) (2) ...M M M MI t I I I= + + +   

  ( ) (0) (1) (2) ...M M M MT t T T T= + + +
 

             
( ) (0) (1) (2) ...R t R R R= + + +

 
  ( ) (0) (1) (2) ...V V V VS t S S S= + + +

 

             
( ) (0) (1) (2) ...V V V VE t E E E= + + +  

  ( ) (0) (1) (2) ...V V V VI t I I I= + + +  

(20) 

Convergence Analysis for the Laplace-Adomian 

Decomposition Method (LADM). 

 

The solution to equation (1) is represented as an infinite 

series that converges uniformly to the exact solution. To 

establish the convergence of series (21), we adopt the 

approach utilized by Acheneje et al. (2024). To ensure 

sufficient conditions for the convergence of the LADM, 

we present the following theorem: 

 

Theorem 1 (Acheneje et al 2024)  

Let X be a Banach space and :T X X→ be a 

constructive nonlinear operator such that for 

( ) ( ) ( ) ( )
' ', ,  ,0 1.x x X T x T x k −   Then, T 

has a unique point x such thatTx x= ,where 

( ), , , , , , , , , .H H H H M M M W W Wx S E I R S E I S E I=  

The series given can be written by applying the Adominan 

decomposition method as follows (Acheneje et al 2023): 

 
1 1,n n nx Tx x− −= , 

 

1

1

,  1,2,3,...
n

i

i

x n
−

=

= =  

And we assume that ( )0 ,rx B x where 

( )  ': ;rB x x X x x r=  −  then, we have as 

follows: 

(i) ( )n rx B x  

(ii) limn nx x→ =  

Proof 

For condition (i), invoking mathematical induction, 

For n=1, we have as follows: 

 ( ) ( )0 0 0 .x x T x T x x x− = −  −  

If this is true for m-1, then 
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1

0 0 .mx x k x x−−  −  

This gives the following: 

 

( ) ( )1 1 0 .n

m m mx x T x T x k x x k x x− −− = −  −  −  

Therefore,  

0 .n n

mx x k x x k r r−  −    

This directly implies that ( ).n rx B x  

Also, for (ii), we have that since 
0

n

mx x k x x−  −  

and lim 0n

n k→ = , we can write limn nx x→ = . 

Numerical Solution of Laplace Adomian 

Decomposition Method (LADM) 

In this section, we present the numerical solution of the 

model. By applying the initial conditions, the Laplace 

Adomian Decomposition Method (LADM) provides an 

approximate solution expressed as an infinite series 

given by: 
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2
( ) 6000000 1400.78 357.06 ...

( 1) (2 1)
2

( ) 10000 1534.78 648.06 ...
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For 1 = , the series solution of our model becomes, 
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 Sensitivity Analysis of the Malaria Model 

The sensitivity index of 0M  with respect to a parameter 

p is given by: 

0 0

0

MR M
p

M

Rp

R p


 = 


 

Given that: 

2 2

0 2

(1 )

( )( )( )( )

M V M V H
M

H M H M M H V V V V

m     

        

−
=

 + + + + +
 

 

Here are the simplified final sensitivity indices for the key 

parameters: 

 

Sensitivity to M  and V : 

1

2M V  =  =  

 

Sensitivity to M : 

1

2 2( )M

H

M H





 
 = −

+
 

 

Sensitivity to V : 

1

2 2( )V

V

V V





 
 = −

+
 

4. Sensitivity to H : 

1
2( ) 2( )H

M M M

M H M M H



  

    

+
 = − −

+ + +
 

5. Sensitivity to V : 

2( ) 2( )V

V V

V V V V



 

   
 = − −

+ +
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6. Sensitivity to  : 

1

2(1 )



 = −

−
 

7. Sensitivity to m : 

1m =  

8. Sensitivity to M : 

1

2( )M

M M H


  

 = −
+ +

 

 

9. Sensitivity to M  and V : 

1

2( )M

M M H


  

 = −
+ +

 

1

2( )V

V V


 

 = −
+

 

By substituting the parameter values in table 2 into the 

sensitivity analysis, we obtain; 

1. Sensitivity to M  and V : 0.5 

 

2. Sensitivity to M : 0.3036 

 

3. Sensitivity to V : 0.4994 

 

4. Sensitivity to H : -0.6687 

 

5. Sensitivity to V : -0.3899 

 

6. Sensitivity to  : -0.0408 

 

7. Sensitivity to m : 1 

 

8. Sensitivity to M : -2.5381 

 

9. Sensitivity to M : -2.5466 

   Sensitivity to V : -2.2616 

 

RESULTS AND DISCUSSION 

From the sensitivity analysis above, we observed that 

parameters like , , , ,M V M V m    with positivity 

sensitivity indices  enhance  the spread of malaria within 

the human population. Conversely, parameters like 

, , ,H V M V     with negative sensitivity indices reduce  

the prevalence of malaria within the human population. 

 

Figure 3:   Sensitivity analysis bar chart for the 

Malaria only sub-model  

The figure 3 above  shows  a bar chart illustrating the 

results of a sensitivity analysis for the malaria-model. 

Sensitivity analysis helps identify key parameters that 

influence the spread and prevalence of malaria within 

human populations (Haile et al, 2025: Adeniyi et 

al.,2024). Parameters with positive sensitivity indices 

enhance malaria transmission, meaning that an increase 

in their values leads to a higher spread of the disease. 

These may include factors like the mosquito biting rate, 

transmission probability, mosquito population, and the 

duration of infection in humans. Conversely, parameters 

with negative sensitivity indices reduce malaria 

prevalence, meaning that increasing these values helps 

control the disease. Such parameters could include the 

recovery rate of infected individuals, mosquito mortality 

rate, and the effectiveness of control measures like 

insecticide-treated nets (ITNs) or vaccination (Agbata et 

al, 2025). Understanding these relationships is crucial for 

developing targeted interventions, as reducing parameters 

with positive indices or increasing those with negative 

indices can effectively mitigate malaria transmission and 

prevalence. 

Table 2: Parameters Table of Values 

Parameter Values Sources 

H  0.00021 (Bolarinwa  et al, 2023) 

M  1.000000 Fitted  

MK  0.03 (Alzahrani, and Khan,  

2022) 

M  0.702503 Fitted 

1 2 3 4 5 6 7 8 9 10 11
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H  0.0002 (Agbata et al , 2023) 

V  0.0002 (Odeh et al, 2024) 

M  0.240461 Fitted 

M  0.010000 Fitted, 

M  0.064398 Fitted 

M  0.702503 Fitted 

V  0.071 (Omeje  et al, 2024) 

V  0.450000 Fitted 

V  0.022662 Fitted 

V  0.039417 Fitted 

  0.3 (Omeje  et al, 2024) 

 Data Fitting For the Malaria model               

To ensure consistency between the collected data and 

the mathematical sub-models for malaria and 

tuberculosis, the fmincon function from MATLAB’s 

Optimization Toolbox was employed. This approach 

improves the precision of parameter estimation by 

optimizing the model fitting process, thereby enabling a 

more accurate representation of actual disease dynamics. 

Through this optimization, critical parameters are 

adjusted to minimize the gap between model outputs and 

observed data. The resulting fitted data plots from this 

procedure are shown in the figures below. 

 

 
Figure 2a. Cumulative Malaria Cases. 

 

Fitted Parameters: 

1.000000M =  

0.450000V =  

0.702503M =  

0.022662V =  

0.240461M =  

0.064398M =  

0.600000M =  

0.010000M =  

0.039417V =  

0.800000m =  

We utilized disease infection data from Nigeria to fit our 

malaria and tuberculosis sub-models. For malaria, the 

annual data spans the years 2014 to 2021, with confirmed 

malaria cases provided in the Table below. Similarly, 

tuberculosis data was collected annually from 2010 to 

2022, with confirmed cases summarized in the Table 

below 

Malaria Data   

Table 1 presents the reported malaria cases from 2010 to 

2022 in Nigeria. These figures were sourced from the 

World Health Organization (WHO).   

 

 

 

Year Cases 

2010 350,000 

2011 362,000 

2012 373,000 

2013 383,000 

2014 393,000 
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2019 445,000 

2020 456,000 

2021 467,000 

2022 479,000 

 

Source:  (WHO, 2023) 

 

 
 

 

Figure 3a. Effect of varying   on susceptible human  

population 

Figure 3b. Effect of varying   on exposed 

                 humans to malaria   population 

 

   
 

Figure 3c. Effect of varying   on humans Infected 

with malaria  

 

 
 Figure 3d. Effect of varying   on treatment class 

                  humans infected with malaria    

 
Figure 3e. Effect of varying   on recovered Humans 
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Figure 3f. Effect of varying   on susceptible   

 vectors  

  

 
Figure 3g. Effect of varying   on exposed vector 

population 

 
Figure 3h. Effect of varying   on infected vectors                                                                                        

In Figure 3a, as the contact rate increases, the population 

of susceptible individuals declines over time. This 

suggests that malaria spreads more rapidly when there is 

more interaction between susceptible and infected 

individuals. However, it also indicates that implementing 

effective control measures—such as reducing human-

vector contact—can significantly curb the disease's 

spread. Similarly, in Figure 3b, the number of exposed 

humans decreases over time as the contact rate increases. 

This trend suggests that when proper interventions are in 

place, fewer individuals progress from the susceptible to 

the exposed stage of infection. Figure 3c shows a decline 

in the number of infected humans as the contact rate rises. 

One possible explanation for this is the implementation of 

high treatment coverage, as observed in Figure 3d, where 

effective medical interventions contribute to a higher 

recovery rate. This is further supported by Figure 3e, 

which shows a significant increase in the number of 

recovered individuals due to timely and effective 

treatment. Regarding the mosquito population, Figure 3f 

indicates an increase in the number of susceptible vectors 

as the contact rate increases. This could mean that fewer 

mosquitoes become infected, possibly due to reduced 

human-to-vector transmission. Meanwhile, Figure 3g 

shows a decrease in the number of exposed vectors over 

time, reinforcing the idea that transmission is being 

disrupted. In Figure 3h, the number of infected vectors 

declines, which can be attributed to the success of control 

measures such as insecticide use, environmental 

management, and reduced human-vector interaction. The 

findings highlight that malaria transmission can be 

significantly reduced—and potentially eradicated when 

appropriate control measures are implemented. Reducing 

contact rates between humans and infected vectors 

through behavioral changes and protective measures 

plays a crucial role in slowing the spread of the disease. 

Encouraging prompt and effective treatment ensures that 

infected individuals recover faster, thereby reducing the 

number of infectious hosts in the population. 

Additionally, strong vector control strategies, such as the 

use of insecticides, mosquito nets, and environmental 

modifications to eliminate breeding sites, further disrupt 

transmission. When these measures are effectively 

combined and sustained, the burden of malaria can be 

greatly minimized, ultimately leading to its eradication 

from the population.  

CONCLUSION 

This study applied sensitivity analysis and the Laplace-

Adomian Decomposition Method (LADM) to analyze a 

fractional-order malaria transmission model. By 

developing a deterministic compartmental model, we 

identified key factors influencing disease spread and 

evaluated the impact of various control strategies. Our 
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analysis demonstrated that malaria transmission is 

significantly influenced by contact rates between 

susceptible humans and infected vectors, as well as the 

effectiveness of treatment within the human population. 

The results from our numerical simulations indicate that 

increasing the contact rate leads to a decline in the 

susceptible human population, reinforcing the importance 

of minimizing human-vector interactions. Moreover, the 

reduction in the number of exposed and infected 

individuals, as seen in our model, highlights the 

effectiveness of early treatment interventions. The 

findings also suggest that implementing timely and 

effective medical treatments enhances recovery rates, 

ultimately reducing the pool of infectious individuals and 

disrupting disease transmission. 

In terms of vector dynamics, our results show that 

reducing human-to-vector transmission leads to fewer 

infected mosquitoes, which further limits the spread of 

malaria. Control strategies such as insecticide-treated 

bed nets, environmental management, and mosquito 

population control prove to be critical in minimizing the 

number of infectious vectors in the population. The  

study demonstrates  the importance of integrating 

multiple intervention strategies to effectively combat 

malaria. Reducing human-vector contact through 

protective measures, ensuring prompt treatment of 

infected individuals, and implementing robust vector 

control methods are essential in minimizing malaria 

prevalence. The use of fractional-order models in 

disease dynamics, particularly with the application of 

LADM, provides a more comprehensive and accurate 

representation of malaria transmission, offering valuable 

insights for disease control and eradication efforts. 
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