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ABSTRACT 

Commodity prices in Nigeria exhibit long memory characteristics, which lead to 

high risk of price fluctuations. This study aims to model and forecast the impact 

of long memory on cereal prices index in Nigeria using a hybrid time series 

model. The data used for this study are secondary monthly CPI data obtained 

from the Central Bank of Nigeria (CBN) covering the period 1990-2025. The 

study employed Kwiat-Kowski Phillip Smidth Shin test to check for stationarity 

and found that the variables were stationary after taken fractional differencing. 

The study employed GPH test to check for long memory in the variables and it 

was found in the variables. The study utilized scatter plot to check for 

heteroscedasticity and it was found in the residuals of ARFIMA (1, 1.2, 1) 
models. In addition, ARFIMA (1, 1.2, 1)-FIGARCH (9, 1) was found as the best 

model with least AIC, MAE, MSE, and RMSE when compared with standalone 

models. The study employed Ljung-Box and ARCH-LM tests to diagnose the 

models. Hence, there is no excess correlation in the residuals of best models. The 

forecast results shows that the forecasted volatility of the CPI variable increases 

over time, this indicates the rising prices may impact food affordability and 

accessibility in the nation. Moreover, Government may need to intervene to 

stabilize prices and ensure food security. 

 
 

INTRODUCTION 

Long memory means past values in a series influence 

future values over long time spans, causing slow decay in 

autocorrelations (Sottinen, 2021). This phenomenon is 

commonly observed in stock returns and particularly 

volatility, challenging the Efficient Market Hypothesis 

(EMH) which assumes price changes are random 

(Kramer, 2001). Several Studies have confirmed that long 

memory allows for predictability in returns and volatility, 

implying trading strategies can exploit persistence trends 

and risk (Barunik and Kristoufek, 2019). Capturing long 

memory is thus crucial for accurate forecasting and risk 
management. 

 Nigeria’s commodity market is highly volatile and 

influenced by macroeconomic and monetary variables 

like money supply, interest, and exchange rates, affecting 

stock price movements (Egberi and Olsufolan, 2021). 

Despite its growing importance, persistent dependencies 

and long-run dynamics in Nigerian commodity prices 

remain underexplored. Understanding these dynamics 

helps investors and policymakers mitigate risks and 

enhance market efficiency amid Nigeria’s unique 

economic conditions. 

 
 

 

 

 

Hybrid time series models combine strengths of different 
methods to capture linear and nonlinear patterns in 

financial data more accurately (Stempien and Slepaczuk, 

2013). For example integrating ARFIMA for long 

memory with FIGARCH for volatility models has proven 

robust in forecasting and modelling complex 

dependencies in other markets. Such hybrids outperform 

single models by adapting to changing market conditions 

and capturing complex behaviours. 

Studying long memory enables better understanding of 

price persistence, improving forecasts and trading 

strategies. It reveals market inefficiencies contradicting 
EMH, informing regulatory and investment decisions.  

Long memory analysis aids in valuing stock options and 

risk management by modelling volatility’s persistence. 

For Nigeria leveraging this can enhance market 

predictability and investor confidence. 

Studies were conducted by various researchers with the 

use of ARFIMA-FIGARCH model on economic data. 

These include Benbachir (2025) assessed informational 

efficiency in largest African stock markets by modelling 

dual long memory using ARFIMA-FIGARCH approach.  
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The study assessed the weak-form informational 

efficiency of six major African stock markets – 

Johannesburg, Casablanca, Botswana, Nigeria, Egypt, 

and the Regional Stock Exchange – through the lens of 

long-memory behavior in returns and volatility. This was 
achieved by employing four advanced models: ARFIMA-

FIGARCH, ARFIMA-FIEGARCH, ARFIMA-

FIAPARCH, and ARFIMA-HYGARCH. Each of these 

models was specifically designed to capture long memory 

in both the conditional mean and variance. The empirical 

results demonstrated that the ARFIMA- FIGARCH 

framework, across all four model variants, consistently 

outperformed alternative specifications in fitting the 

return and volatility dynamics of all six African stock 

market indices. Moreover, Zhelyazkova (2018) studied 

exchange rates using ARFIMA-FIGARCH, HYGARCH 

and FIAPARCH Models. The used daily exchange rate 
returns of twelve currencies against USD (4310 

observations) from 2000 to 2017. The tests were based on 

ARFIMA-FIGARCH, HYGARCH and FIAPARCH 

models which are estimated by maximum likelihood 

method under the assumption of t-distribution, 

generalized error distribution and skewed t-distribution of 

innovation process. The results showed presence of long 

memory in volatility of all twelve exchange rates and dual 

long memory in the returns of BRL/USD only. The 

HYGARCH model was found to be an appropriate 

volatility model with long memory for BRL/USD, 
NOK/USD and ZAR/USD. According to estimated 

FIAPARCH models there is an asymmetric response of 

volatility of BRL/USD, MXN/USD, NZD/USD and 

ZAR/USD to positive and negative shocks along with 

long memory. Furthermore, Turkyilmaz and Balibey 

(2014) studied Long Memory Behavior in the Returns of 

Pakistan Stock Market using ARFIMA-FIGARCH 

model. The data used for the study consists of daily stock 

index data for the period of 2010-2013 after global 

economic crisis. According to findings of the study, 

ARFIMA model do not support long memory behavior 

for the stock market returns. However, FIGARCH model 
indicated that volatility of market returns has long 

memory. Moreover, in order to test the feature of long 

memory in the return and volatility of the stock market 

simultaneously, ARFIMA-FIGARCH models were 

estimated according to different distributions 

simultaneously. Predictable structure of volatility of 

Pakistan stock market displayed that this market was the 

weak-form market inefficiency. Consequently, it was 

possible to say that technical analysis related to this stock 

market may be valid. This implied that it was possible to 

predict future stock prices and extra ordinary gains could 
be obtained trading in the market. 

Despite the importance of cereal commodity in Nigeria’s 

economy, there is a death of research on modelling and 

forecasting its prices index using robust time series 

techniques. Specially, existing literatures are scarce on 

studies that apply advanced time series models to capture 

the complex dynamics of these commodity prices. 

Notably, there is a lack of research that employs hybrid 

time series models that simultaneously account for long 

memory in both the mean process and volatility of these 
price indices. To address these gaps, the study proposes 

to employ ARFIMA-FIGARCH model to examine the 

prices index of cereal commodity in Nigeria, providing a 

more comprehensive understanding of its behaviour and 

contributing to the limited literature on this research.  

The study aims to model and forecast the impact of long 

memory properties on Nigerian commodity prices index 

using ARFIMA-FIGARCH approach. And the objectives 

are to:  (i) Analyse long memory characteristics in 

Nigeria’s commodity prices index data (ii) Estimate and 

compare parameters capturing persistence in returns and 

volatility (iii) Evaluate the forecasting performance of the 
model for commodity price index volatility (iv) Assess 

the implication of long memory on market efficiency and 

risk management in Nigeria. Hence our focal research 

questions are: (i) Does the Nigeria’s commodity prices 

index exhibit long memory in returns and volatility? (ii) 

How well does ARFIMA-FIGARCH model capture these 

long memory features? (ii) Can the model improve 

forecasting accuracy of the commodity prices index 

volatility? (iii) Can the model improve forecasting 

accuracy of the commodity prices index volatility? (iv) 

What are the implications of long memory on market 
efficiency and risk management in Nigeria? 

 

MATERIALS AND METHODS 

 

Method of Data Collection 

The data collected for this research work are secondary 

data which was retrieved online through 

www.c.b.n.gov.ng website. The data is economic time 

series data which is based on commodity prices index in 

Nigeria. The data was collected on monthly basis ranging 

from 1990-2025.  

 

Method of Data Analysis 

This section describes the analytical procedures applied 

in Chapter Four. The methods employed include time 

series visualization, stationarity testing, long memory 

testing, model order selection, heteroscedasticity testing, 

model estimation, diagnostic checking, and forecast 

performance evaluation using ARFIMA, FIGARCH, and 

ARFIMA-FIGARCH models. 

 

ARFIMA Model 

The Autoregressive Fractional Integrated Generalize 
Moving Average model was proposed by Granger and 

Joyeux (1980) and Hosking (1981). The model is used 

capture the presence of long memory in the time series. 

The model is defined 

  ∅(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝛩(𝐵)𝑒𝑡                                       (1)                  
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Where, 

∅(𝐵) : This is the autoregressive operator; it is a set of 

coefficients (𝜑1 , 𝜑2, … capturing the effect of past values 

of the series 𝑋𝑡−1, 𝑋𝑡−2, …, on the current value (𝑋𝑡).  

Where, 𝐵 is the lag operator (𝐵(𝑋𝑡) = 𝑋𝑡−1). 

(1 − 𝐵)𝑑 : is the fractional differencing operator. Where, 

(𝑑) is decimal, not whole number, letting the model to 
capture long memory, meaning that past shocks still 

influence the present, but may be decaying slowly over 

time. 

𝑋𝑡 : is the observed time series value at time (𝑡). 

𝞗(𝐵): is the moving average operator it is set of 

coefficients (𝜃1, 𝜃2,…) but applied to past error terms 

(residuals), that is 𝜀𝑡−1, 𝜀𝑡−2, … 

𝜀𝑡  : is the white noise or error term at time (𝑡). 

 

FIGARCH Model 

The study employed FIGARCH model developed by 

Bollerslev and Mikkelsen (1996). The model is an 

extension or an improvement of GARCH model where 

the long memory component was added to the model. The 

model is used to capture characteristic of volatility long 
memory, persistence and clustering. The model is given 

below as: 

                                 

( )  t
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−

=

− −−+++=      (2) 

Where, t
2  is the conditional variance, it−

2  is the 

squared unexpected returns for the previous periods, 

jt−
2  is the previous volatility,   is the intercept, i  

is the adjustment of the past shocks and j  is the 

adjustment to the past volatility, L  is the lag operator, d  

is the differencing operator and t
2  is the squared of the 

residuals. 

 

ARFIMA-FIGARCH Model 

The study employed ARFIMA-FIGARCH which is a 

combination of ARFIMA and FIGARCH models. The 

model addresses the limitations of ARFIMA and 
FIGARCH models. The ARFIMA model has ability to 

capture long memory process in mean of a time series; 

however, it cannot capture long memory process in 

volatility and heteroscedasticity of a time series. The 

FIAGRCH model has ability to capture long memory in 

volatility process and heteroscedasticity; however, it 

cannot capture long memory process in mean of a time 

series. Therefore, ARFIMA-FIGARCH model overcome 

the limitations of both two models. The model is given 

below as: 

  𝜎𝑡
2 = 𝜔 + 𝛼𝑖 ∑ (𝜎𝑡𝑧𝑡)𝑡−𝑖

2 + 𝛽𝑗 ∑ 𝜎𝑡−𝑗
2 +

𝑝
𝑗=1

𝑞
𝑖=1

[(1 − (1 − 𝐿))
𝑑

(𝜎𝑡𝑧𝑡)𝑡
2]                        (3) 

Where, t
2  is the conditional variance, (𝜎𝑡𝑧𝑡)𝑡−𝑖

2   is the 

squared unexpected returns for the previous periods of the 

ARFIMA model, jt−
2  is the previous volatility,   is 

the intercept, i  is the adjustment of the past shocks and 

j  is the adjustment to the past volatility, L  is the lag 

operator, d  is the differencing operator and is the 

squared of the residuals. 

 

Assumptions of ARFIMA-FIGARCH Model 

i. It assumes stationarity. 

ii. It captures mean and variance of a time series. 

iii. It captures long memory in mean and volatility. 

iv. Captures heteroscedasticity. 

v. Captures AR component. 
vi. Captures MA component. 

 

Method to fit ARFIMA-FIGARCH Model 

This research work used two phrase methods to fit the 

ARFIMA-FIGARCH model. In phase (I) the residuals of 

ARFIMA model were extracted. In phase (II) the 

extracted residuals from the ARFIMA model were used 

to fit ARFIMA-FIGARCH model.  

 

Time Series Visualization 

This study used time series plot to identify the behavior 
of the stock prices over the long period of time, make 

inference about the presence of unit roots, and structural 

breaks in the time series. 

 

Stationarity Checking 

Stationarity in time series analysis is presence of constant 

mean and variance in time series data. This study 

employed Augmented Dickey Fuller (ADF) and Kwiat-

Kowski Smidth-Shin (KPSS) tests to check for the 

stationarity in the study variables. 

 

Augmented Dickey-Fuller Test 
The study employed test for a unit root in the time series 

by the test which was developed by Said and Dickey-

Fuller (1984). The test is defined below as: 

   𝜏 =
(𝛽1−𝑑)

√
𝛽2

2+𝜎2

(1−𝛽2)
2

                                                                         (4) 

Where, 𝛽1 is the trend term, d is the differencing 

parameter, 𝛽2 is the coefficient on the lagged first 

difference term, and 𝜎2  is the variance of the time series.  

The test involves the following hypotheses: 
H0: the time series has unit roots. 

Ha: the time series non-unit roots. 

 

Decision Criteria 

Null hypothesis is rejected if P-value is less than the alpha 

value. 
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KPSS Test 

This research work checked for the presence of unit roots 

with the test which was proposed by Kwiat-Kowski 

Smidth-Shin (1992). The test serves as the second 

approach to check for the unit roots of the time series data. 
The test is defined below as: 

                                                                                   

𝐾𝑃𝑆𝑆𝑇 =
∑ (𝑦𝑡− 𝜇̂−𝛿̂𝑡)

2𝑇
𝑡=1

𝜎̂2 ∑ (1− 
𝑡

𝑇
)

2
𝑇
𝑡=1

                                             (5) 

Where, 𝑦𝑡 is the time series, 𝜇̂ is the mean of the time 

series, 𝛿̂𝑡 is the estimated trend coefficient, 𝜎̂2 is 

estimated variance of the time series, and 𝑇 is the sample 

size. 

 

Long Memory Checking 

Long memory is a phenomena when a time series exhibits 

decay slowly rather than exponential decay. This study 

employed Gewek and Porter Hudak (GPH) test, proposed 

in 1983 to estimate and check for the long memory. The 

test is defined as: 
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Where, 
T

w
j

j

2
=  , nj ,...,2,1= , jw  refers to 

Fourier frequency Transformation   ( )Tn =  j

represents residual of the model, ( )jwI  is a simple 

periodogram which is defined as: 
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Model Order Selection 

This is the process of selecting the exact orders of a time 

series models. To fit time series models there is need to 

select the orders of the model. The study used 
Autocorrelation Function (ACF) plot and Partial 

Autocorrelation function (PACF) plot to identify the 

order of the ARFIMA-FIGARCH model. 

 

Autocorrelation Plot 

The study will employ autocorrelation plot to identify the 

order of Moving Average (MA) model to use in the 

proposed model. The autocorrelation function is given 

below as: 

0


 k

k =                                                                       (8) 

Where, 
k  is the autocorrelation at lag k ,  k  is the 

chosen lag, 
k is the covariance at lag k  and 

0  is the 

variance. 

 

Partial Autocorrelation Plot 

The study employed Partial Autocorrelation Function 

(PACF) plot to identify the order of Autoregressive (AR) 
model to use in the ARFIMA-FIGARCH model. The 

function is defined as: 

 

  𝜑(𝑘) =
[𝜌(𝑘)−∑[𝜑(𝑗).𝜌(𝑘−𝑗)]]

[1−∑[𝜑(𝑗).𝜌(𝑗)]]
                                                     (9) 

Where, 𝜑(𝑘) is the partial autocorrelation at coefficient 

at lag k, 𝜌(𝑘) is the autocorrelation coefficient at lag k, 

𝜑(𝑗) is the partial autocorrelation at lag j, k is the number 

of lag, and j is the intermediate lag (j = 1 to k – 1). 

 

Heteroscedasticity Checking 

Heteroscedasticity refers to the presence of non-constant 

variance in time series data. The study employed scatter 

plot to check for the presence of heteroscedasticity in the 

residuals of ARFIMA model. 

 

Scatter Plot 

This research work used scatter plot to check for the 

presence of heteroscedasticity in the residual, the 

residuals were plotted against the time. The residuals are 

on the vertical line and the times are on the horizontal 

line. 

 

Evaluation Metric Measures 

Measures of forecasting accuracy were used in this study 

to evaluate the performance of the developed model. In 

this study, Mean Absolute Error (MAE), Mean Square 

Error (MSE) and, Mean Square Error (RMSE), and 
Akaike Information Criterion (AIC) are the forecasting 

performance methods considered. 

 

Mean Absolute Error 

Mean Absolute Error was used in this study to measure 

the average magnitude of the errors produced by the 

model developed. The test is defined as: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝜎𝑡

2 − 𝜎̂𝑡
2|𝑛

𝑡=1                                                   (10)          

Where, 𝑛 is the sample size,  𝜎𝑡
2  is the actual variance at 

time t and 𝜎̂𝑡
2  is the estimated variance at time t. 

The following steps were undertaken to compute the 

MAE: 

Step1: Calculation of the absolute difference between 
each actual value and its corresponding forecasting value. 

 

Mean Square Error 

This study employed mean squared error to measure the 

average squared difference between predicted and actual 

values. The test statistic is given below as: 
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 𝑀𝐴𝐸 =
1

𝑛
∑ (𝜎𝑡

2 − 𝜎̂𝑡
2)2𝑛

𝑡=1                                            (11) 

Where, 𝑛 is the sample size,  𝜎𝑡
2  is the actual variance at 

time t and 𝜎̂𝑡
2  is the estimated variance at time t. 

The following steps were undertaken to compute the 

MSE: 

Step1: Calculation of the difference between each actual 
value and its corresponding predicted value. 

 

Root Mean Square Error 

This study employed Root Mean Square Error to measure 

the difference between the predicted and actual values. 

The test statistic is defined as: 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝜎𝑡

2 − 𝜎̂𝑡
2)2𝑛

𝑡=1                                    (12) 

Where, 𝑛 is the sample size,  𝜎𝑡
2  is the actual variance at 

time t and 𝜎̂𝑡
2  is the estimated variance at time t. 

The following steps were undertaken to compute the 

RMSE: 

Step1: Calculation of the difference between each actual 

value and its corresponding predicted value. 

 

Akaike Information Criterion 

This study employed AIC to evaluate the relative quality 

of the developed model for the given set of data. The test 

statistic is given below as: 

  𝐴𝐼𝐶 = −2𝑙𝑛(𝐿) + 2𝑘                                               (13) 
                                           

Where, 𝑛 is the sample size, 𝜎2  is the variance of the time 

series, and 𝜀𝑡
2  is residuals of the time series. 

Diagnostic Test 

This study employed Ljung-Box test and Arch-Lm test to 

assess the goodness of the residuals of the selected best 

model. 

Ljung-Box Test 

This study checked for presence of serial correlation in 

the selected best models using a test proposed by Ljung-

Box (1978). The following steps were undertaken to 

carryout Ljung-Box test for the selected best model. The 
tests is given below as: 

 

 𝑄𝑚 = 𝑛(𝑛 + 2) ∑
𝜏𝑘

2

𝑛−𝑘

𝑚
𝑘=1                                           (14) 

Where, n is the number of observations in the time series, 

k is the particular time lag to checked, M is the number of 

time lags to be tested, 𝜏𝑘 is the sample autoorrelation 
function of the kth  residuals term. 

 

ARCH-LM Test 

This study used the test proposed by Engle (1982) to 

check for the effect of heteroscedasticity in the residual 

of the model. The following steps were undertaken to 

carry out the ARCH-LM test for the residuals of the 

selected best model. The test is defined as: 

                                                         

( )
= −

+=
m

j

j

LT

P
TTmQ

1

ˆ
2)(*                                         (15) 

Where, m  is the maximum numbers of lags included in 

the ARCH effect test, jP̂  is the sample Autocorrelation 

at lag j  for the squared time series and T  is the number 

of non-missing values in the data sample. 

 

RESULTS AND DISCUSSION 

Time Series Visualization

 

 

 

 

 

              

                       

 

 

 

 

 
 

 

 

 

Figure 1 Time Series Plots of Monthly Cereal Price Index (1990-01) to (2025)

From the results obtained in Figure 1 it is observed that 

the CPI time series exhibits trend both upward and 

downward movements with a pronounced upward trend, 

indicating non-stationary behaviour over the study 

period. 

Stationarity Checking
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Table 1 ADF Test Results of CPI Time Series 

Dickey-Fuller = -2.9701 Lag order = 7 P-value = 0.1676 

From Table 1, the ADF p-value (0.1676) exceeds the 5% 
significant level, hence, the null hypothesis of a unit root 

cannot be rejected, indicating that the CPI series is non-

stationary. However, since the ADF test alone may be 

inconclusive, the KPSS test was further employed for 

confirmation. 

Table 2 KPSS Test Results of CPI Time Series 

KPSS Level = 

4.3614 

Truncation lag 

parameter = 5 

P-value < 0.01 

From the results obtained in Table 2 it is observed that the 

probability value of KPSS test is less than 0.01, which is 

less than 0.05, thus, we fail to reject the null hypothesis 
and conclude that the time series is not stationary.  

Long Memory Checking 

Table 3 GPH Test of CPI 

Estimated (d) sd.as sd.reg 

1.158523 0.1812318 0.218406 

From the results obtained in Table 3 it is observed that the 

estimated long memory parameter d = 1.1585, which 

suggest significant long memory in CPI data. This means 

the series has persistent, slowly fading shocks. 

Time Series Visualization of the Differenced CPI 

 

 

 
 

 

 

                                                         

                                       

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

  

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 2 Time Series Plots of the Differenced CPI Time Series 

From the results obtained in Figure 2 it is observed that 
the time series fluctuates around a constant mean (no 

upward or downward trend). Thus, the time series is 

stationary. 

Stationary Checking of the Differenced Time Series 

Table 4 KPSS Test Results of FdCPI Time Series 

KPSS Level = 

0.028934 

Truncation lag 

parameter = 5 

P-value > 0.1 

From the results obtained in Table 4 it is observed that the 

probability value of KPSS test is greater than 0.1, which 

is greater than 0.05, thus, we are to reject the null 

hypothesis and conclude that the time series is stationary.  
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Model Order Estimation 

 

 

 

 
 

 

 

 

 

 

 

 

                                  

                                       

 

 
 

 

 

 

 

 

 

Figure 3 Autocorrelation Function Plot of CPI

 

From the above results obtained in Figure 3 it is observed that the autocorrelation plot exhibits significant spike at 

from lag 1 up to lag 2. Thus, MA (1), M 
 

A (2), and MA (9) are significant. 

 

 

 

 

 

 

  

                                 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4 Partial Autocorrelation Function Plot of CPI 

From the above results obtained in Figure 4 it is observed that the autocorrelation plot exhibits significant spike at lag. 

Thus, AR (1) is significant. 
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Heteroscedasticity Checking in the residuals of ARFIMA (1, 1.2 1) Model 

 

 

 

 

 

 

                                     

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 5 Scatter Plot of ARFIMA (1, 1.2, 1) Residuals 

From the results obtained in Figure 5 it is observed that the scatter plot exhibits funnel shape, thus, this indicates 

presence of heteroscedasticity in the residuals of the model. 

Table 5 Comparison of the selected best Models 

CPI ARFIMA (1, 1.2, 1) 2404.19 

CPI FIGARCH (9, 1) 6.3062 

CPI ARFIMA (1, 1.2, 1)-FIGARCH (1, 1) 5.2400 

 

From the results obtained in Table 5 it is observed that ARFIMA (1, 1.2, 1)-FIGARCH (1, 1) outperforms ARFIMA 

(1, 1.2, 1) and FIGARCH (9, 1) with least AIC. 

Table 6 Evaluation Metric Measures of the selected best Models 

CPI ARFIMA (1, 1.2, 1) 2.512241 15.40299 3.924664 

CPI FIGARCH (9, 1) 3.036354 15.99727 3.999659 

CPI ARFIMA (1, 1.2, 1)-FIGARCH (1, 1) 0.1406994 0.7004388 0.8369222 

From the results obtained in Table 6 it is observed that 

ARFIMA (1, 1.2, 1)-FIGARCH (1, 1) outperforms 

ARFIMA (1, 1.2, 1) and FIGARCH (9, 1) with least 

MAE, MSE, and RMSE. 

Table 7 Coefficients of ARFIMA (1, 1.2, 1)-FIGARCH (1, 1) Model 

CPI Time Series 

Parameters Estimate Standard error t-value Pr(>|t|) 

𝜇  3.213564     0.004980   645.2589 0.000000 

𝜔  0.004996     0.001229     4.0653 0.000048 

𝛼1   0.000000     0.124207     0.0000 1.000000 

𝛽1  0.257503 0.135331     1.9028 0.057071 

𝛿  1.000000     0.000314 3189.1263 0.000000 

From the above results obtained in Table 7 it is observed 

that the expected value of the time series is (3.2136). The 

constant variance parameter that represents the baseline 

volatility level is (0.0049). The ARCH parameter is 
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(0.0000), which measures the impact of first lagged 

squared error on current volatility. The GARCH 

parameters are (0.2575) it measures the impact of first 

lagged volatility on current volatility. The fractional 

differencing parameter is (1.0000) which measures the 

long memory component in volatility. 

 

Table 8 Ljung-Box Test of ARFIMA (1, 1.2, 1)-FIGARCH (1, 1) 

  CPI Time Series 

Lag Statistic  P-value = 0.4191 

Lag 1 0.0178   0.8939 

Lag 2 0.1180   0.9072 

Lag 4 0.3290   0.9806 

From the above results obtained in Table 8 it has been 

observed that all the probability values are (0.8939, 

0.9072, 0.9806) are greater than the alpha value (0.05). 

Thus, the residuals of the model are approximately 

normally distributed. There is no significant serial 

correlation. 

 

Table 9 ARCH-LM of ARFIMA (1, 1.2, 1)-FIGARCH (1, 1) 

CPI Time Series 

Lag  Statistic  Shape  Scale P-value  

Lag 3 0.001552 0.500 2.000   0.9686 

Lag 5 0.004613 1.440 1.667   0.9998 

Lag 7 0.007815 2.315 1.543   1.0000 

From the above results obtained in Table 9 it has been 

observed that all the probability values are (0.9686, 

0.9998, 1.0000) are greater than the alpha value (0.05). 

Thus, the residuals of the model are approximately 

normally distributed. There is no remaining ARCH-effect 

in the model. 

 

Table 10 ARFIMA-FIGARCH Model Equation 

CPI 𝜎𝑡
2 = 0.005 + 0.3𝜎𝑡−𝑗

2 + [1 − (1 − 𝐿)(𝜎𝑡𝑧𝑡)𝑡
2]  

 

Table 11 Forecast Results

 

CPI Time Series 

November 0.4630 

December 0.5525 

 January 0.6292 

February 0.6974 

March 0.7594 

April 0.8166 

From the results obtained in Table 11 it is observed that 

the forecasted volatility in November 0.4630 suggests 

moderate relatively stable market conditions. In 

December the volatility 0.5525 indicates growing 

uncertainty, possibly due to holiday season demand and 

supply chain disruptions. In January the volatility 0.6292 
rises reflecting post-holiday market adjustment and 

potential production planning changes. In February the 

volatility 0.6970 continued increase in volatility suggests 

growing market uncertainty influenced by global 

economic factors and weather events. In March 0.7559 

indicates significant price fluctuations, potentially driven 

by seasonal demand and production changes. In April 

very high volatility of 0.8166 which suggests extreme 

market uncertainty, potentially impacting food security 

and prices. 

This study analysed two commodity prices variable 

(Cereal Prices Index). The study found that the variable 

has no constant mean and variance that there means and 

variances change over time. The study found presence of 
long memory in the variable and long memory is 

persistent. The study looked at six months ahead forecast 

for the variable that is from November to April. This 

study employed hybrid time series model (ARFIMA-

FIGARCH) which is good in capturing long memory and 

heteroscedasticity in economic variables. The study 

found that the hybrid model outperforms the stand alone 

models (ARFIMA and FIGARCH) models with least 

92 



 
Modelling and Forecasting Long Memory … Auwalu et al. 

 

 

JOBASR2026 4(1): 84-96 

 

   

AIC, MAE, MSE, and RMSE. The forecasted volatility 

indicates an increasing trend in the variable under study. 

This result is in consistent with Ngome (2022) and 

Benbachir (2025) studies. The increasing volatility in 

each variable has significant implications that include: 

• Food security: Rising prices may impact food 

affordability and accessibility, particularly for 

vulnerable populations. 

• Farmers: increased price risk may influence 

planting decisions and investment in agricultural 

production. 

• Policymakers: Government may need to 

intervene to stabilize prices and ensure food 

security. 

Moreover, the increasing volatility of the variable 

suggests that the variable exhibit long memory, meaning 
that past shocks and volatility persist over time. This 

implies that: 

• Volatility clustering: periods of high volatility 

are likely to be followed by more high volatility. 

• Slows decay: volatility shocks take time to 

dissipate, leading to prolonged periods of price 

instability. 

Predictability: The forecasts suggest some predictability 

in volatility, allowing for informed decision-making.  

CONCLUSION 

The time series data CPI consist of trend over the long 

period of time. In addition, the time series (CPI) suffers 

with fluctuation of mean and variance, these 

characteristics made them not stationary. Furthermore, 

the study revealed presence of long memory in the 
variable under study. Moreover, there is presence of 

heteroscedasticity in the residuals of ARFIMA (1, 1.2, 1). 

ARFIMA (1, 1.2, 1)-FIGARCH (1, 1) was the best model 

with least AIC, MAE, MSE, and RMSE when compared 

with the ARFIMA and FIGARCH models. There is no 

significant serial correlation in the residuals, indicating 

the model reduced volatility persistence. Hence, the study 

highlights the used of robust model such as ARFIMA-

FIGARCH model in proper modelling and forecasting 

CPI time. Finally, volatility forecasts reveal that CPI 

volatility increases over time, indicating rising price 

uncertainty that may adversely affect food affordability 
and market stability in Nigeria. 

People should keep a close eye on dairy market news and 

trends to stay informed about potential price movements. 

i. People should consider implementing risk 

management strategies, such as hedging or 

diversification, to mitigate the impact of 

volatility. 

ii. People should develop a contingency plans to 

address potential price scenarios, including 

extreme price movements. 

iii. People should implement robust risk 

management strategies to mitigate the impact of 

volatility on CPI. 

iv. People should consider diversifying portfolios to 

reduce exposure to cereal price fluctuations. 
People should continuously monitor market 

developments and adjust strategies accordingly. 
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