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ABSTRACT 

Nigerian crude oil prices suffer from long memory, volatility, and varying 

volatility levels including extremely low, low, moderate, high, and extremely 

high. These characteristics directly increase market risk for the Nigerian 

economy. Studies model these levels into two levels low and high. However, the 
volatility levels can fall into other levels that include; extremely low, moderate, 

and extremely high. Therefore, this study aims to model these features using a 

newly developed hybrid time series model 5-States-FIGARCH-HMM. The data 

for this study was accessed documented record of central bank of Nigeria. The 

data were recorded monthly from 1990-2025 daily. The study employed ADF 

and KPSS tests to check for stationarity and non-unit roots was found. The study 

employed GPH test to test for presence of long memory in the time series and 

the long memory was found. Stationarity was achieved through fractional 

differencing. The study employed ACF and PACF plots to estimate the orders 

of AR and MA models respectively. The study found that 5-States-FIGARCH 

(1, 2)-HMM was the best model with least MAE, MSE, and RMSE when 

compared with FIGARCH and HMM models. The forecast results indicates 
rapid volatility stabilization and reduced tail risks, with a higher probability of 

low to moderate volatility regimes, implying more predictable pricing and 

reduced hedging requirements. Overall, the findings reveal strong regime 

persistence under calm market conditions, which may support macroeconomic 

stability toward early 2026. 

 
 

INTRODUCTION 

Crude oil volatility refers to the fluctuations in crude oil 

prices over time.  Understanding crude oil prices is crucial 

for investors, policymakers, and industry stakeholders 
due to its significant impact on the global economy 

(Kilian, 2022). Various factors contribute to crude oil 

volatility, including geographical events, supply and 

demand imbalances, and macroeconomic conditions 

(Ellwanger et al., 2023). Researchers have employed 

various models to capture crude oil volatility, such as 

GARCH-type models and stochastic volatility models 

(Hartwig and Mahringer, 2023). Crude oil volatility can 

be categorized into different levels, including; extremely 

low, low, moderate, high, and extremely high. 

Low volatility characterized by small price fluctuations, 
low volatility is often observed during periods of 

economic stability and stable oil demand (Zhang et al., 

2022).  

 

 

 

 

 

 

Moderate volatility represents moderate price 

fluctuations, often driven by changes in supply and 

demand fundamentals (Cross, and Nguyen, 2023). High 

volatility characterized by large price fluctuations, high 
volatility is often observed during periods of economic 

uncertainty, geopolitical tensions, and supply disruptions 

(Ellwanger et al., 2023). Extremely low volatility 

represents small prices fluctuations, often observed 

during periods of stable economic condition and low 

uncertainty (Barroso and Detzel, 2021). Extremely high 

volatility characterized by large price fluctuations, often 

driven by major shocks, such as wars, natural disasters, or 

global economic crises (Caldara et al., 2020). 

Understanding these different levels of volatility is 

essential for investors, policymakers, and industry 
stakeholders to make informed decisions and manage 

risk. 
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Recent studies have focused on the impact of COVID-19 

on crude oil volatility, highlighting the increased 

uncertainty and price fluctuations during the pandemic 

(Sharif et al. 2020). Additionally, researchers have 

explored the relationship between crude oil volatility and 
other financial markets, such as stock markets and 

exchange rates (Yin et al., 2024).  

Regime switching models are used to capture changes in 

the underlying data-generating process over time. These 

models assume that the data follows different regimes or 

states, each with its own set of parameters (Hamilton, 

1989). Regime switching models have been widely 

applied in various fields, including finance and 

economics, to capture nonlinear relationships and 

structural breaks (Semmler and Toure, 2024). In the 

context of crude oil markets regime switching models 

have been used to capture changes in volatility and price 
dynamics (Mehrdoust et al., 2024). Recent studies have 

employed regime switching models to examine the 

impact of geographical events and economic policy 

uncertainty on crude oil prices (Yu et al., 2023). 

Long memory refers to the persistence of shocks in the 

time series data over long periods. In the context of crude 

oil markets, long memory implies that shocks to oil prices 

can have lasting effects on future prices (Tiwari and 

Umar, 2021). Researchers have employed various models 

to capture long memory in crude oil prices, including 

fractional integration and long-memory GARCH models 
(Baillie et al., 1996). 

Hybrid time series models combine different modelling 

approaches to capture complex patterns in data. These 

models have been increasingly used in various fields, 

including finance and capture nonlinear relationships. In 

the context of crude oil markets, hybrid models have been 

used to combine the strength of different modelling 

approaches, such ARIMA and GARCH models (Wang et 

al., 2018). Recent studies have employed hybrid models 

to examine the impact of various factors on crude oil 

prices, including economic policy uncertainty and 

geographical events (Balcilar et al., 2020). Hybrid models 
offer several advantages over standalone models, 

including improved forecasting accuracy, better capture 

of nonlinear relationships, and enhanced risk 

management capabilities (kumar et al., 2025). By 

combining different modelling approaches, hybrid 

models can capture complex patterns in data and provide 

more accurate forecasts (Burhan and Mohammed, 2024). 

Many studies were carried out to model and analyse the 

impact of volatility on crude oil prices using the extension 

of HMM model. For example Deng et al. (2019) proposed 

an extension of HMM to Dynamic Time Wrapping and 
Hidden Markov Model (DTW-HMM) for forecasting and 

trading in crude oil market. The study applied DTW 

algorithm to match similar price sequences which have 

the same market state in historical time series, and then to 

calculate expected returns, while HMM approach was 

applied to classify time series into different states based 

on their development characteristic. The study used daily 

crude oil spot price from January 2, 1986, to December 

30, 2017, as well as the daily price data of Brent crude oil 

spot price from May 20, 1987, to December 30, 2017. 
Experimental results showed that the proposed method 

yielded the best forecasting and trading performances in 

average. In the WTI market, the proposed method 

produced a hit ratio of about 62.74% and a yield of 34.3% 

profit per year, and a Sharpe ratio value of 2.274. 

Furthermore, experimental results of the proposed 

method were significantly superior to other benchmark 

methods, demonstrating that the proposed method is not 

only good at direction prediction and profit making, but 

also return/risk ratio. Moreover, Sengupta et al. (2023) 

developed a hybrid Hidden Markov Model-Long Short 

Term Memory (HMM-LSTM). The LSTM was 
employed to capture the complex patterns and 

dependencies. The models were employed to predict 

fluctuations in traffic flow, specifically the change in flow 

between successive time steps, instead of directly 

predicting the absolute flow values at a detector location. 

The performance evaluation of the proposed models was 

conducted on a dataset obtained from the California 

Department of Transportation’s Performance 

Measurement System. Results indicated significant 

performance gained in using hybrid architecture 

compared to conventional methods such as Markov 
switching ARIMA and LSTM. Furthermore, Chenxing 

and Qiao (2025) introduced a novel Bayesian time series 

model that combined the nonparametric features of an 

Infinite Hidden Markov Model (IHMM) with the 

volatility persistence captured by the GARCH 

framework, to effectively model and forecast short-term 

interest rates.  The model was applied to US 3-month 

Treasury bill rates. The GARCH-IHMM revealed both 

structural and persistent changes in volatility, thereby 

enhancing the accuracy of density forecasts compared to 

existing benchmark models. Out-of-sample evaluations 

demonstrated the superior performance of their model in 
density forecasts and in capturing volatility dynamics due 

to it is adaptively to different macroeconomic 

environments. 

This study attempts to develop a hybrid time series model 

5-states-Fractional Integrated Generalized 

Autoregressive Conditional Heteroscedasticity-Hidden 

Markov Model (5s-FIGARCH-HMM) that is capable to 

capture long memory, heteroscedasticity, regime 

switching and volatility levels. The model addresses the 

limitation of Generalized Autoregressive Conditional 

Heteroscedasticity-Infinite Hidden Markov Model 
(GARCH-IHMM), where the model cannot capture long 

memory and has no fixed number of states. The aim of 

the study is to develop a 5-State-FIGARCH-HMM that 

accurately captures the complex dynamics of crude oil 

prices in Nigeria, including long memory, 
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heteroscedasticity, volatility, and regime switching. And 

the objectives are to: (i) develop a novel hybrid model that 

incorporates long memory, regime switching features, 

and volatility levels to capture the dynamics of crude oil 

prices in Nigeria (ii) apply the developed model to 
empirical data on crude oil prices in Nigeria to evaluate 

its performance and accuracy (iii) compare the 

performance of the develop model with existing models 

(iv) forecast the volatility of crude oil prices using the 

proposed model and evaluate its performance using 

metrics. 

 

MATERIALS AND METHODS 

 

Model Specification: Five-State FIGARCH-HMM 

This study employs a Five-State Fractional Integrated 

Generalized Autoregressive Conditional 
Heteroscedasticity-Hidden Markov Model (Five-State 

FIGARCH-HMM) to capture long memory, volatility 

clustering, and regime switching in crude oil price 

volatility. 

The joint probability distribution of the observed series 

and hidden state is defined as:  

𝑃(𝑍1, 𝑍2 , … , 𝑍𝑇    𝑋1, 𝑋2, … , 𝑋𝑇) =
𝑃(𝑋1). ∏[𝑃(𝑋𝑡|𝑋𝑡−1). 𝑃(𝑍𝑡|𝑋𝑡)]     (1) 

 

Where, 

𝑍𝑡 : is the residual of FIGARCH model at time t. 

𝑃(𝑋1): is the initial state distribution (𝜋) 

𝑃(𝑋𝑡|𝑋𝑡−1): is the transition probability (A) 

 𝑃(𝑍𝑡|𝑋𝑡) : is the emission probability (B) 

𝑋𝑡 : is the state at time t. 

𝑋𝑡 = {1, 2, 3, 4, 5}. 

 

5-State-FIGARCH-HMM Parameters Estimation 

 

The likelihood 

P(𝑍1,…, 𝑍𝑇 , 𝑋1,…,𝑋𝑇) = 𝑃(𝑋1). ∏ 𝑃(𝑋𝑡/𝑋𝑡−1)𝑇
𝑡=2  

(∏ 𝑃(𝑍𝑇/𝑋𝑇)𝑇
𝑡=1               (2)   

 

This is the chance that both the whole hidden-state 

sequence (𝑋1,…,𝑋𝑇) and the whole observation sequence 

(𝑍1,…, 𝑍𝑇) occur together. 

Where, 𝑃(𝑋1) is the probability that the chain begins in 

state 𝑋1, ∏ 𝑃(𝑋𝑡/𝑋𝑡−1)𝑇
𝑡=2  is the probability of moving 

from the previous state to the next one for each step from 

2 up to 𝑇 and (∏ 𝑃(𝑍𝑇/𝑋𝑇)𝑇
𝑡=1  is the probability of 

observing (𝑍𝑇) given the hidden state at that time for each 
time point. 

                                                                      

Transition Probabilities Matrix (A) 

Transition probability matrix represents the probability of 

moving from one state to another. This is a matrix of 

probabilities that govern the transitions between all the 

states. It is defined as: 

  𝐴 = {𝑎𝑖𝑗}                                                           (3)  

Where, 

                                                                                       

 𝑎𝑖𝑗 = 𝑃(𝑋𝑡 = 𝑗|𝑋𝑡−1 = 𝑖)                                     (4) 

Properties 

i. 𝑎𝑖𝑗 ≥ 0∀𝑖, 𝑗  

ii. ∑ 𝑎𝑖𝑗 = 1 ∀𝑖𝑖  

 

Emission Probability Matrix (B) 

Emission probability matrix represents the probability of 

observing a particular value given the current state. This 

is a matrix probability that govern the emission of 

observations given the state. it is defined below as: 

𝐵 = {𝑏𝑗𝑘}                                                    (5) 

 

Where, 

𝑏𝑗𝑘 = 𝑃(𝑂𝑡 = 𝑘|𝑋𝑡 = 𝑗)                                            (6) 

Properties  

i. 𝑏𝑖𝑗 ≥ 0∀𝑖, 𝑘  

ii. ∑ 𝑏𝑖𝑘 = 1 ∀𝑗𝑘  

 

FIGARCH Model 

The FIGARCH model introduced by Baillie et al (1996) 

is specified as: 

i. Fractional Integration. 

ii. Long memory effects. 

iii. Conditional variance. 
iv. Flexibility. 

v. Heteroscedasticity. 

The model is defined as: 

 𝜎𝑡
2 = 𝜔 + 𝛽(𝐿)𝜎𝑡−1

2 + [1 − 𝛽(𝐿) − ∅(𝐿)(1 − 𝐿)𝑑]𝜀𝑡
2  

(7) 

Where, 

𝜎𝑡
2 : is the conditional variance at time t. 

𝜔 : is the constant variance. 

𝛽(𝐿) : is the lag operator polynomial for GARCH term. 

∅(𝐿) : is the lag operator polynomial for ARCH terms. 

𝑑 : is fractional differencing parameter. 

𝜀𝑡
2 : is the squared residual. 

𝐿 : is the lag operator. 

𝜎𝑡−1
2  : is the past return of the conditional variance. 

The standardized residuals of FIGARCH model are 
defined as: 

 𝜀𝑡 = √
𝜎𝑡

2−𝜔−𝛽(𝐿)𝜎𝑡−1
2

1−𝛽(𝐿)−∅(𝐿)(1−𝐿)𝑑                                               (8) 

Let,    𝜀𝑡 = 𝑍𝑡                                                          (9) 

 

Hidden Markov Model 

Hidden Markov Model was developed by Baum (1960s). 

The model is used to model the behaviour of a system that 

is not directly observable. 

The model is defined as: 

  𝑃(𝑌1, 𝑌2 , … , 𝑌𝑇    𝑋1, 𝑋2, … , 𝑋𝑇) =
𝑃(𝑋1). ∏[𝑃(𝑋𝑡|𝑋𝑡−1). 𝑃(𝑌𝑡|𝑋𝑡)]                                 (10)  
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The equation (4) represents the joint probability 

distribution of the observations (Y) and the hidden states 

(X). 

Where, 

𝑃(𝑋1): is the initial state distribution (𝜋) 

𝑃(𝑋𝑡|𝑋𝑡−1): is the transition probability (A) 

𝑃(𝑌𝑡|𝑋𝑡) : is the emission probability (B) 

By substituting equation (3) into (4) we get equation (5) 

which the 5s-FIGARCH-HMM 

 

5-State-FIGARCH-HMM Parameters 

Initial State Distribution (𝜋) 

Initial state distribution represents the probability of 

starting in each state at time t = 1. This is a probability 
distribution over the set of possible states. It is defined as: 

 

 𝜋 = {𝜋𝑖}                                                  (11) 

 

 Where, 

𝜋𝑖 = 𝑃(𝑋1 = 𝑖)                                                  (12) 

Properties 

i. 𝜋𝑖 ≥ 0∀𝑖  
ii. ∑ 𝜋𝑖 = 1𝑖   

 

Transition Probabilities Matrix (A) 

Transition probability matrix represents the probability of 

moving from one state to another. This is a matrix of 

probabilities that govern the transitions between all the 

states. It is defined as: 

𝐴 = {𝑎𝑖𝑗}                                                          (13) 

Where, 

                                                                                       

 𝑎𝑖𝑗 = 𝑃(𝑋𝑡 = 𝑗|𝑋𝑡−1 = 𝑖)                                         (14) 

Properties 

iii. 𝑎𝑖𝑗 ≥ 0∀𝑖, 𝑗  

iv. ∑ 𝑎𝑖𝑗 = 1 ∀𝑖𝑖  

 

Emission Probability Matrix (B) 

Emission probability matrix represents the probability of 

observing a particular value given the current state. This 

is a matrix probability that govern the emission of 

observations given the state. It is defined below as: 

𝐵 = {𝑏𝑗𝑘}                                                       (15) 

Where, 

𝑏𝑗𝑘 = 𝑃(𝑂𝑡 = 𝑘|𝑋𝑡 = 𝑗)                                            (16) 

Properties  

iii. 𝑏𝑖𝑗 ≥ 0∀𝑖, 𝑘  

iv. ∑ 𝑏𝑖𝑘 = 1 ∀𝑗𝑘  

 

Method of Parameter Estimation of 5s-FIGARCH-

HMM 

This study employed Expectation-Maximization (EM) 

algorithm to estimate the parameters of Sthe developed 

model. The steps undertaken to estimate the parameters 

are as follows: 

i. Initialize parameters (𝜋, A, B). 

ii. E-Step: calculate expected counts of state 

transitions and observations. 

iii. M-Step: update parameters using expected 
counts. 

iv. Repeat E-step and M-step until converge. 

 

Diagnostic Tests 

Diagnostic test is the process of evaluating the goodness 

of model. The study used Quantile to Quantile plot to 

evaluate the goodness of the developed model. 

 

Quantile-Quantile Plot 

This study used Quantile-Quantile plot as the graphical 

procedure to diagnose the normality of the residuals of the 

developed model. 
The decision is based on the following hypotheses: 

H0: The residuals of the model are normally distributed. 

Ha: The residuals of the model are not normally 

distributed. 

Reject null hypothesis if the residuals not follow or 

approximately follow line of best fit otherwise accept. 

 

Evaluation Metric Tests 

The study used the following evaluation metric test to 

select the best model among the models and to assess the 

forecast power of the selected best model. 

i-  MAE= 
=

−
n

t

tt
n 1

22
ˆ

1
                (17)                                                                        

ii- MSE= ( )
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
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               (18)                                                                              

iii- RMSE= ( )
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1

22
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1

=

−
n

t

tt
n

           (19)                                                                                                                                                                                    

 

Long Memory Checking 

Long memory is a phenomena when a time series exhibits 

decay slowly rather than exponential decay. This study 

employed GPH test introduced by Gewek and Porter 

Hudak (1983) to estimate and check for the long memory. 

The test is defined as: 

                                                   

( )  j

j

j

w
wI  +























+=

2
sin4lnln 10           (20) 

Where, 
T

w
j

j

2
=  , nj ,...,2,1= , jw  refers to 

Fourier frequency Transformation   ( )Tn =      j

represents residual of the model, ( )jwI  is a simple 

periodogram which is defined as: 
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( ) 
=

−
=

T

i

tw

tj
j

T
wI

12

1



                                              (21) 

The test is based on the following decision criterion: 

d = 0: indicates no long memory (short memory). 

0 < d < 0.5: indicates anti-persistent behavior. 

d = 0.5: indicates random walk. 
0.5 < d < 1: indicates persistent behavior (long memory) 

d = 1: indicates a non-stationary process. 

 

Heteroscedasticity Checking 

Heteroscedasticity refers to the presence of non-constant 

variance in time series data. The study employed scatter 

plot to check for the presence of heteroscedasticity in the 

residuals of FIGARCH model. 

 

Scatter Plot 

This research work utilised scatter plot to check for the 

presence of heteroscedasticity in the residuals of 
FIGARCH model (1, 4), the residuals were plotted 

against the time. The residuals are on the vertical line and 

the times are on the horizontal line. 

 

Stationarity Checking 

Stationarity is the phenomenon when the mean and 

variance of time series data are constant. This study 

employed Augmented Dickey-Fuller (ADF) and Kwiat-

Kowski Smidth-Shin (KPSS) test to check for stationarity 

in the currency in circulation time series data. 

 

Augmented Dickey-Fuller Test 

This study checked for unit roots in the time series with 

the test which was developed by Said and Dickey-Fuller 

(1984). The test is defined below as: 

  𝜏 =
(𝛽1−𝑑)

√
𝛽2

2+𝜎2

(1−𝛽2)
2

                                                                         (22) 

Where, 𝛽1 is the trend term, d is the differencing 

parameter, 𝛽2 is the coefficient on the lagged first 

difference term, and 𝜎2  is the variance of the time series.  

The test involves the following hypotheses: 
H0: the time series has unit roots. 

  

Ha: the time series non-unit roots. 

 

Decision Criteria 

Null hypothesis is rejected if P-value is less than the alpha 

value. 

 

KPSS Test 

This research work checked for the presence of unit roots 

with the test which was proposed by Kwiat-Kowski 

Smidth-Shin (1992). The test serves as the second 

approach to check for the unit roots of the time series data. 

The test is defined below as: 
                                                                                   

𝐾𝑃𝑆𝑆𝑇 =
∑ (𝑦𝑡− 𝜇̂−𝛿̂𝑡)

2𝑇
𝑡=1

𝜎̂2 ∑ (1− 
𝑡

𝑇
)

2
𝑇
𝑡=1

                 (23) 

Where, 𝑦𝑡 is the time series, 𝜇̂ is the mean of the time 

series, 𝛿̂𝑡 is the estimated trend coefficient, 𝜎̂2 is 

estimated variance of the time series, and 𝑇 is the sample 

size.  

 

Model Order Selection 

This study used Autocorrelation and Partial 

Autocorrelation function plot to identify the order of the 

model developed model. 

 

Autocorrelation Plot 

The study employed autocorrelation plot to identify the 

order of Moving Average (MA) model to use in the 

developed model. The autocorrelation function is given 

below as: 

                                  

0


 k

k =                                                                  (24) 

Where, k  is the autocorrelation at lag k ,  k  is the 

chosen lag, k is the covariance at lag k  and 0  is the 

variance. 
 

Partial Autocorrelation Plot 

The study used Partial Autocorrelation Function (PACF) 

plot to identify the order of Autoregressive (AR) model 

to use in the proposed model. The function is defined as: 

𝜑(𝑘) =
[𝜌(𝑘)−∑[𝜑(𝑗).𝜌(𝑘−𝑗)]]

[1−∑[𝜑(𝑗).𝜌(𝑗)]]
                        (25) 

Where, 𝜑(𝑘) is the partial autocorrelation at coefficient 

at lag k, 𝜌(𝑘) is the autocorrelation coefficient at lag k, 

𝜑(𝑗) is the partial autocorrelation at lag j, k is the number 

of lag, and j is the intermediate lag (j = 1 to k – 1). 

 

Data for Application 

The study used monthly Nigerian crude oil prices data 

covering 1990-2025, obtained from the central bank of 

Nigeria (CBN). 

 
 

RESULTS AND DISCUSSION 

Time Series Visualization 
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Figure 1 Time Series Plot of Crude oil 

From the results obtained in Figure 1 it is observed that 

the time series behaviour exhibits an upward trend with 

evidence of structural breaks, indicating potential non-

stationarity. 

Stationarity Checking 

Table 1 ADF Test Results 

Dickey-Fuller = -3.5091 Lag order = 7 P-value = 0.04171 

From the results obtained in Table 1 it is observed that the 

probability value of the ADF test is 0.04171, which is less 

the level of significance 0.05. Thus, we reject to the null 

hypothesis and conclude that the time series is stationary. 

Table 2 KPSS Test Results 

KPSS Level = 4.0833 Truncation lag parameter = 5 P < 0.01 

From the results obtained in Table 2 it is observed that the 

probability value of KPSS test is less than 0.01, which is 

less than 0.05, thus, we fail to reject the null hypothesis 

and conclude that the time series is not stationary.  

The stationarity checking suggests two distinct results, 

the ADF test suggests stationarity while the KPSS test 

suggests non-stationarity. Therefore, we are to conclude 

that the time series is not stationary. 

Long Memory Checking 

Table 3 GPH Test of DPI 

Estimated (d) sd.as sd.reg 

0.9060606 0.1812318 0.2040656 

From the results obtained in Table 3 it is observed that the 

estimated long memory parameter d = 0.9060606, which 

suggest significant long memory in the time series data. 

This means the series has persistent, slowly fading 

shocks. 
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Time Series Visualization of the Differenced Data 

 

                              

 
 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

Figure 2 Time Series Plot of the Difference Time Series 

From the results obtained in Figure 2 it is observed that 

the differenced series fluctuates around a constant mean 

with no visible trend, suggesting, stationarity after 

fractional differencing. 

Stationarity Checking of the Differenced Time Series 

Table 4 ADF Test Results of FdOIL Time Series 

Dickey-Fuller = -6.7409 Lag order = 7 P-value = 0.01 

From the results obtained in Table 4 it is observed that the 
probability value of ADF test is 0.01, which is less than 

0.05, thus, the we are to reject the null hypothesis and 

conclude that the time series is stationary. However, this 
test is not enough to conclude that the time series is 

stationary.  

Table 5 KPSS Test Results of FdOIL Time Series 

KPSS Level = 0.11437 Truncation lag parameter = 5 P-value > 0.1 

From the results obtained in Table 5 it is observed that the 

probability value of KPSS test is greater than 0.1, which 

is greater than 0.05, thus, we are to reject the null 

hypothesis and conclude that the time series is stationary.  

 

Model Order Estimation

 

  

  

                                                             
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 4.3 Autocorrelation Function Plot
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From the above results obtained in Figure 3 it is observed 

that the autocorrelation plot exhibits significant spike 

from lag 1 up to lag 5. Thus, MA (1), MA (2), MA (3), 

MA (4), and MA (5) are significant.

 

 
 

 

 

 

 

 

 

 

 

 

 

                                                   
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

4 Partial Autocorrelation Function Plot 

From the results obtained in Figure 4.4 it is observed that 

the autocorrelation plot exhibits significant spike at lag 1. 
Thus, AR (1) is significant. 

FIGARCH Model Estimation 

Table 6 Information Criterion of FIGARCH Models 

Model MSE RMSE 

FIGARCH (1, 1) 49.21526 7.015359 

FIGARCH (1, 2) 49.16552 7.011813 

FIGARCH (1, 4) 49.12025 7.008584 

FIGARCH (1, 5) 49.89544 7.063671 

 

From the results obtained in Table 6 it is observed that the 

FIGARCH (1, 4) model outperforms the other models 

with least MSE and RMSE. 

Heteroscedasticity Checking
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Figure 5 Volatility Plot 

From the results obtained in Figure 5 it is observed that 
the residuals plot exhibits a fan shape pattern, confirming 

the presence of conditional heteroscedasticity, thereby 
justifying the use of a FIGARCH framework.  

Assumptions of FIGARCH-5States-HMM 

Table 7 Results Tests of the Assumptions 

Presence long memory Achieved  GPH Test d = 0.9 

Stationarity   Achieved  ADF P.value < 0.05 

KPSS P.value > 0.05 

Markov property Achieved  ACF shows decay slowly 

Emission  Achieved  LRT P.value = 8.881784e-16 

Transition probabilities Achieved Chi-square P.value = 2.2e-16 

Initial state distribution Achieved  Chi-square P.value = 0.406 

Finite number of states Achieved  Five (5) 

Time invariant Achieved  0.4762 

From the results obtained in Table 7 it is observed that all the assumptions of FIGARCH-5States-HMM were achieved. 
Thus, the model is indeed a predictive model. 

Table 8 Likelihood Ratio Test of Emission 

LR Df  Probability value 

1.318261e+02 2.700000e+01 8.881784e-16 

From the results obtained in Table 8 it is observed that the 

probability value of LRT is 8.881784e-16, which less 

than 0.05. This implies that s single emission distribution 
cannot adequately describe the volatility; instead, the five 

states exhibit statistically distinct emission parameters, 

confirming the presence of clearly separate volatility 

levels (extremely low to extremely high). 

Table 9 Chi-square Test for Transition Probabilities 

X-squared  Df Probability value 

1106.9 16.000 p-value < 2.2e-16 

From the results obtained in Table 9 it is observed that the 

probability of the test is (P < 0.05), indicating a strong 

dependence between current and past states and 

supporting the Markov transition capture by the 

FIGARCH-5-State HMM. 
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OLS-based CUSUM test
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Table 10 Chi-square Test for Initial Probability Distribution 

X-squared  Df Probability value 

4.000 4.000 0.406 

From the results obtained in Table 10 it is observed that 

the probability value is 0.406, this indicates that there is 

no evidence against the null hypothesis, meaning the 

initial probabilities fit the data well and appear stationary 

or consistent with historical patterns. 

Table 11 OLS-based CUSUM test for Time Invariant 

S0 p-value 

0.75695 0.6155 

From the results obtained in Table 11 it is observed that 

the test for time invariant yields p = 0.6155, failing to 

reject the null hypothesis of parameter stability. This 

confirms that the FIGARCH-5States-HMM parameters 

remain consistent over the sample period, supporting the 

model’s applicability for analysing persistent volatility 

regimes in oil markets.

 

 

 

 

 

                             

                                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Parameters Stability Plot 

From the above results obtained in Figure 6 it is observed 

that the plot’s overall trend suggests parameters were 

stable early on but destabilized later, highlighting 

evolving regime dynamics. This is a standard output for 

econometric stability checks, emphasizing the need for 

break-aware modelling in volatile series like oil prices. 

Hidden Markov Model 

Table 12 Initial State distribution 

Pr(extremely low) Pr(low) Pr(moderate) Pr(high) P(extremely high) 

0 1 0 0 0 

From the results obtained in Table 12 it is observed that 

since the value of probability 2 is 1, this indicates that the 

market is definitely at low volatility state at time zero. 

This means we start by believing the crude oil market is 

calm (low volatility) before any data are observed. The 

other states have zero chance initially. Hence, the market 

is in stable, low volatility phase before we observe any 

price changes. 
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Table 13 Transition Matrix 

States  To S1 To S2 To S3 To S4 To S5 

From S1 0.925 0.000 0.038 0.000 0.037 

From S2 0.000 0.977 0.000 0.023 0.000 

From S3 0.074 0.000 0.895 0.031 0.000 

From S4 0.000 0.012 0.037 0.951 0.000 

From S5 0.036 0.000 0.000 0.000 0.964 

From the results obtained in Table 13 it is observed that 

from state 1 (extremely low volatility) mostly stays in 

state 1 (92.5%), but sometimes jumps to moderate and 

extremely high volatility (state 3 and 5, 3.8% and 3.7% 

respectively). The market tends to stay calm but can 
suddenly spike to moderate and extremely high volatility. 

Moreover, from state 2 (low volatility) it is observed that 

the volatility is very stable, staying 97.7% of the time, but 

small chance (2.3%) to jump suddenly to high volatility 

(state 4), so low volatility is persistent but can jump to 

high. In addition, from state 3 (moderate volatility) 

mostly stays moderate (89.5%), sometimes goes back to 

low volatility (7.4%), but can also jump to high volatility 

(3.1%), this stage is key transition point. Furthermore, 

from stage 4 (high volatility) highly persistent (95.1%), 

with tiny chances (1.2%, 3.7%) to slide to low or 

moderate volatility, so once volatility is high, it mostly 
maintains that level. In addition, from stage 5 (extremely 

high volatility) about 96.4% chance of persisting, but with 

a small chance (3.6%) to drop to extremely low volatility. 

In summary, the market mostly stays in the same 

volatility state dat-to-day, but moderate and extremely 

high volatility states are gateways where it can jump to 

other states faster. 

Table 14 Emission Parameters 

States  Emission means Level  Emission std.v Volatility level  

S1 107.294 Extremely High-peak boom 11.269 Extremely high-

moderate-high 

S2 48.366   Low-moderate  5.337 Low-moderate 

S3 82.004   High-elevated  3.647 High-lowest 

S4 66.786   Moderate-balanced 4.491 Moderate-low 

 S5 157.663 Extremely low –lowest 23.476 Extremely low-

highest 

From the results obtained in Table 14 it is observed that 

from the emission means the spectrum captures a full 

cycle from crisis lows to expansion highs, with non-

sequential state numbering (e.g., state 5 as lowest) 

highlighting model flexibility in regime assignment. It 

implies oil markets exhibit persistence in moderate-to-
high states, aiding forecasts of stable pricing. Moreover, 

from the emission standard deviations it is observed that 

the parameters reveal asymmetric structure: extreme 

regimes (State 5 and 1) show elevated volatility (sigma > 

10), signalling higher tail risks during booms/busts, while 

central states (3, 4, 2) have tighter spreads (sigma < 6) 

promoting predictability in normal conditions. 
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Table 15 Evaluation Metric Measures of HMM 

MAE MSE RMSE 

93.18904 10237.16 101.1788 

The Table 15 consists of the evaluation metric measures 

that are used to assess the forecast power of Hidden 

Markov Model.  

FIGARCH-5-State Hidden Markov Model 

Table 16 Information Criterion of FIGARCH Models 

Model MAE MSE RMSE 

FIGARCH (1, 1)-5-State HMM 4.337432 49.94298 7.067035 

FIGARCH (1, 2)-5-State HMM 4.233755 48.68812 6.977687 

FIGARCH (1, 4)-5-State HMM 4.331015 50.14674 7.081436 

FIGARCH (1, 5)-5-State HMM 4.464736 51.01302 7.14234 

From the results obtained in Table 16 it observed that FIGARCH (1, 2)-5-State HMM models outperforms the other 
models with least MAE, MSE and RMSE. 

Table 17 Models Comparison 

Model MAE MSE RMSE 

FIGARCH (1, 4) 4.286746 49.12025 7.008584 

HMM 93.18904 10237.16 101.1788 

5-States-FIGARCH (1, 2)-HMM 4.233756 48.68813 6.977688 

From the results obtained in Table 17 it observed that the 5-States-FIGARCH (1, 2)-5-HMM outperforms the other 

models with least MAE, MSE and RMSE. 

5-States-FIGARCH-HMM 

Table 18 Initial State distribution (𝝅) 

Pr(extremely low) Pr(low) Pr(moderate) Pr(high) P(extremely high) 

1 0 0 0 0 
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From the results obtained in Table 18 it is observed that 

since the value of probability value of extremely low 

volatility is 1, this indicates that the market is definitely 

at extremely low volatility state at time zero. This means 

we start by believing the oil market is (extremely low 

volatility) before a data is observed. The other states have 

zero chance initially. Hence, the market is in stable, 

moderate volatility phase before we observe any price 

changes. 

Table 19 Transition Matrix (A) 

States  To S1 To S2 To S3 To S4 To S5 

From S1 0.743 0.257 0.000 0.000 0.000 

From S2 0.000 0.641 0.112 0.076 0.171 

From S3 0.000 0.018 0.926 0.008 0.055 

From S4 0.054 0.146 0.000 0.799 0.000 

From S5 0.000 0.050 0.015 0.029 0.905 

From the results obtained in Table 19 it is observed that 

from state 1 (extremely low volatility) mostly stays in 

state 1 (74.3%), but sometimes jumps to low volatility 
(state 2) with 25.7%. Moreover, from state 2 (low 

volatility) it is observed that the volatility is very stable, 

staying 64.1% of the time, but small chance (11.2%, 

7.6%, 17.1% ) to jump suddenly to moderate, high, and 

extremely volatility (state 3, 4, and 5) respectively. In 

addition, from state 3 (moderate volatility) mostly stays 

moderate (92.6%), sometimes goes back to low volatility 

(1.8%), but can also jump to high volatility (8%) and 

extremely volatility (5.5%). Furthermore, from stage 4 
(high volatility) highly persistent (79.9%), with tiny 

chances (5.4%, 14.6%) to slide to extremely low or low 

volatility. In addition, from stage 5 (extremely high 

volatility) about 90.5% chance of persisting, but with a 

small chance (5%, 1.5%, 2.9%) to drop to low, moderate 

or high volatility. 

Table 20 Emission Parameters (B) 

States  Emission means Level  Emission  std.v Level 

S1 -11.503 Extremely Low 24.093 Extremely low-highest 

S2 -5.324 Low  3.984 Low-moderate 

S3 -0.495 Moderate  1.750 Moderate-lowest 

S4 9.454 High  4.759 Extremely high-higher 

S5 1.300 Extremely High 3.555 High-moderate 

 From the results obtained in Table 20 it is observed that 

from the emission means this gradient (states 1 < 2 < 3 < 

5 < 4) models a full volatility cycle, enabling regime-

switching forecasts that highlight persistence in extremes 

for risk management in oils markets. Moreover, from the 

emission standard deviations low/moderate states show 

tighter spreads (less risk), while extremes (states1, and 4) 

exhibit amplified volatility, signalling higher tail risks 

during regime shifts. This refines forecasts by 

highlighting uncertainty in boom/bust phases. 
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Model Adequacy Checking 

 

 

 

 
 

                                  

 

 

 

 

                              

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 7 Residuals plots of FIGARCH (1, 2)-5-State HMM 

From the above results obtained in Figure 7 it is observed 

that the residuals of the model have no much outliers and 

are approximately straight line. Thus, the errors are 

approximately normally distributed.                           

Table 21 Forecast Results 

Month Volatility forecast Expected level 

November 0.03050814 Likely to fall in moderate volatility  

December  0.05410389 Likely to fall in moderate volatility 

January  0.14353317 Likely to fall in moderate volatility 

February  0.03214226 Likely to fall in moderate volatility 

March  0.02828540 Likely to fall in moderate volatility  

April  0.02474187 Likely to fall in moderate volatility 

 

From the results obtained in Table 21 it is observed that 

the 5-States-FIGARCH (1, 2)-HMM forecasts moderate 

oils volatility (expected levels 2.50-2.58), with extremely 

high regime probabilities dropping from 3.05% in 
November to 0.02% in April. This indicates quick 

stabilization and low tail risks, favouring Low/Moderate 

states for predictable pricing and reduced hedging needs. 

The trend reflects regime persistence in calm conditions, 

supporting economic stability by early 2026. 

From the time series plot it is observed that the time series 

exhibits trend with presence of structural breaks, this 

made the time series not stationary. Moreover, ADF and 

KPSS test confirmed that the time series is not stationary. 

The study revealed presence of long memory in the time 

series which was confirmed by GPH test. This long 

memory is persistent, therefore, is another behaviour that 
made the time series not stationary in addition to the trend 

behaviour observed. The study revealed excess of 

heteroscedasticity in the residuals of FIGARCH (1, 4) 

model which serves as the best model. The study 

modelled the varying level of the excess volatility 

observed in the residuals of the FIGARCH (1, 4) model 
through FIGARCH-5-States Hidden Markov Model, 

where the levels of the violating varying levels are 

categorized into 1 = extremely low, 2 = low, 3 = 

moderate, 4 = high, and 5 = extremely high. FIGARCH 

(1, 1)-5-Staes HMM was found as the best model with 

least MAE, MSE, and RMSE when compared with other 

models. The model revealed that the market is definitely 

at extremely low volatility state at time zero. Moreover, 

the model revealed that that from state 1 (extremely low 

volatility) mostly stays in state 1 (74.3%), but sometimes 

jumps to low volatility (state 2) with 25.7%. Moreover, 

from state 2 (low volatility) it is observed that the 
volatility is very stable, staying 64.1% of the time, but 
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small chance (11.2%, 7.6%, 17.1% ) to jump suddenly to 

moderate, high, and extremely volatility (state 3, 4, and 

5) respectively. In addition, from state 3 (moderate 

volatility) mostly stays moderate (92.6%), sometimes 

goes back to low volatility (1.8%), but can also jump to 
high volatility (8%) and extremely volatility (5.5%). 

Furthermore, from stage 4 (high volatility) highly 

persistent (79.9%), with tiny chances (5.4%, 14.6%) to 

slide to extremely low or low volatility. In addition, from 

stage 5 (extremely high volatility) about 90.5% chance of 

persisting, but with a small chance (5%, 1.5%, 2.9%) to 

drop to low, moderate or high volatility. In addition, the 

model found that from the emission means the gradient 

(states 1 < 2 < 3 < 5 < 4) models a full volatility cycle, 

enabling regime-switching forecasts that highlight 

persistence in extremes for risk management in oils 

markets. Moreover, from the emission standard 
deviations low/moderate states show tighter spreads (less 

risk), while extremes (states1, and 4) exhibit amplified 

volatility, signaling higher tail risks during regime shifts. 

This refines forecasts by highlighting uncertainty in 

boom/bust phases. Furthermore, the study disclosed that 

the FIGARCH (1, 2)-5States HMM forecasts moderate 

oils volatility (expected levels 2.50-2.58), with extremely 

high regime probabilities dropping from 3.05% in 

November to 0.02% in April. This indicates quick 

stabilization and low tail risks, favouring Low/Moderate 

states for predictable pricing and reduced hedging needs. 
The trend reflects regime persistence in calm conditions, 

supporting economic stability by early 2026. In terms of 

model goodness of fit the FIGARCH (1, 2)-5States-

HMM aligned with Chenxing and Qiao (2025), where 

their model outperforms other competing model. 

The forecasts results obtained using the 5-Steates 

FIGARCH (1, 2)-HMM has the following implication: 

The projected drop in extreme regimes suggests a shift 

toward predictable pricing by early 2026, reducing 

exposure to volatility spikes from geopolitical or supply 

disruptions. For crude oil, this implies lower hedging 

costs and more reliable supply chains, benefitting global 

trade amid current U.S energy policies. However, the 

initial 3.05% extremely high probability in November 

highlights residual risks from lingering factors like OPEC 
decisions, potentially amplifying short-term price swings. 

Overall, the forecast supports economic stability, with 

moderate inflation pressures on energy-dependent sectors 

like transportation and manufacturing.  

CONCLUSION 

The time series data exhibits a persistence trend over the 

study period. In addition, the time series shows 

fluctuation in both mean and variance, rendering it a non-

stationary in levels. Furthermore, the study reveals the 

presence of long memory in the time series. Moreover, 

significant heteroscedasticity is observed in the residuals 

of FIGARCH (1, 2). The Five-States-FIGARCH (1, 2)-

HMM was found to be the best performing model, 

yielding the  lowest MAE, MSE, and RMSE when 
compared with the standalone HMM and FIGARCH 

models. The residuals of the model are approximately 

normally distributed indicating the model reduced 

volatility persistence. Finally the volatility forecast was 

made, which indicates that that the 5-States-FIGARCH 

(1, 2)-HMM forecasts moderate oils volatility (expected 

levels 2.50-2.58), with extremely high regime 

probabilities dropping from 3.05% in November to 0.02% 

in April. This indicates quick stabilization and low tail 

risks, favoring Low/Moderate states for predictable 

pricing and reduced hedging needs. The trend reflects 

regime persistence in calm conditions, supporting 
economic stability by early 2026. 
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