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ABSTRACT

Nigerian crude oil prices suffer from long memory, volatility, and varying
volatility levels including extremely low, low, moderate, high, and extremely
high. These characteristics directly increase market risk for the Nigerian
economy. Studies model these levels into two levels low and high. However, the
volatility levels can fall into other levels that include; extremely low, moderate,
and extremely high. Therefore, this study aims to model these features using a
newly developed hybrid time series model 5-States-FIGARCH-HMM. The data
for this study was accessed documented record of central bank of Nigeria. The
data were recorded monthly from 1990-2025 daily. The study employed ADF
and KPSS tests to check for stationarity and non-unit roots was found. The study

Keywords: employed GPH test to test for presence of long memory in the time series and
HMM, the long memory was found. Stationarity was achieved through fractional
FIGARCH, differencing. The study employed ACF and PACF plots to estimate the orders
States, of AR and MA models respectively. The study found that 5-States-FIGARCH
Transition (1, 2)-HMM was the best model with least MAE, MSE, and RMSE when
Probability, compared with FIGARCH and HMM models. The forecast results indicates
Initial States rapid volatility stabilization and reduced tail risks, with a higher probability of
Distribution, low to moderate volatility regimes, implying more predictable pricing and
Emission Parameters, reduced hedging requirements. Overall, the findings reveal strong regime
Volatility, persistence under calm market conditions, which may support macroeconomic

Regime Switching. stability toward early 2026.

INTRODUCTION Moderate  volatility represents moderate  price

Crude oil volatility refers to the fluctuations in crude oil
prices over time. Understanding crude oil prices is crucial
for investors, policymakers, and industry stakeholders
due to its significant impact on the global economy
(Kilian, 2022). Various factors contribute to crude oil
volatility, including geographical events, supply and
demand imbalances, and macroeconomic conditions
(Ellwanger et al., 2023). Researchers have employed
various models to capture crude oil volatility, such as
GARCH-type models and stochastic volatility models
(Hartwig and Mahringer, 2023). Crude oil volatility can
be categorized into different levels, including; extremely
low, low, moderate, high, and extremely high.

Low volatility characterized by small price fluctuations,
low volatility is often observed during periods of
economic stability and stable oil demand (Zhang et al.,
2022).

fluctuations, often driven by changes in supply and
demand fundamentals (Cross, and Nguyen, 2023). High
volatility characterized by large price fluctuations, high
volatility is often observed during periods of economic
uncertainty, geopolitical tensions, and supply disruptions
(Ellwanger et al., 2023). Extremely low volatility
represents small prices fluctuations, often observed
during periods of stable economic condition and low
uncertainty (Barroso and Detzel, 2021). Extremely high
volatility characterized by large price fluctuations, often
driven by major shocks, such as wars, natural disasters, or
global economic crises (Caldara et al., 2020).
Understanding these different levels of volatility is
essential for investors, policymakers, and industry
stakeholders to make informed decisions and manage
risk.

97

How to cite this article: Aliyu M., Ibrahim L. K., Abdulhameed A. O., Huzaifa A., Hussaini A. & Usman A. (2026).

Volatility Modelling of Crude oil Prices Using a Five-States Figarch-Hidden Markov Model Frame Work. Journal of
Basics and Applied Sciences Research, 4(1), 97-112. https://dx.doi.org/10.4314/jobasr.v4i1.11



mailto:aliyumansur2016@mail.com
https://dx.doi.org/10.4314/jobasr.v4i1.11
https://dx.doi.org/10.4314/jobasr.v4i1.11

Volatility Modelling of Crude oil Prices Using ...

Recent studies have focused on the impact of COVID-19
on crude oil volatility, highlighting the increased
uncertainty and price fluctuations during the pandemic
(Sharif et al. 2020). Additionally, researchers have
explored the relationship between crude oil volatility and
other financial markets, such as stock markets and
exchange rates (Yin et al., 2024).

Regime switching models are used to capture changes in
the underlying data-generating process over time. These
models assume that the data follows different regimes or
states, each with its own set of parameters (Hamilton,
1989). Regime switching models have been widely
applied in various fields, including finance and
economics, to capture nonlinear relationships and
structural breaks (Semmler and Toure, 2024). In the
context of crude oil markets regime switching models
have been used to capture changes in volatility and price
dynamics (Mehrdoust et al., 2024). Recent studies have
employed regime switching models to examine the
impact of geographical events and economic policy
uncertainty on crude oil prices (Yu et al., 2023).

Long memory refers to the persistence of shocks in the
time series data over long periods. In the context of crude
oil markets, long memory implies that shocks to oil prices
can have lasting effects on future prices (Tiwari and
Umar, 2021). Researchers have employed various models
to capture long memory in crude oil prices, including
fractional integration and long-memory GARCH models
(Baillie et al., 1996).

Hybrid time series models combine different modelling
approaches to capture complex patterns in data. These
models have been increasingly used in various fields,
including finance and capture nonlinear relationships. In
the context of crude oil markets, hybrid models have been
used to combine the strength of different modelling
approaches, such ARIMA and GARCH models (Wang et
al., 2018). Recent studies have employed hybrid models
to examine the impact of various factors on crude oil
prices, including economic policy uncertainty and
geographical events (Balcilar et al., 2020). Hybrid models
offer several advantages over standalone models,
including improved forecasting accuracy, better capture
of nonlinear relationships, and enhanced risk
management capabilities (kumar et al., 2025). By
combining different modelling approaches, hybrid
models can capture complex patterns in data and provide
more accurate forecasts (Burhan and Mohammed, 2024).
Many studies were carried out to model and analyse the
impact of volatility on crude oil prices using the extension
of HMM model. For example Deng et al. (2019) proposed
an extension of HMM to Dynamic Time Wrapping and
Hidden Markov Model (DTW-HMM) for forecasting and
trading in crude oil market. The study applied DTW
algorithm to match similar price sequences which have
the same market state in historical time series, and then to
calculate expected returns, while HMM approach was
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applied to classify time series into different states based
on their development characteristic. The study used daily
crude oil spot price from January 2, 1986, to December
30, 2017, as well as the daily price data of Brent crude oil
spot price from May 20, 1987, to December 30, 2017.
Experimental results showed that the proposed method
yielded the best forecasting and trading performances in
average. In the WTI market, the proposed method
produced a hit ratio of about 62.74% and a yield of 34.3%
profit per year, and a Sharpe ratio value of 2.274.
Furthermore, experimental results of the proposed
method were significantly superior to other benchmark
methods, demonstrating that the proposed method is not
only good at direction prediction and profit making, but
also return/risk ratio. Moreover, Sengupta et al. (2023)
developed a hybrid Hidden Markov Model-Long Short
Term Memory (HMM-LSTM). The LSTM was
employed to capture the complex patterns and
dependencies. The models were employed to predict
fluctuations in traffic flow, specifically the change in flow
between successive time steps, instead of directly
predicting the absolute flow values at a detector location.
The performance evaluation of the proposed models was
conducted on a dataset obtained from the California
Department of  Transportation’s Performance
Measurement System. Results indicated significant
performance gained in using hybrid architecture
compared to conventional methods such as Markov
switching ARIMA and LSTM. Furthermore, Chenxing
and Qiao (2025) introduced a novel Bayesian time series
model that combined the nonparametric features of an
Infinite Hidden Markov Model (IHMM) with the
volatility persistence captured by the GARCH
framework, to effectively model and forecast short-term
interest rates. The model was applied to US 3-month
Treasury bill rates. The GARCH-IHMM revealed both
structural and persistent changes in volatility, thereby
enhancing the accuracy of density forecasts compared to
existing benchmark models. Out-of-sample evaluations
demonstrated the superior performance of their model in
density forecasts and in capturing volatility dynamics due
to it is adaptively to different macroeconomic
environments.

This study attempts to develop a hybrid time series model
5-states-Fractional Integrated Generalized
Autoregressive Conditional Heteroscedasticity-Hidden
Markov Model (5s-FIGARCH-HMM) that is capable to
capture long memory, heteroscedasticity, regime
switching and volatility levels. The model addresses the
limitation of Generalized Autoregressive Conditional
Heteroscedasticity-Infinite  Hidden Markov Model
(GARCH-IHMM), where the model cannot capture long
memory and has no fixed number of states. The aim of
the study is to develop a 5-State-FIGARCH-HMM that
accurately captures the complex dynamics of crude oil
prices in  Nigeria, including long memory,
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heteroscedasticity, volatility, and regime switching. And
the objectives are to: (i) develop a novel hybrid model that
incorporates long memory, regime switching features,
and volatility levels to capture the dynamics of crude oil
prices in Nigeria (ii) apply the developed model to
empirical data on crude oil prices in Nigeria to evaluate
its performance and accuracy (iii) compare the
performance of the develop model with existing models
(iv) forecast the volatility of crude oil prices using the
proposed model and evaluate its performance using
metrics.

MATERIALS AND METHODS

Model Specification: Five-State FIGARCH-HMM
This study employs a Five-State Fractional Integrated
Generalized Autoregressive Conditional
Heteroscedasticity-Hidden Markov Model (Five-State
FIGARCH-HMM) to capture long memory, volatility
clustering, and regime switching in crude oil price
volatility.

The joint probability distribution of the observed series
and hidden state is defined as:

P(Zy,Zy, s 2 Xy, Xy, o Xp) =

P(Xy). TIP(X1X,—1). P(Z,|X,)] )
Where,

Z, :isthe residual of FIGARCH model at time t.

P(X,): is the initial state distribution ()

P(X.|X,_,): is the transition probability (A)

P(Z.|X,) : is the emission probability (B)

X, :is the state at time t.

X, =1{1,2,3,4,5}.

5-State-FIGARCH-HMM Parameters Estimation
The likelihood

P(Zl,...,ZT, Xl,...,XT) = P(Xl).l—lz-w:z P(Xt/Xt—l)

(Tt=1 P(Z7/X7) )

This is the chance that both the whole hidden-state
sequence (X; _Xr) and the whole observation sequence
(Z1,...,Zy) occur together.

Where, P(X;) is the probability that the chain begins in
state X, [17=, P(X,/X,_,) is the probability of moving
from the previous state to the next one for each step from
2 up to T and (II'=, P(Z;/X;) is the probability of
observing (Z;) given the hidden state at that time for each
time point.

Transition Probabilities Matrix (A)

Transition probability matrix represents the probability of
moving from one state to another. This is a matrix of
probabilities that govern the transitions between all the
states. It is defined as:
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Where,
a;j = P(X; =j|Xe-1 =10 (4)
Properties
i. aij = OVl,]

Emission Probability Matrix (B)

Emission probability matrix represents the probability of
observing a particular value given the current state. This
is a matrix probability that govern the emission of
observations given the state. it is defined below as:

B = {by) )
Where,
by = P(O, = k|X, = j) (6)
Properties

i. b =0Vik

ii. Yeby=1Vj

FIGARCH Model
The FIGARCH model introduced by Baillie et al (1996)
is specified as:

i. Fractional Integration.

ii. Long memory effects.

iii. Conditional variance.

iv. Flexibility.

v. Heteroscedasticity.
The model is defined as:
of =w+pL)ot +[1—BUL) —BL)(1 - L)*]ef

@)

Where,
o? : is the conditional variance at time t.
w : is the constant variance.
B (L) : is the lag operator polynomial for GARCH term.
@(L) : is the lag operator polynomial for ARCH terms.
d : is fractional differencing parameter.
&2 1 is the squared residual.
L : is the lag operator.
o?_, : is the past return of the conditional variance.
The standardized residuals of FIGARCH model are
defined as:

— of —w-BLIoE_,
& = \/ 1-BL)-8(L)(1-L)4 ®)
Let, & =2, 9)

Hidden Markov Model
Hidden Markov Model was developed by Baum (1960s).
The model is used to model the behaviour of a system that
is not directly observable.
The model is defined as:

PY,Yy, Ve X0, Xy, o, Xp) =

P(X)-TI[P (X1 Xe—1)- P(Y, | X,)] (10)
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The equation (4) represents the joint probability
distribution of the observations (YY) and the hidden states
(X).

Where,

P(X;): is the initial state distribution ()

P(X.|X:_,): is the transition probability (A)

P(Y;|X,) : is the emission probability (B)

By substituting equation (3) into (4) we get equation (5)
which the 5s-FIGARCH-HMM

5-State-FIGARCH-HMM Parameters

Initial State Distribution ()

Initial state distribution represents the probability of
starting in each state at time t = 1. This is a probability
distribution over the set of possible states. It is defined as:

= {m;} (11)
Where,
m;=PX; =1) (12)
Properties

ii. Zini =1

Transition Probabilities Matrix (A)

Transition probability matrix represents the probability of
moving from one state to another. This is a matrix of
probabilities that govern the transitions between all the
states. It is defined as:

Where,
aij = P(X; =j|X;—y =10) (14)
Properties

ii. a;; = 0Vi,j

iv. Zia” =1Vi

Emission Probability Matrix (B)

Emission probability matrix represents the probability of
observing a particular value given the current state. This
is a matrix probability that govern the emission of
observations given the state. It is defined below as:

B = {bjk} (15)
Where,
bjk = P(Ot = k|X, =]) (16)
Properties

iii. b;; > 0Vi k

ij =
iV. Zkbik =1 V]

Method of Parameter Estimation of 5s-FIGARCH-
HMM

This study employed Expectation-Maximization (EM)
algorithm to estimate the parameters of Sthe developed
model. The steps undertaken to estimate the parameters
are as follows:
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i. Initialize parameters (i, A, B).

ii. E-Step: calculate expected counts of state
transitions and observations.

M-Step: update parameters using expected
counts.

Repeat E-step and M-step until converge.

iii.
iv.

Diagnostic Tests

Diagnostic test is the process of evaluating the goodness
of model. The study used Quantile to Quantile plot to
evaluate the goodness of the developed model.

Quantile-Quantile Plot

This study used Quantile-Quantile plot as the graphical
procedure to diagnose the normality of the residuals of the
developed model.

The decision is based on the following hypotheses:

Ho: The residuals of the model are normally distributed.
Ha: The residuals of the model are not normally
distributed.

Reject null hypothesis if the residuals not follow or
approximately follow line of best fit otherwise accept.

Evaluation Metric Tests

The study used the following evaluation metric test to
select the best model among the models and to assess the
forecast power of the selected best model.

i- MAE=£i o’ -6 (17)
N
n 2
i- MSE=EZ(@2 - &tz) (18)
Nz
n 2
ii-  RMSE= \/%Z(af —&tz) (19)
t=

Long Memory Checking

Long memory is a phenomena when a time series exhibits
decay slowly rather than exponential decay. This study
employed GPH test introduced by Gewek and Porter
Hudak (1983) to estimate and check for the long memory.
The test is defined as:

In[1(w,)]= 58, + 8, In{4sin(%ﬂ +s, (0

27 )
Where, W, =— , 1=12,...,n, W; refers to
T
Fourier frequency Transformation (n = ﬁ) €
represents residual of the model, I(Wj) is a simple

periodogram which is defined as:
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1w, )= L ie A (21)
VoA gt

The test is based on the following decision criterion:

d = 0: indicates no long memaory (short memory).

0 < d < 0.5: indicates anti-persistent behavior.

d = 0.5: indicates random walk.

0.5 < d < 1: indicates persistent behavior (long memory)

d = 1: indicates a non-stationary process.

Heteroscedasticity Checking
Heteroscedasticity refers to the presence of hon-constant
variance in time series data. The study employed scatter
plot to check for the presence of heteroscedasticity in the
residuals of FIGARCH model.

Scatter Plot

This research work utilised scatter plot to check for the
presence of heteroscedasticity in the residuals of
FIGARCH model (1, 4), the residuals were plotted
against the time. The residuals are on the vertical line and
the times are on the horizontal line.

Stationarity Checking

Stationarity is the phenomenon when the mean and
variance of time series data are constant. This study
employed Augmented Dickey-Fuller (ADF) and Kwiat-
Kowski Smidth-Shin (KPSS) test to check for stationarity
in the currency in circulation time series data.

Augmented Dickey-Fuller Test
This study checked for unit roots in the time series with
the test which was developed by Said and Dickey-Fuller
(1984). The test is defined below as:
_ _B-ad)

B3+a2

(-2
Where, B, is the trend term, d is the differencing
parameter, B, is the coefficient on the lagged first
difference term, and o2 is the variance of the time series.
The test involves the following hypotheses:
Ho: the time series has unit roots.

(22)

Ha: the time series non-unit roots.

Decision Criteria
Null hypothesis is rejected if P-value is less than the alpha
value.

KPSS Test
Time Series Visualization
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This research work checked for the presence of unit roots
with the test which was proposed by Kwiat-Kowski
Smidth-Shin (1992). The test serves as the second
approach to check for the unit roots of the time series data.
The test is defined below as:

o, (ye— ﬁ—gt)z

oSy (1-)
Where, y, is the time series, /i is the mean of the time
series, &, is the estimated trend coefficient, 62 is
estimated variance of the time series, and T is the sample
size.

KPSST = (23)

Model Order Selection
This study wused Autocorrelation and Partial
Autocorrelation function plot to identify the order of the
model developed model.

Autocorrelation Plot

The study employed autocorrelation plot to identify the
order of Moving Average (MA) model to use in the
developed model. The autocorrelation function is given
below as:

_ %
Pk 0,

Where, p, is the autocorrelation at lagk, K is the

(24)

chosen lag, 6, is the covariance at lag k and &, is the
variance.

Partial Autocorrelation Plot

The study used Partial Autocorrelation Function (PACF)
plot to identify the order of Autoregressive (AR) model
to use in the proposed model. The function is defined as:

[p(K)-2le().p(k— ]I

2 = el (25)
Where, @(k) is the partial autocorrelation at coefficient
at lag k, p(k) is the autocorrelation coefficient at lag k,
@(j) is the partial autocorrelation at lag j, k is the number
of lag, and j is the intermediate lag (j =1 to k —1).

Data for Application

The study used monthly Nigerian crude oil prices data
covering 1990-2025, obtained from the central bank of
Nigeria (CBN).

RESULTS AND DISCUSSION
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Figure 1 Time Series Plot of Crude oil
From the results obtained in Figure 1 it is observed that evidence of structural breaks, indicating potential non-
the time series behaviour exhibits an upward trend with  stationarity.
Stationarity Checking
Table 1 ADF Test Results
| Dickey-Fuller = -3.5091 | Lag order = 7 | P-value = 0.04171 |

the level of significance 0.05. Thus, we reject to the null
From the results obtained in Table 1 it is observed that the hypothesis and conclude that the time series is stationary.
probability value of the ADF test is 0.04171, which is less
Table 2 KPSS Test Results
| KPSS Level = 4.0833 | Truncation lag parameter = 5 | P<0.01 |

The stationarity checking suggests two distinct results,
From the results obtained in Table 2 it is observed that the  the ADF test suggests stationarity while the KPSS test
probability value of KPSS test is less than 0.01, which is  suggests non-stationarity. Therefore, we are to conclude
less than 0.05, thus, we fail to reject the null hypothesis  that the time series is not stationary.

and conclude that the time series is not stationary. Long Memory Checking
Table 3 GPH Test of DPI
Estimated (d) sd.as sd.reg
0.9060606 0.1812318 0.2040656

This means the series has persistent, slowly fading
From the results obtained in Table 3 it is observed thatthe ~ shocks.
estimated long memory parameter d = 0.9060606, which
suggest significant long memory in the time series data.
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Time Series Visualization of the Differenced Data
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Figure 2 Time Series Plot of the Difference Time Series
From the results obtained in Figure 2 it is observed that with no visible trend, suggesting, stationarity after
the differenced series fluctuates around a constant mean  fractional differencing.
Stationarity Checking of the Differenced Time Series
Table 4 ADF Test Results of FAOIL Time Series
| Dickey-Fuller = -6.7409 | Lag order =7 | P-value = 0.01 |

conclude that the time series is stationary. However, this
From the results obtained in Table 4 it is observed that the  test is not enough to conclude that the time series is
probability value of ADF test is 0.01, which is less than stationary.
0.05, thus, the we are to reject the null hypothesis and
Table 5 KPSS Test Results of FAOIL Time Series
| KPSS Level = 0.11437 | Truncation lag parameter = 5 | P-value >0.1 |

is greater than 0.05, thus, we are to reject the null
From the results obtained in Table 5 it is observed that the  hypothesis and conclude that the time series is stationary.
probability value of KPSS test is greater than 0.1, which

Model Order Estimation

Series FdoilL

ACF
d

i S — Y S L

T T T T T
o = gl 15 20 25

Lag

Figure 4.3 Autocorrelation Function Plot
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from lag 1 up to lag 5. Thus, MA (1), MA (2), MA (3),
From the above results obtained in Figure 3 it is observed MA (4), and MA (5) are significant.
that the autocorrelation plot exhibits significant spike

Series FdOIL

04

03

Partial ACF

4 Partial AutolEcE)ir?elation Function Plot
From the results obtained in Figure 4.4 it is observed that FIGARCH Model Estimation
the autocorrelation plot exhibits significant spike at lag 1. Table 6 Information Criterion of FIGARCH Models
Thus, AR (1) is significant.

Model MSE RMSE

FIGARCH (1, 1) 49.21526 7.015359
FIGARCH (1, 2) 49.16552 7.011813
FIGARCH (1, 4) 49.12025 7.008584
FIGARCH (1, 5) 49.89544 7.063671

Heteroscedasticity Checking
From the results obtained in Table 6 it is observed that the
FIGARCH (1, 4) model outperforms the other models
with least MSE and RMSE.
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Figure 5 Volatility Plot
From the results obtained in Figure 5 it is observed that
the residuals plot exhibits a fan shape pattern, confirming

the presence of conditional heteroscedasticity, thereby
justifying the use of a FIGARCH framework.
Assumptions of FIGARCH-5States-HMM

Table 7 Results Tests of the Assumptions

Presence long memory Achieved GPH Testd=0.9
Stationarity Achieved ADF P.value < 0.05

KPSS P.value > 0.05
Markov property Achieved ACF shows decay slowly
Emission Achieved LRT P.value = 8.881784e-16
Transition probabilities Achieved Chi-square P.value = 2.2e-16
Initial state distribution Achieved Chi-square P.value = 0.406
Finite number of states Achieved Five (5)
Time invariant Achieved 0.4762

From the results obtained in Table 7 it is observed that all the assumptions of FIGARCH-5States-HMM were achieved.
Thus, the model is indeed a predictive model.

Table 8 Likelihood

Ratio Test of Emission

LR

Df

Probability value

1.318261e+02

2.700000e+01

8.881784e-16

From the results obtained in Table 8 it is observed that the
probability value of LRT is 8.881784e-16, which less
than 0.05. This implies that s single emission distribution
cannot adequately describe the volatility; instead, the five

Table 9 Chi-square Test

states exhibit statistically distinct emission parameters,
confirming the presence of clearly separate volatility
levels (extremely low to extremely high).

for Transition Probabilities

X-squared

Df

Probability value

1106.9

16.000

p-value < 2.2e-16

From the results obtained in Table 9 it is observed that the

probability of the test is

(P < 0.05), indicating a strong

dependence between current and past states and

supporting the Markov transition capture by the
FIGARCH-5-State HMM.
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Table 10 Chi-square Test for Initial Probability Distribution

X-squared Df

Probability value

4.000 4.000

0.406

From the results obtained in Table 10 it is observed that
the probability value is 0.406, this indicates that there is
no evidence against the null hypothesis, meaning the

initial probabilities fit the data well and appear stationary

or consistent with historical patterns.

Table 11 OLS-based CUSUM test for Time Invariant

SO

p-value

0.75695

0.6155

From the results obtained in Table 11 it is observed that
the test for time invariant yields p = 0.6155, failing to
reject the null hypothesis of parameter stability. This
confirms that the FIGARCH-5States-HMM parameters

remain consistent over the sample period, supporting the
model’s applicability for analysing persistent volatility
regimes in oil markets.

OLS-based CUSUM test

Empiical fuctuation process

i wﬂw

Time

Figure 6 Parameters Stability Plot

From the above results obtained in Figure 6 it is observed
that the plot’s overall trend suggests parameters were
stable early on but destabilized later, highlighting
evolving regime dynamics. This is a standard output for

econometric stability checks, emphasizing the need for
break-aware modelling in volatile series like oil prices.
Hidden Markov Model

Table 12 Initial State distribution

Pr(extremely low) Pr(low) Pr(moderate)

Pr(high) P(extremely high)

0 1 0

0 0

From the results obtained in Table 12 it is observed that
since the value of probability 2 is 1, this indicates that the
market is definitely at low volatility state at time zero.
This means we start by believing the crude oil market is

calm (low volatility) before any data are observed. The
other states have zero chance initially. Hence, the market
is in stable, low volatility phase before we observe any
price changes.
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Table 13 Transition Matrix

States To S1 To S2 To S3 To S4 To S5
From S1 0.925 0.000 0.038 0.000 0.037
From S2 0.000 0.977 0.000 0.023 0.000
From S3 0.074 0.000 0.895 0.031 0.000
From S4 0.000 0.012 0.037 0.951 0.000
From S5 0.036 0.000 0.000 0.000 0.964

From the results obtained in Table 13 it is observed that
from state 1 (extremely low volatility) mostly stays in
state 1 (92.5%), but sometimes jumps to moderate and
extremely high volatility (state 3 and 5, 3.8% and 3.7%
respectively). The market tends to stay calm but can
suddenly spike to moderate and extremely high volatility.
Moreover, from state 2 (low volatility) it is observed that
the volatility is very stable, staying 97.7% of the time, but
small chance (2.3%) to jump suddenly to high volatility
(state 4), so low volatility is persistent but can jump to
high. In addition, from state 3 (moderate volatility)
mostly stays moderate (89.5%), sometimes goes back to

low volatility (7.4%), but can also jump to high volatility
(3.1%), this stage is key transition point. Furthermore,
from stage 4 (high volatility) highly persistent (95.1%),
with tiny chances (1.2%, 3.7%) to slide to low or
moderate volatility, so once volatility is high, it mostly
maintains that level. In addition, from stage 5 (extremely
high volatility) about 96.4% chance of persisting, but with
a small chance (3.6%) to drop to extremely low volatility.
In summary, the market mostly stays in the same
volatility state dat-to-day, but moderate and extremely
high volatility states are gateways where it can jump to
other states faster.

Table 14 Emission Parameters

States Emission means Level Emission std.v Volatility level

S1 107.294 Extremely High-peak boom 11.269 Extremely high-
moderate-high

S2 48.366 Low-moderate 5.337 Low-moderate

S3 82.004 High-elevated 3.647 High-lowest

S4 66.786 Moderate-balanced 4.491 Moderate-low

S5 157.663 Extremely low —lowest 23.476 Extremely low-
highest

From the results obtained in Table 14 it is observed that
from the emission means the spectrum captures a full
cycle from crisis lows to expansion highs, with non-
sequential state numbering (e.g., state 5 as lowest)
highlighting model flexibility in regime assignment. It
implies oil markets exhibit persistence in moderate-to-
high states, aiding forecasts of stable pricing. Moreover,

from the emission standard deviations it is observed that
the parameters reveal asymmetric structure: extreme
regimes (State 5 and 1) show elevated volatility (sigma >
10), signalling higher tail risks during booms/busts, while
central states (3, 4, 2) have tighter spreads (sigma < 6)
promoting predictability in normal conditions.
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Table 15 Evaluation Metric Measures of HMM

MAE MSE RMSE

93.18904 10237.16 101.1788

The Table 15 consists of the evaluation metric measures FIGARCH-5-State Hidden Markov Model

that are used to assess the forecast power of Hidden

Markov Model.
Table 16 Information Criterion of FIGARCH Models
Model MAE MSE RMSE
FIGARCH (1, 1)-5-State HMM 4,337432 49.94298 7.067035
FIGARCH (1, 2)-5-State HMM 4,233755 48.68812 6.977687
FIGARCH (1, 4)-5-State HMM 4,331015 50.14674 7.081436
FIGARCH (1, 5)-5-State HMM 4.464736 51.01302 7.14234

From the results obtained in Table 16 it observed that FIGARCH (1, 2)-5-State HMM models outperforms the other

models with least MAE, MSE and RMSE.

Table 17 Models Comparison
Model MAE MSE RMSE
FIGARCH (1, 4) 4.286746 49.12025 7.008584
HMM 93.18904 10237.16 101.1788
5-States-FIGARCH (1, 2)-HMM 4.233756 48.68813 6.977688

From the results obtained in Table 17 it observed that the 5-States-FIGARCH (1, 2)-5-HMM outperforms the other

models with least MAE, MSE and RMSE.

5-States-FIGARCH-HMM

Table 18 Initial State distribution ()

Pr(extremely low)

Pr(low)

Pr(moderate)

Pr(high)

P(extremely high)

1

0

0

0

0
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From the results obtained in Table 18 it is observed that
since the value of probability value of extremely low
volatility is 1, this indicates that the market is definitely
at extremely low volatility state at time zero. This means
we start by believing the oil market is (extremely low

Aliyu et al.

JOBASR2025 4(1): 97-112

volatility) before a data is observed. The other states have
zero chance initially. Hence, the market is in stable,
moderate volatility phase before we observe any price
changes.

Table 19 Transition Matrix (A)

States To S1 To S2 To S3 To S4 To S5
From S1 0.743 0.257 0.000 0.000 0.000
From S2 0.000 0.641 0.112 0.076 0.171
From S3 0.000 0.018 0.926 0.008 0.055
From S4 0.054 0.146 0.000 0.799 0.000
From S5 0.000 0.050 0.015 0.029 0.905

From the results obtained in Table 19 it is observed that
from state 1 (extremely low volatility) mostly stays in
state 1 (74.3%), but sometimes jumps to low volatility
(state 2) with 25.7%. Moreover, from state 2 (low
volatility) it is observed that the volatility is very stable,
staying 64.1% of the time, but small chance (11.2%,
7.6%, 17.1% ) to jump suddenly to moderate, high, and
extremely volatility (state 3, 4, and 5) respectively. In
addition, from state 3 (moderate volatility) mostly stays

moderate (92.6%), sometimes goes back to low volatility
(1.8%), but can also jump to high volatility (8%) and
extremely volatility (5.5%). Furthermore, from stage 4
(high volatility) highly persistent (79.9%), with tiny
chances (5.4%, 14.6%) to slide to extremely low or low
volatility. In addition, from stage 5 (extremely high
volatility) about 90.5% chance of persisting, but with a
small chance (5%, 1.5%, 2.9%) to drop to low, moderate
or high volatility.

Table 20 Emission Parameters (B)

States Emission means Level Emission std.v Level

S1 -11.503 Extremely Low 24.093 Extremely low-highest
S2 -5.324 Low 3.984 Low-moderate

S3 -0.495 Moderate 1.750 Moderate-lowest

S4 9.454 High 4.759 Extremely high-higher
S5 1.300 Extremely High 3.555 High-moderate

From the results obtained in Table 20 it is observed that
from the emission means this gradient (states 1 <2 <3<
5 < 4) models a full volatility cycle, enabling regime-
switching forecasts that highlight persistence in extremes
for risk management in oils markets. Moreover, from the

emission standard deviations low/moderate states show
tighter spreads (less risk), while extremes (states1, and 4)
exhibit amplified volatility, signalling higher tail risks
during regime shifts. This refines forecasts by
highlighting uncertainty in boom/bust phases.
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Figure 7 Residuals plots of FIGARCH (1, 2)-5-State HMM

From the above results obtained in Figure 7 it is observed
that the residuals of the model have no much outliers and

are approximately straight line. Thus, the errors are
approximately normally distributed.

Table 21 Forecast Results

Month Volatility forecast Expected level

November 0.03050814 Likely to fall in moderate volatility
December 0.05410389 Likely to fall in moderate volatility
January 0.14353317 Likely to fall in moderate volatility
February 0.03214226 Likely to fall in moderate volatility
March 0.02828540 Likely to fall in moderate volatility
April 0.02474187 Likely to fall in moderate volatility

From the results obtained in Table 21 it is observed that
the 5-States-FIGARCH (1, 2)-HMM forecasts moderate
oils volatility (expected levels 2.50-2.58), with extremely
high regime probabilities dropping from 3.05% in
November to 0.02% in April. This indicates quick
stabilization and low tail risks, favouring Low/Moderate
states for predictable pricing and reduced hedging needs.
The trend reflects regime persistence in calm conditions,
supporting economic stability by early 2026.

From the time series plot it is observed that the time series
exhibits trend with presence of structural breaks, this
made the time series not stationary. Moreover, ADF and
KPSS test confirmed that the time series is not stationary.
The study revealed presence of long memory in the time
series which was confirmed by GPH test. This long
memory is persistent, therefore, is another behaviour that
made the time series not stationary in addition to the trend

behaviour observed. The study revealed excess of
heteroscedasticity in the residuals of FIGARCH (1, 4)
model which serves as the best model. The study
modelled the varying level of the excess volatility
observed in the residuals of the FIGARCH (1, 4) model
through FIGARCH-5-States Hidden Markov Model,
where the levels of the violating varying levels are
categorized into 1 = extremely low, 2 = low, 3 =
moderate, 4 = high, and 5 = extremely high. FIGARCH
(1, 1)-5-Staes HMM was found as the best model with
least MAE, MSE, and RMSE when compared with other
models. The model revealed that the market is definitely
at extremely low volatility state at time zero. Moreover,
the model revealed that that from state 1 (extremely low
volatility) mostly stays in state 1 (74.3%), but sometimes
jumps to low volatility (state 2) with 25.7%. Moreover,
from state 2 (low volatility) it is observed that the
volatility is very stable, staying 64.1% of the time, but
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small chance (11.2%, 7.6%, 17.1% ) to jump suddenly to
moderate, high, and extremely volatility (state 3, 4, and
5) respectively. In addition, from state 3 (moderate
volatility) mostly stays moderate (92.6%), sometimes
goes back to low volatility (1.8%), but can also jump to
high volatility (8%) and extremely volatility (5.5%).
Furthermore, from stage 4 (high volatility) highly
persistent (79.9%), with tiny chances (5.4%, 14.6%) to
slide to extremely low or low volatility. In addition, from
stage 5 (extremely high volatility) about 90.5% chance of
persisting, but with a small chance (5%, 1.5%, 2.9%) to
drop to low, moderate or high volatility. In addition, the
model found that from the emission means the gradient
(states 1 < 2 < 3 <5 < 4) models a full volatility cycle,
enabling regime-switching forecasts that highlight
persistence in extremes for risk management in oils
markets. Moreover, from the emission standard
deviations low/moderate states show tighter spreads (less
risk), while extremes (statesl, and 4) exhibit amplified
volatility, signaling higher tail risks during regime shifts.
This refines forecasts by highlighting uncertainty in
boom/bust phases. Furthermore, the study disclosed that
the FIGARCH (1, 2)-5States HMM forecasts moderate
oils volatility (expected levels 2.50-2.58), with extremely
high regime probabilities dropping from 3.05% in
November to 0.02% in April. This indicates quick
stabilization and low tail risks, favouring Low/Moderate
states for predictable pricing and reduced hedging needs.
The trend reflects regime persistence in calm conditions,
supporting economic stability by early 2026. In terms of
model goodness of fit the FIGARCH (1, 2)-5States-
HMM aligned with Chenxing and Qiao (2025), where
their model outperforms other competing model.

The forecasts results obtained using the 5-Steates
FIGARCH (1, 2)-HMM has the following implication:

The projected drop in extreme regimes suggests a shift
toward predictable pricing by early 2026, reducing
exposure to volatility spikes from geopolitical or supply
disruptions. For crude oil, this implies lower hedging
costs and more reliable supply chains, benefitting global
trade amid current U.S energy policies. However, the
initial 3.05% extremely high probability in November
highlights residual risks from lingering factors like OPEC
decisions, potentially amplifying short-term price swings.
Overall, the forecast supports economic stability, with
moderate inflation pressures on energy-dependent sectors
like transportation and manufacturing.

CONCLUSION

The time series data exhibits a persistence trend over the
study period. In addition, the time series shows
fluctuation in both mean and variance, rendering it a non-
stationary in levels. Furthermore, the study reveals the

Aliyu et al. JOBASR2025 4(1): 97-112

presence of long memory in the time series. Moreover,
significant heteroscedasticity is observed in the residuals
of FIGARCH (1, 2). The Five-States-FIGARCH (1, 2)-
HMM was found to be the best performing model,
yielding the lowest MAE, MSE, and RMSE when
compared with the standalone HMM and FIGARCH
models. The residuals of the model are approximately
normally distributed indicating the model reduced
volatility persistence. Finally the volatility forecast was
made, which indicates that that the 5-States-FIGARCH
(1, 2)-HMM forecasts moderate oils volatility (expected
levels 2.50-2.58), with extremely high regime
probabilities dropping from 3.05% in November to 0.02%
in April. This indicates quick stabilization and low tail
risks, favoring Low/Moderate states for predictable
pricing and reduced hedging needs. The trend reflects
regime persistence in calm conditions, supporting
economic stability by early 2026.

REFERENCE
Alquraish, M., Abuhasel, K. A., Algahtani, A.S., &
Khadr, M. (2021). SPI-Based Hybrid Hidden Markov—
GA, ARIMA-GA, and ARIMA-GA-ANN Models for
Meteorological Drought Forecasting.  Sustainability,
13(22), 12576.

Baum, L.E., & Petrie, T. (1986). Statistical Inference
for Probabilistic Functions of Finite State Markov
Chains. The Annals of Mathemeatical Statistics, 37(6),
1554-1563.

Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O.
(1996). Fractionally Integrated Generalized
Autoregressive Conditional Heteroscedasticity. Journal
of Econometrics, 74(1), 3-30.

Balcilar, M., Ozdemir, Z. A., Ozdemir, H., & Wohar,
M. E. (2020). Transmission of US and EU Economic
Policy Uncertainty Shock to Asian Economies in Bad
and Good Times. IZA Discussion Papers, 13274,
Institute of Labor Economics.

Barroso, P., & Detzel, A. (2021). Do Limits to
Arbitrage Explain the Benefits of Volatility Managed
Portfolios? Journal of Financial Econmics, 140(3),
744-767.

Burhan, M., & Mohammed, A. (2024). Hybrid Model
for Financial Forecasting using Maximal Overlap
Discrete Wavelet Transform (MODWT),
Demonstrating its Effectiveness in Capturing Volatility
Patterns in Exchange Rates. Jouurnal of Econometrics,
10(3), 107-345.

Caldara, D., Lacoviello, M., Molligo, P., Prestipino,
A., & Raffo, A. (2020). The Economic Effects of

111




Volatility Modelling of Crude oil Prices Using ...

Trade Policy Uncertainty. Journal of

Economics, 109, 38-59.

Monetary

Cross, J., & Nguyen, B. (2023). Oil Price Volatility
and Supply Chain Distributions. Energy Economics,
108, 105-126.

Chenxing, L., & Qiao, Y. (2025). An Infinite Hidden
Markov Model with GARCH for Short-Term Interest
Rates. Online at https://mpra.ub.uni-
muenchen.de/123200/ MPRA Paper No. 123200, posted
11 Jan 2025 14:25 UTC.

Deng, S., Xiang, Y., Nan, B., Tian, H., & Sun, Z.
(2019). A Hybrid Model of Dynamic Time Wrapping
and Hidden Markov Model for Forecasting and
Trading in Crude Oil Market. Soft Computing
(Springer), 23(12), 5679-5696.

Ellwanger, R., Jiang, L., & Sawatzky, B. (2023). Oil
Price Shocks and the Macroeconomy: An Analysis of
the Current Market Dynamics. Bank of Canada Staff
Working Paper.

Hamilton, J. D. (1989). A New Approach to the
Economic Analysis of Nonstationary Time Series and
the Business Cycle. Econometrica, 57(2), 357-284.

Hartwig, B., & Mahringer, S. (2023). Crude Oil
Volatility : A Review of Recent Literature. Energy
Economics, 106, 105-126.

Kilian, L., & Zhou, X. (2022). The Role of Global
Supply and Demand in Oil Market Fluctuations.
Journal of International Economics, 136, 103-126.

Mehrdoust, F., Noorani, I., & Kanniainen, J. (2024).
Valuation of Option Price in Commodity Markets
Described by a Markov-Switching Model: A Case
Study of WTI Crude Oil Market, Mathematics and
Computers in  Simulation. Journal of Econometrics,
2(10), 345-678.

Sengupta, A., Das. A., and Guler, S. I. (2023). Hybrid
hidden Markov LSTM for short-term traffic flow
prediction.

Aliyu et al. JOBASR2025 4(1): 97-112

Semmler, W., & Toure, M. (2024). Financial Fragility,
Regime Change, and Monetary Policy in an Open
Economy. Journal of International Economics, 10(23),
345-456.

Sharif, A., Aloui, C., & Yarovaya, L. (2020). Covid-
19 Pandemic, Oil Prices, Stock Market, Geographical
Risk and Policy Uncertainty Nexus in the US
Economy: Fresh Evidence from the Wavelet-Based
Approach. International Review of Financial Analysis,
70, 101476.

Tiwari, A. K., & Umar, Z. (2021). Existence of Long
Memory in Crude Oil and Petroleum Products:
Generalized Hurst Exponential Approach. Research in
International Business and Finance. Journal of
Econometrics, 89(23), 456-567.

Jung, Y., &Park, J. (2020). Scalable Hybrid HMM with
Gaussian Process Emission for Sequential Time-series
Data Clustering.

Wang, X., Shao, C., Yin, C., & Ji, X. (2018). Short-
Term Traffic Flow Forecasting Method Based on
ARIMA-GARCH Model. Journal of Beijing Jiaotong
University, 42(4), 79. DOI: 10.11860/j.issn.1673-
0291.2018.04.011.

Yin, L., Cao, H., & Xin, Y. (2024). Impact of Crude
Oil Price Innovations on Global Stock Market
Volatility: Evidence across Time and Space.
International Review of Finnancial Analysis.

Zaki, J. FW., Ali-Eldin, A. M.T., Hussein, S. E.,
Saraya, S. F., & Areed, F. F. (2019). Time Aware
Hybrid Hidden Markov Models for Traffic Congestion
Prediction.  International Journal on Electrical
Engineering and Informatics - Volume 11, Number 1,
March 20109.

Zhang, Y., Ma, F.,, & Wang, Y. (2022). Oil Price
Volatility and Macroeconomic Fundamentals: A new
Perpective. Energy Economics, 106, 105-126.

112




