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ABSTRACT

Traditional experimental designs, including the recent Orthogonal Nested Row-
Column (NRC) design, are only applicable for single-environment
experiments. They fail to provide a unified framework for the combined analysis
of identical experiments conducted across multiple environments (e.g., different
locations or seasons). This gap prevents a rigorous investigation of critical
Treatment-by-Environment interactions and leads to a loss of statistical power
and information. This study proposes a new Combined Orthogonal Nested Row-
Column (ONRC) design that integrates environment effects and their
interactions into the linear model. The methodology involved the derivation of
the sums of squares and the construction of a unified ANOVA table for this
combined analysis. Specifically, the ONRC model assumes independent
randomizations of blocks, rows, and columns within environments, employs a
linear mixed-model framework with orthogonal block structures, and analyzes
data derived from multi-environment yield trials using direct ANOVA
decomposition across six strata.Results from a hypothetical case study show the
ONRC design significantly reduces experimental error and achieves higher
relative efficiency compared to the existing NRC design, confirming its
superiority for accurate multi-environmental trials. Quantitatively, the ONRC
design reduced mean square error from 3.41 (NRC) to 0.92 and improved
relative efficiency by approximately 270%, demonstrating substantial gains in
precision and accuracy. The study concludes that the proposed Combined
Orthogonal Nested Row-Column (ONRC) design is a more efficient and
powerful design than its predecessors. The research recommends the use of the
ONRC design for agricultural and industrial experiments conducted across
multiple locations and suggests future work to extend the model to factorial
treatment structures.

INTRODUCTION

Whatever the situation, the key motivation has been to

In the past few decades, many researchers have conducted
field experiments by randomized block designs, Latin
square designs, Sudoku square designs, balanced
incomplete block designs, Youden designs, or
generalized Youden designs across different blocks or
environments such as locations, periods or seasons
(Danbaba et al. 2018; Dauran et al. 2019; Lacka, 2021).
The importance of this topic lies in its practical
relevance—modern agricultural experiments often face
challenges of limited land, environmental heterogeneity,
and multi-location variability, all of which demand robust
experimental structures that preserve orthogonality and
accuracy. The primary reason may be the limited space
available to accommodate all experimental plots with
different situation or condition that the experiments must
be carried out at different blocks or locations.

develop experimental frameworks that effectively control
external sources of variation while maintaining statistical
efficiency.The focus of many researchers is to incorporate
the structure of the experimental material into the
experimental design so that the results are not distorted,
for example by external variability such as soil
heterogeneity. Experiments with multiple blocking
structures are usually carried out using a mixed-model
specification, which in the classical approach leads to the
analysis of variance in the strata (Bailey and Williams,
2007).

An orthogonal nested row-column design is an
experimental design where experimental units are
arranged in nested structure within blocks with row and
column effects.
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That is, experimental units are grouped into block and
within each block; the units are further arranged into rows
and columns Nelder (1965). In an orthogonal design, the
effects of different factors (e.g. treatment, row, column,
and block) can be estimated independently from each
other Houtman and Speed (1983).

Nested block (NB) designs are often used in practice,
particularly in agricultural and industrial
experimentation, when several sources of local variation
are presented. More variation can be controlled by
ordinary blocking of experimental units using a combined
analysis of block designs. Combined analysis of nested
row-column setups often involves confounding through
equation methods.This method follows different
approaches and the designs are in different sizes. The
procedure of this design is given in sequel with
application in some animal nutritional feed experiments:
the method procedures had also been given by Choi and
Gupta (2008) and Agrawal and Shamsuddin (1987) by
solving the equations.

The row-column design is one of the most widely used
experimental designs in a variety of fields. These designs
use two blocking factors, one representing the rows and
the other representing the columns, in order to group the
experimental units. A block design with nested rows and
columns is frequently used (Koztowska 2001).

An Extension to Complex Blocking by Nelder (1965),
formalized the concept of Orthogonal Block Structure
(OBS). He provided a general mathematical framework
for designs where the covariance matrix of observations
can be decomposed into a sum of orthogonal, idempotent
matrices, each corresponding to a different stratum of
variation (e.g., between blocks, within blocks). This
theory justified the classic procedure of performing
separate ANOVAs in each stratum and then combining
the results.

Modern Application and refined models of framework
was powerfully applied by Calinski and Kageyama
(2000) and later by (Calinski et al. 2019; 2020). They
demonstrated how experiments in row-column and split-
plot designs inducing OBS could be analyzed. Their work
showed that for designs with OBS, the analysis could be
presented in a single, unified ANOVA table, moving
away from the complexity of multiple stratum analyses.
However, their focus remained primarily on single-
environment experiments. Their models, while elegant,
did not incorporate a higher-level blocking factor like
"environments" or "locations" into the OBS framework
for combined analysis of orthogonal nested row-column
design.

This gap motivates the present study. The Nested row-
column design by facka (2021) directly addressed nested
structures, providing models and tools for Nested Row-
Column (NRC) designs where blocks contain internal
row-column subdivisions. This was a crucial step for
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practical agricultural research. However, existing NRC
designs still lack an integrated orthogonal structure
capable of accommodating multiple environments or
locations within a single analytical framework. The
current study therefore aims to bridge this theoretical and
practical gap by extending the NRC design into a
Combined Orthogonal Nested Row-Column (ONRC)
design.

Numerical examples are used to illustrate the hypothesis
testing procedure. The linear model proposed by Lacka
(2021) is extended in this study to include environmental
effects and their interactions with rows and columns. The
sums of squares for these effects were derived. Hence,
this study’s relevance lies in providing an orthogonal
analytical structure that enables efficient combined
analysis across multi-environment experiments.
In conclusion, the fundamental gap remains the lack of a
unified orthogonal framework for the combined analysis
of orthogonal nested row-column designs. The study
bridges this gap by proposing an Orthogonal Nested
Row-Column (ONRC) design that integrates the
environment effect directly into the OBS and NRC
framework. This ensures that the combined analysis
retains the prized property of orthogonally, allowing for
independent estimation of treatment, environment, block,
row, column, row-nested row block, column-nested
column block and interaction effects from multi-
environment (location)data.
A lot of research works has been done in the literature to
use many different designs to control two-way sources of
external variation, such as Latin squares, GraecoSudoku
squares, Youden squares, generalized Youden designs,
orthogonal block-split or nested row—column designs
(Danbaba et al.2018; Calinski et al 2020; Lacka 2021) yet
they fail to account for multi-environment interactions
when experiments are replicated across different
locations or seasons. Recently, Lacka (2021) proposed
new orthogonal nested row-column design. The design
only considered analysis of nested rows and columns
effects. It is therefore of theoretical and practical interest
to extend the existing NRC model by introducing
environmental (location) effects and testing their
orthogonal integration.
In addition, according to our literature reviewed, Calinski
et al. (2020) were lack of block effects in nested
structures and Lacka (2021) approached does not enforce
orthogonally. Hence, this research introduces a
Combined Orthogonal Nested Row-Column (ONRC)
design to integrate orthogonality within and across
multiple experimental environments.
The contributions of this study are both theoretical
and practical:

e It proposes a unified ONRC framework for

multi-environment experiments.
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e It derives new sums of squares and ANOVA
structures incorporating environment effects.

e It demonstrates improved efficiency and
orthogonality compared with existing NRC
models.

The primary objectives are to:

1. Modify the existing NRC linear model by
incorporating environment effects and their
interactions with nested factors.

2. Derive the sums of squares and construct a
unified ANOVA table for the combined
analysis.

3. Empirically demonstrate the superiority of the
ONRC design over the NRC design in terms of
reduced error variance and higher relative
efficiency using a hypothetical case study.

In summary, this study contributes a novel combined
framework for orthogonal nested row-column designs
that enhances the accuracy, interpretability, and
applicability of experimental analysis across multiple
environments.

MATERIALS AND METHODS

Linear Model for Orthogonal Nested Row-Column
Design

Suppose that independent randomizations of blocks, as
well as of rows and of columns within the blocks, have

been  superimposed by Lacka. (2021). The
randomization-derived model can then be written as
y=X 7+ Xgf+ XKoo+ Xy +n+e (1)

Where
y= [yl’, Yo eenr yk’,]' Isa N X 1 vector of yield data

observed on N =hr,C, plots of the experiment?

Yo = [y{g, Yig s y;og] , yields observed on
N, = I,C, ¢ units of (plots) of the block g = (l, 2,..., b)

!

T= [2’1, Tyyeenr T, ] , vector of fixed treatments effects,

\
p= [ﬁl, B By ]I , block random effects,
pP= [,01', p; ) :01; ]’ , row random effects,

y = [7/1’, y;,...yt;] , column random effects,

n=n X1 Vector
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€ = Unit error random variable.

Proposed Modified Model of (ONRC) Designs

To incorporate environmental (location) effects, the
above model is extended to the Orthogonal Nested Row-
Column (ONRC) design as:

y=X,0+Xz+X,a+ X+

X ag (aﬂ)+ XR(B)p+
XC

@

@7 T XpS+n+e

where

!
Y =[Yi Yo, ¥p] 1sa N X1 vector of yield data

observed on N =abr,c,K plots of the experiment?

!
yp:[yl’p,y;p,...,yr:OpJ, yields  observed  on

N, =r,Cyunits of (plots) of the

p=(12,..b),

superblock

[
X, =| X" X" :...:X |, Treatments effects on
1 11 12 1b

!

T = [Tl, Tyyeen T, ] , vector of fixed treatments effects,

\'
I, And 1 denote the unit matrix of order Xand the
column vector of X ones, respectively,

!

X,= |a®ln0,Row effects onaz[al,az,...,aa] ,

block random effects,

Xg =1, ®1, , Column effects on
!
p= [[5’1, Borns ,Bb] , block random effects,
XR(B) =1, ® |r0 ®l% , Row-block effects on
!
pP= [pl', o p,;] , row random effects,
XC(B) = |b ®1r0 ® |CO , Column-block  effects on

!
Y= [71', }/é ) ...}/k;] , column random effects,

Xpp =1, ®1,®1 ®1_, Interaction on row-column
random block effects

17 =N X 1 Vector, on the overall mean,

€ = Unit error random variable.

The whole block design (nested row-column) can be

described by the V X b incidence matrix. Because all
blocks are of equal size, since the rows of the design are
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of equal size and its columns are also of equal size, not
necessarily the same size as the rows, an experiment in
such a orthogonal nested row—column design has, under
the randomization-derived model, the Orthogonal Block
Structure (OBS) property (Houtman and Speed, 1983).
This means that the considered model may be resolved
into six simple stratum sub models, in accordance with
the stratification of the experimental units. Using Calinski
et al. (2020) and Lacka (2021) notation, this stratification
(“block-structure™) can be represented by the relation
Units (plots) — (Rows x Columns) — Superblocks —
Blocks — Total area.

Thus, the observed vector Y can be decomposed as:

Y=Y1+tY,+ Yt Y, + Y5+ Y
Where

Yo=Y, Yo =Y, Vs =&Y, Vi =Y,

Ys =Y, Yo =Y, and

¢ =1, —CO’1XR(B)X;{(B)

1y Koo Xege) ~

Ko *X g X hg + Ny "X X4,

¢, = co’lxR(B)X;(B) — Ky X g X g + N X X,
¢y = ro_lxc(a)xé(s) —ky "X g X g + Mg X X,
¢ = koileBx;\B _noilxsx{a’

¢ = no_lXBX{a _n_llnl;w

d=n"11,

Are symmetric, idempotent and pairwise orthogonal,
summing to the identity matrix, and the scalars

2 2 2 2 2 2
0,,0,,05,0,,0, and oy represent the relevant
unknown stratum variances, defined as:

2 2 2 2 2 2
O, =0, t0,t+ GR(B) + O'C(B) +o,,

®3)

o, = Coas(a) + (k0 - ABgan)aiB + (k0 - Bélno)aé +0,
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03 =0 +(ky = AB'y ) ok + (ko —Bgny ) o + 07
o; =kyop +(K, — ABg'ng ) s + (1Ko 'k ) o7,

o7 =1y, + (K~ ABs'ny o7 + (K, ~ Bs'ny g +(1- k'K ) o,
o (no — N,:ln)oyi +(k0 - ABglno)af\B

+(k0 - Bglno)aé +(1— kglk)af,

+(k, —Bg'ny ) o + 07

Thus, under model (3.3) and using the above
representation of Y,the expectation vector and the
covariance (dispersion) matrix of Y to be written as:

E(y) =g Xt + @ Xt + g X o+
o XTt+a X r+o X7 =X,

D(y)=V =0i¢ +0;4, +0i¢, + 0o, + 0idy + i,

ANOVA—Direct Approach of modification models

The classic approach to data analysis under the model
(3.3) involves applying so-called stratum analysis, which
for combined analysis of orthogonal nested row-column
(ONRC) designs is related to six strata (apart from the
grand mean). The analysis of variance can be performed
directly, by combining results from analyses based on
stratum sub-models. This approach is based on the
decomposition of the data vector Y into two uncorrelated

parts, as follows:

The experimental units are arranged in "M " rows, "M "
columns, " b " blocks, and " b " environment (location) in
the combine analysis of orthogonal nested row-column
design with additional restrictions. Where m =6and
b=2

Table 1. ANOVA Table of Combine Analysis of Orthogonal Nested Row-Column design.

Source of Degrees Sum of
Mean

F-Ratio

Variation of Freedom Squares
Squares

Environments b-1

3SE $sE

(b-1)
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MSE
MSE
Treatments m-—1
Sst Sst
m-1
visst
MSE
Row m-1
SR SSR
m-1
MSSR
'MSE_
Column m-1
dsc $sC
m-1
MSSC
MSE_
Row nested Block | 2 (b-1) SSRB
SSRB
b?(b-1)
MSCB
MSE
Coonn 5 (o1 Jsce
SSCB MSCB
b?(b—1) MSE
Interaction (m _1)2 3
ss MiSI
(m-1)° MSE
Sub-Square b-1
i SsB
(b-1)
MSB
MSE
Error m? (b—1)—3(m—1) SSEr
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éSEr
m®(b-1)-3(m-1)
Total bm? -1
dsTot

Table 1: Orthogonal nested row-column design from two different environments

A B C D E F F B D E A C
D E F A B C A C F B D E
B C A E F D D E A C F B
E F D B C A E A C F B D
C A B F D E B D E A C F
F D E C A B C F B D E A

(ONRC)  design
with b =2 blocks. Each block has L= 6 rows and

Scheme of distribution of treatments ¢, =6 columns. The number at the intersection of a row
{A, B,C,D,E, F},and{F, B, D, E,A,C}on and column indicates the treatment used in that plot.
experimental units of the orthogonal nested row-column  Treatments (m) = 6 and block (b) =2

Table 3: Combined Orthogonal Nested Row-Column Design for Two Environments (Locations)

AF B,B CD DE EA F.C
DA E,C F.F AB B.D CE
B,.D CE AA EC F.F D,B
EE F.A D,C B,F CcB AD
CB AD B,E F.A D,C E.F
F.C D,F E.B CD AE B.A
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Table 2: Hypothetical Data for Fungicides against Potato Late Bligh (Environment | and 1)

A B C D E F F B D E A C
(72) | (@8) | (68) | (95 | (75) | (87) 92) | (74 (% [((62) |71 | (72)
D E F A B C A C F B D E
(71) | (@5) | (96) | (67) | (61) | (78) (66) | (49) |[(68) [(61) |(91) | (74)
B [ A E F D D E A C F B
(70) | (78) | (74) | (68) | (79) | (78) (74) | (60) [ (62) |(71) |(91) | (65)
E F D B C A E A [ F B D
(88) | (66) | (79) | (@71 | (94) | (84) (66) | (67) [ (B57) [(90) | (60) | (62)
C A B F D E B D E A C F
(87) | (66) | (70) | (74) | (76) | (99) (76) | (87) | (61) [(B5) |(89) | (62)
F D E C A B Cc F B D E A
(98) (78) (63) (59) (67) (83) (64) (58) (89) (66) (63) [ (79)
Environment | Environment 11

Tables 2 gives hypothetical datasets for fungicides
against potato late bligh for two environments (locations)
obtained using orthogonal nested row-column (ONRC)
design. Table 3 gives the combined hypothetical datasets Estimation of Parameters
from two locations, and table 4 shows the values of the

hypothetical ~ datasets  with  different  locations From equation, the sum of squares of errors is
respectively.

Derivation and Sums of Squares and ANOVA

y = X7+ X+ Xg B+ Xpg (aff) + X o+ Xy +17 48,

a=1..1,b=1..mr=1..n, Differentiating equation  with respect  to
c=1..nk=1..r. Xr+Xpa+Xgf+ XR(B)p+ XC(B)7/+77
respectively, and then we obtain the following system
X7+ X+ X B+ equations.

E =E
[Yasen] Xe@yP+ Xegy +m+e Y
(yabcrk - yab)

A A A 2
X7+ X, a0+ X
SSE-E yat,)\drk 1TA AU 5 .
X2t Ke)? +11 =22
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2 2 2 2 2
— O, O (o2 O (oF o
Var[y, ]=—1+I—A+a§+%+—R+—C+I :
™y n p Inpr

Sum of Square for Row 2

|
SSA=bcrk>_y,  —aberk(y )

a=1 2 2 2 2 2 2 2
— O, o O, (o3 O (o o
Var[y ____ ]=_1+_A+_B+ﬂ+_R ~C 4
r I m Im n p Imnpr

=bk(n-1)oza+ab(n-1)oj; (¢f)—-(n-1)c”.

and
2 2 2
O 2,05 Ogps
Var[y| .]__+O-A+F+ m Sum of Square for Interaction
+G—§+O-—é+ o’ Sl o2
n p  mnpr’ SS(AB):rcklzﬂ:;y,mm—bcrk;y,w
b
_ 2 o2 ol —acrk)"y;, +aberk(y? ),
var[y |=—t+-2+-B+ o~
""" r I m
2 2 2 2
Ome , Or  Oc , O
and

Consequently,

2 2 2 2

Var (v, )+E(%.) |
E[SSA]=berk)
2 —abcrk[Var(V____)+E(y___)z} Var[ylm__.]:a—1+0'i+0'é+G§B+ﬁ+&+a—,
r n p npr

=ak(n-1)ora+ab(n-1)os (aB)—-(n-1)c”.

2 2 2 2 2 2
— o o, O Or O, o
Var[y, |=—t+oi+-B+—4+R4_Cy
r m m n p mnpr
Sum of Square for Column
2 2 2 2 2
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G 02 2 (72
Var[y, ]_—+ Ay B MR —,
Il m Im p Impr
O'2 O'Z O'2 O'2 (o 2
Varl v 21 ,%A 78 Om  UR 2
ar[yﬂ_} O m om0
Var[yr]:af+0—‘2‘+a—é U—iB+0—§ %, o
I m Im n p Imnp
then
a b a
E[SS(AB)]:(rck > V. —berk> ¥} J
1=1 m=1 1=1
~(E[ss8))
=abrc(v-1)o;r+arck(n-1)oz B+
arck(n-1)os; ()
+abck (n—1)op e 0+
abrk(n—1)o¢ 7 +a(n-1)o*
=rck(n-1)(n-1) % (af)+(n-1)" o*
as well as,
Sum of Square for Row-Blocks
SSR(B bckza:zn:yfn bcrka,—abcrk( ..... ),
1=1 r=l
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=arck(n-1) aBﬂ+ arck(n—1)os; (o)
+abre(v—-1)o;

+abck (N—1)og e 0+

abrk(n-1)o¢ 57 +a(n-1)o?

=abck (n-1)(n-1) o0 +(N ~1)’¢?

E[SSR(B)]= E{bckzz Vin } ..... f

1=1 r=1

Sum of Square for Column-Blocks

SsC(B) ackZZymn —acrka . —aberk(y? ),

m=1 r=1
=brck(n—1)o;p+arck(n—1)ojs (af)+abre(v-1)oir
+abck (n—1)og 5,7 +abrk(n—1) oz e p+a(n-1)o*

=abrk(n-1)(n-1)cg g7 +(n -1’ ¢

E[SSC(B)]= E{ackZZymn}—E[y ..... 2

=1 r=1

Sum of Square for Treatment

k

SSV =abck) V.

r=1

and
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2 2 2 2 2 2
On,08 Om Ok Oc, O Var(y_,)+E(V.,)
Var[y  |=ofr+ B p+lmnp' E[SSB]:acrkxz[ b }

V ar[y ] = 0_124_6_; O-_é G_/Z\B G_FZ{ O-_(z: 62
""" rr I m Im n p Imnpr
=ak(n-1)osa+bk(n-1)o; S+
Consequently, ab(n-1)o% (af)+kx(n-1)c20+
Var(y,)+E(r. )] P(Yes-(n-)e
E[SSV]=abck) ,
r —abck [Var (V.)+E(V.) } Sum of Square for Environment

=ak(n-1)cia+bk(n-)oep F 7
+ab(n-1)o?, (af)—(n-1)o?

2 2 2 2 2 2 2
= o, 0, O O o )
Sum of Square for Sub-Square Var[y ----- 9]=Tl TA FB % ?R+?C 0-9+|mnpr’
SSB = acrkZS_z___ —abck(y ) e ., ,
Var[y]_a_lﬂﬁ%ﬁ&@"
""" “r I m Im n p x Imnprx
— — 2

Y =X 0+ X7+ Xpa+ Xg 5+ X 5 (aff) [Var(y ..... ))+TE(Y.. e)}

+ X+ Xe? + XS+ +e

2 2 2 2
- o, O, O O
Var[y ,]=—2+-L2+-L+28 , ,
r 1 m | =ak(n-1)o,a+bk(n-1)oz S+
2 2 2 2
O O. O o 2 2 2
+_R+_C+_0+J§+ , ab(n—l)O'AB(Olﬂ)‘FkX(n—l)Gxe—(n—l)G
n p X Imnprx
Solving equation from sum of squares for column SSB
- 2 52 52 through TSS, vyields the following estimates of
Var[y b]:_1+ Ay "B 4 —AB parameters
""" r I m Im
2 2 2 2 2 I m
o, O. O, O o
+—RyC 048, . TSS =" ¥, —aberk (72 )
n p x b blmnprx ——
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SSt = Zk: y? —abcrk (72 )

t=1

I m

SSE=>>ya-| =

a=1 b=1

From the SSE above, we compute the mean sum of square
error for the orthogonal nested row-column (ONRC)
design as follow;

Agbana et al.
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§SEr
m*(b-1)-3(m-1)

MSE =

2.5 Measure of Efficiency

The Statistical efficiency of the designs is assessed using

the criteria as follows;

1) Relative Efficiency (RE) is a measure used to
compare the efficiency of units by calculating their
efficiency scores relative to each other. It helps to
determine which method/design is more efficient.

Relative Efficiency is calculated as the ratio of the

variances (or mean squared errors) i.e.

~ MSE(NRC)
(ONRC:NRC) — MISE
(

ONRC)

RE

RE >1:0NRC is more efficient than NRC (better
precision and accuracy)

RE <1:0NRC s less efficient than NRC (poorer
precision and accuracy)

RE =1:0ONRC and NRC have the same efficiency
(similar precision and accuracy).

2) The power of the F-test can be interpreted much the

same way so that;

POW onre)

pow

RE =

(ONRC:NRC)
NRC)

and then
RE >1:0NRC is more efficient than NRC (better
precision and accuracy)
RE <1:0ONRC is less efficient than NRC (poorer
precision and accuracy)
RE =1:0ONRC and NRC have the same efficiency
(similar precision and accuracy).

2.6. Software and Hypothetical Data

The analysis was performed using R statistical software
(version 4.3.1). A hypothetical dataset from a fungicide
efficacy trial against potato late blight, conducted in two
different environments (locations) using a 6x6 orthogonal
nested row-column layout, was used to illustrate the
application and efficiency of the proposed design
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RESULTS AND DISCUSSION The tables below give the results from the existing

Results of Several ANOVA Designs models and the new proposed model.

Table 5. Calinski et al. (2020) ANOVA for Experiment in a Split-Plot Design with OBS

Source of Sum of Mean F-Ratio | P-value

Degrees
Variation of Squares | Squares

Freedom
Treatments 5 450.024 | 90.005 20.786 <0.0015
Row 5 14.3922 | 2.8784 0.6647
<0.0001
Column 5 35.9117 | 7.1823 1.6587 <0.0001
Interaction 25 286.368 | 11.455 2.6454 <0.0001
Residuals 134.233 | 4.3301

31
Total 71 920.9292

Table 6. Lacka (2021) ANOVA for an experiment in a Nested Row-Column design.

Source of Degrees Sum of Mean F-Ratio P-Values
Variation of Freedom Squares Squares

Treatments 5 450.024 90.005 26.398 <0.0015
Row 5 14.3922 2.8784 0.8442 <0.0001
Column 5 35.9117 7.1823 2.1065 <0.0001
Interaction 25 286.368 11.455 3.3596 <0.0001
Blocks 1 35.3518 35.3518 5.1842 <0.0001

Residuals 29 98.8812 3.4096

Total 71 920.9292

Table 7. ANOVA for Combined Analysis of Orthogonal Nested Row-Column (ONRC) design.

Source of Degrees Sum of Mean

F-Ratio P-Values
Variation of Freedom | Squares

Squares

Environments 1 29.8395 29.8395
32.5162 <0.0010
Treatments 5 450.024 90.005

98.087 <0.0015
Row 5 14.3922
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2.8784 3.1369 <0.0001

Column 5 35.9117 7.1823
7.8273 <0.0001

Row nested RB 4 22.7632 5.6908

6.2018 <0.0001

Column nested | 4 27.0075 6.7519

CB

7.3582 <0.0001

Interaction 25 286.368 11.455
12.4837 <0.0001

Blocks 1 35.3518 17.6759

38.5264 <0.0010

Error 21 19.2713

0.9176

Total 71 920.9292

Discussion of the Results

As shown in Tables 5, 6, and 7, the mean square error
(MSE) of Orthogonal Block Split Design (OBS), Nested
Row-Column (NRC) Design and combined analysis of
Orthogonal Nested Row-Column (ONRC) design for the
same hypothetical data as shown in Table 4 have been
calculated. To compare the three designs (OBS), (NRC)
and (ONRC) i.e., by removing the variability due to Row
and column blocking in our proposed design i.e., ONRC
design decreased the experimental error. In (OBS)error
mean square is 4.3301, likewise in (NRC)error mean
square is 3.4096 and error mean square of (ONRC) is
0.9176 which is less than the error mean square of (OBS)
and (NRC)for the same hypothetical data. This indicates
that the ONRC design is more effective and efficient, as
it combines the properties of both OBS and NRC designs
and yields a smaller error mean square.

Furthermore, the large F-ratios observed for treatments (F
=98.087, p < 0.0015) and for environments (F = 32.5162,
p < 0.0010) in the ONRC design indicate strong treatment
and environmental effects on the response variable. These
significant F-values confirm that the variation among
treatment means and across environments is not due to
random chance, but due to real systematic differences
captured by the model. Similarly, significant p-values
(<0.0001) across nested and interaction sources imply
that the ONRC model successfully partitions variation
attributable to row, column, and their interaction effects,
which enhances model precision.

These findings are consistent with theoretical
expectations and prior studies (e.g., Calinski et al., 2020;
Lacka, 2021; Houtman & Speed, 1983), which showed
that designs with orthogonal block structures and proper

nesting reduce residual variance and improve estimation
efficiency. The observed performance of the ONRC
design therefore supports these earlier conclusions by
demonstrating that orthogonal decomposition within a
multi-environment framework increases statistical power
and accuracy in detecting true treatment effects.

Table 3.1 and 3.2 above, gives the results of Mean
Squares Error (MSE) for each of the design below:

MSE 5., =3.4096
MSE e, =0.9176

Then, the relative efficiency (RE) given as:
MSE(NRC) _3.4096

MSE oy, 09176

Tables 5 and 6 presented the analysis of variance for
Nested Row-Column (NRC) Design and combined
analysis of Orthogonal Nested Row-Column (ONRC)
design for the same hypothetical data that have been
calculated. We compare the relative efficiency of the two
models, in other to show a better precision and accuracy
in both models.

NRC

=3.7158

The relative efficiency result between the (NRC) and
(ONRC) of the mean squared error (MSE), which is given

as 3.7158 with the RE >1, proved that the orthogonal
nested row-column (ONRC) design is more efficient than
the nested row-column (NRC) design. This numerical
improvement further validates the theoretical claim that
the inclusion of environment and nested sources of
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variation under orthogonality leads to lower error
variance and higher reliability of inference.

CONCLUSION

This study has successfully developed a combined
Orthogonal Nested Row-Column (ONRC) design that
effectively addresses the limitations of existing designs in
handling multi-environment trials. The proposed model
incorporates environmental effects and their interactions
into a unified orthogonal framework, leading to a single,
comprehensive ANOVA approach. This directly fulfills
the study’s primary objectives of modifying the existing
NRC linear model, deriving unified sums of squares, and
demonstrating improved analytical performance in multi-
environment settings.

The empirical analysis demonstrates the superiority of the
ONRC design, showing a substantial reduction in
experimental error (from 3.4096 in NRC to 0.9176 in
ONRC, representing approximately a 73% reduction in
residual variance) and a significantly higher relative
efficiency (RE = 3.72) compared to the Nested Row-
Column design. These quantitative results confirm that
the ONRC design achieves greater precision and accuracy
while maintaining orthogonality across environments. By
providing a more accurate and powerful statistical tool,
the ONRC design enables researchers to draw more
reliable and generalizable conclusions from complex
experiments repeated across multiple locations or
seasons. The findings contribute both theoretically—by
extending orthogonal block structures to multi-
environment contexts—and practically, by offering an
adaptable framework for experimental designs in
agriculture and industry. However, one limitation of the
study is that the evaluation was based on a hypothetical
dataset rather than field data; hence, further empirical
validation using real multi-location experiments is
recommended to confirm its robustness under natural
variability. In conclusion, the ONRC design advances
experimental design theory by integrating orthogonality,
nesting, and environmental effects into one coherent
structure, providing a valuable framework for future
analytical and applied research.
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