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ABSTRACT 

Traditional experimental designs, including the recent Orthogonal Nested Row-

Column (NRC) design, are only applicable for single-environment 

experiments. They fail to provide a unified framework for the combined analysis 

of identical experiments conducted across multiple environments (e.g., different 

locations or seasons). This gap prevents a rigorous investigation of critical 

Treatment-by-Environment interactions and leads to a loss of statistical power 

and information. This study proposes a new Combined Orthogonal Nested Row-

Column (ONRC) design that integrates environment effects and their 

interactions into the linear model. The methodology involved the derivation of 

the sums of squares and the construction of a unified ANOVA table for this 

combined analysis. Specifically, the ONRC model assumes independent 

randomizations of blocks, rows, and columns within environments, employs a 

linear mixed-model framework with orthogonal block structures, and analyzes 

data derived from multi-environment yield trials using direct ANOVA 

decomposition across six strata.Results from a hypothetical case study show the 

ONRC design significantly reduces experimental error and achieves higher 

relative efficiency compared to the existing NRC design, confirming its 

superiority for accurate multi-environmental trials. Quantitatively, the ONRC 

design reduced mean square error from 3.41 (NRC) to 0.92 and improved 

relative efficiency by approximately 270%, demonstrating substantial gains in 

precision and accuracy. The study concludes that the proposed Combined 

Orthogonal Nested Row-Column (ONRC) design is a more efficient and 

powerful design than its predecessors. The research recommends the use of the 

ONRC design for agricultural and industrial experiments conducted across 

multiple locations and suggests future work to extend the model to factorial 

treatment structures. 

 
 

INTRODUCTION 

In the past few decades, many researchers have conducted 

field experiments by randomized block designs, Latin 

square designs, Sudoku square designs, balanced 

incomplete block designs, Youden designs, or 

generalized Youden designs across different blocks or 

environments such as locations, periods or seasons 

(Danbaba et al. 2018; Dauran et al. 2019; Lacka, 2021). 

The importance of this topic lies in its practical 

relevance—modern agricultural experiments often face 

challenges of limited land, environmental heterogeneity, 

and multi-location variability, all of which demand robust 

experimental structures that preserve orthogonality and 

accuracy. The primary reason may be the limited space 

available to accommodate all experimental plots with 

different situation or condition that the experiments must 

be carried out at different blocks or locations. 

 

 

 

 

 Whatever the situation, the key motivation has been to 

develop experimental frameworks that effectively control 

external sources of variation while maintaining statistical 

efficiency.The focus of many researchers is to incorporate 

the structure of the experimental material into the 

experimental design so that the results are not distorted, 

for example by external variability such as soil 

heterogeneity. Experiments with multiple blocking 

structures are usually carried out using a mixed-model 

specification, which in the classical approach leads to the 

analysis of variance in the strata (Bailey and Williams, 

2007).  

An orthogonal nested row-column design is an 

experimental design where experimental units are 

arranged in nested structure within blocks with row and 

column effects.  
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That is, experimental units are grouped into block and 

within each block; the units are further arranged into rows 

and columns Nelder (1965). In an orthogonal design, the 

effects of different factors (e.g. treatment, row, column, 

and block) can be estimated independently from each 

other Houtman and Speed (1983). 

Nested block (NB) designs are often used in practice, 

particularly in agricultural and industrial 

experimentation, when several sources of local variation 

are presented. More variation can be controlled by 

ordinary blocking of experimental units using a combined 

analysis of block designs. Combined analysis of nested 

row-column setups often involves confounding through 

equation methods.This method follows different 

approaches and the designs are in different sizes. The 

procedure of this design is given in sequel with 

application in some animal nutritional feed experiments: 

the method procedures had also been given by Choi and 

Gupta (2008) and Agrawal and Shamsuddin (1987) by 

solving the equations. 

The row-column design is one of the most widely used 

experimental designs in a variety of fields. These designs 

use two blocking factors, one representing the rows and 

the other representing the columns, in order to group the 

experimental units. A block design with nested rows and 

columns is frequently used (Kozłowska 2001).  

An Extension to Complex Blocking by Nelder (1965), 

formalized the concept of Orthogonal Block Structure 

(OBS). He provided a general mathematical framework 

for designs where the covariance matrix of observations 

can be decomposed into a sum of orthogonal, idempotent 

matrices, each corresponding to a different stratum of 

variation (e.g., between blocks, within blocks). This 

theory justified the classic procedure of performing 

separate ANOVAs in each stratum and then combining 

the results. 

Modern Application and refined models of framework 

was powerfully applied by Caliński and Kageyama 

(2000) and later by (Caliński et al. 2019; 2020). They 

demonstrated how experiments in row-column and split-

plot designs inducing OBS could be analyzed. Their work 

showed that for designs with OBS, the analysis could be 

presented in a single, unified ANOVA table, moving 

away from the complexity of multiple stratum analyses. 

However, their focus remained primarily on single-

environment experiments. Their models, while elegant, 

did not incorporate a higher-level blocking factor like 

"environments" or "locations" into the OBS framework 

for combined analysis of orthogonal nested row-column 

design. 

This gap motivates the present study. The Nested row-

column design by Łacka (2021) directly addressed nested 

structures, providing models and tools for Nested Row-

Column (NRC) designs where blocks contain internal 

row-column subdivisions. This was a crucial step for 

practical agricultural research. However, existing NRC 

designs still lack an integrated orthogonal structure 

capable of accommodating multiple environments or 

locations within a single analytical framework. The 

current study therefore aims to bridge this theoretical and 

practical gap by extending the NRC design into a 

Combined Orthogonal Nested Row-Column (ONRC) 

design. 

Numerical examples are used to illustrate the hypothesis 

testing procedure. The linear model proposed by Łacka 

(2021) is extended in this study to include environmental 

effects and their interactions with rows and columns. The 

sums of squares for these effects were derived. Hence, 

this study’s relevance lies in providing an orthogonal 

analytical structure that enables efficient combined 

analysis across multi-environment experiments. 

In conclusion, the fundamental gap remains the lack of a 

unified orthogonal framework for the combined analysis 

of orthogonal nested row-column designs. The study 

bridges this gap by proposing an Orthogonal Nested 

Row-Column (ONRC) design that integrates the 

environment effect directly into the OBS and NRC 

framework. This ensures that the combined analysis 

retains the prized property of orthogonally, allowing for 

independent estimation of treatment, environment, block, 

row, column, row-nested row block, column-nested 

column block and interaction effects from multi-

environment (location)data. 

A lot of research works has been done in the literature to 

use many different designs to control two-way sources of 

external variation, such as Latin squares, GraecoSudoku 

squares, Youden squares, generalized Youden designs, 

orthogonal block-split or nested row–column designs 

(Danbaba et al.2018; Caliński et al 2020; Lacka 2021) yet 

they fail to account for multi-environment interactions 

when experiments are replicated across different 

locations or seasons. Recently, Lacka (2021) proposed 

new orthogonal nested row-column design. The design 

only considered analysis of nested rows and columns 

effects. It is therefore of theoretical and practical interest 

to extend the existing NRC model by introducing 

environmental (location) effects and testing their 

orthogonal integration. 

In addition, according to our literature reviewed, Caliński 

et al. (2020) were lack of block effects in nested 

structures and Lacka (2021) approached does not enforce 

orthogonally. Hence, this research introduces a 

Combined Orthogonal Nested Row-Column (ONRC) 

design to integrate orthogonality within and across 

multiple experimental environments.  

The contributions of this study are both theoretical 

and practical: 

• It proposes a unified ONRC framework for 

multi-environment experiments. 
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• It derives new sums of squares and ANOVA 

structures incorporating environment effects. 

• It demonstrates improved efficiency and 

orthogonality compared with existing NRC 

models. 

The primary objectives are to: 

1. Modify the existing NRC linear model by 

incorporating environment effects and their 

interactions with nested factors. 

2. Derive the sums of squares and construct a 

unified ANOVA table for the combined 

analysis. 

3. Empirically demonstrate the superiority of the 

ONRC design over the NRC design in terms of 

reduced error variance and higher relative 

efficiency using a hypothetical case study. 

In summary, this study contributes a novel combined 

framework for orthogonal nested row-column designs 

that enhances the accuracy, interpretability, and 

applicability of experimental analysis across multiple 

environments. 

 

 

MATERIALS AND METHODS 

 

Linear Model for Orthogonal Nested Row-Column 

Design 

Suppose that independent randomizations of blocks, as 

well as of rows and of columns within the blocks, have 

been superimposed by Lacka. (2021). The 

randomization-derived model can then be written as 

( ) ( )1 B R B C B
y X X X X e    = + + + + +  (1)

  

Where 

 1 2, ,..., by y y y   =  Is a n x 1 vector of yield data 

observed on 
0 0n br c=  plots of the experiment? 

01 2, ,...,g g g n gy y y y
   =   , yields observed on 

0 0 0n r c= c units of (plots) of the block ( )1,2,...,g b=

.  

 1 2, ,..., v    =  , vector of fixed treatments effects,  

 1 2, ,..., b    = , block random effects, 

 1 2, ,... b      = , row random effects,  

 1 2, ,... b      = , column random effects,  

 = n x 1 Vector 

e =  Unit error random variable. 

Proposed Modified Model of (ONRC) Designs 

To incorporate environmental (location) effects, the 

above model is extended to the Orthogonal Nested Row-

Column (ONRC) design as: 

( ) ( )

( )

1p A B

AB R B

bC B

y X X X X

X X

X X S e

   

 

 

= + + + +

+ +

+ + +

  (2)

   

where  

 1 2, ,..., by y y y   =  Is a n x 1 vector of yield data 

observed on 
0 0n abr c k=  plots of the experiment? 

01 2, ,...,p p p n py y y y
   =   , yields observed on 

0 0 0n r c= units of (plots) of the superblock 

( )1,2,..., ,p b=  

11 121 1: : ... : ,bX X X X
   =

 
Treatments effects on

 1 2, ,..., v    =  , vector of fixed treatments effects,  

xI And 1x
denote the unit matrix of order x and the 

column vector of x ones, respectively, 

0
1 ,A a nX I=  Row effects on  1 2, ,..., a    = , 

block random effects, 

0
1 ,B b nX I=  Column effects on

 1 2, ,..., b    = , block random effects, 

( ) 0 0
1 ,b r cR B

X I I=   Row-block effects on

 1 2, ,... b      = , row random effects,  

( ) 0 0
1 ,b r cC B

X I I=   Column-block effects on

 1 2, ,... b      = , column random effects,  

0 0
1 1 ,AB a b r cX I I=    Interaction on row-column 

random block effects 

 = n x 1 Vector, on the overall mean, 

e =  Unit error random variable. 

 

The whole block design (nested row-column) can be 

described by the v x b  incidence matrix. Because all 

blocks are of equal size, since the rows of the design are 
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of equal size and its columns are also of equal size, not 

necessarily the same size as the rows, an experiment in 

such a orthogonal nested row–column design has, under 

the randomization-derived model, the Orthogonal Block 

Structure (OBS) property (Houtman and Speed, 1983). 

This means that the considered model may be resolved 

into six simple stratum sub models, in accordance with 

the stratification of the experimental units. Using Caliński 

et al. (2020) and Lacka (2021) notation, this stratification 

(“block-structure”) can be represented by the relation  

Units (plots) →  (Rows x Columns) →Superblocks →  

Blocks →Total area. 

Thus, the observed vector y can be decomposed as: 

1 2 3 4 5 6 ,y y y y y y y= + + + + +                   (3) 

Where  

1 1 ,y y= 2 2 ,y y= 3 3 ,y y= 4 4 ,y y=

5 5 ,y y= 6 6 ,y y= and 

( ) ( )

( ) ( )

1

1 0

1

0

1 1

0 0 ,

n R B R B

C B C B

AB AB B B

I c X X

r X X

k X X n X X

 −

−

− −

= −

− −

 +

 

( ) ( )
1 1 1

2 0 0 0 ,AB AB B BR B R B
c X X k X X n X X − − −  = − +  

( ) ( )
1 1 1

3 0 0 0 ,AB AB B BC B C B
r X X k X X n X X − − −  = − +  

1 1

4 0 0 ,AB AB B Bk X X n X X − − = −  

1 1

5 0 1 1 ,B B n nn X X n − − = −  

1

6 1 1n nn − = , 

Are symmetric, idempotent and pairwise orthogonal, 

summing to the identity matrix, and the scalars 
2 2 2 2 2

1 2 3 4 5, , , ,      and 
2

6  represent the relevant 

unknown stratum variances, defined as:                  

( ) ( )
2 2 2 2 2 2

1 ,v AB eR B C B
     = + + + +  

( ) ( ) ( )2 2 1 2 1 2 2

2 0 0 0 0 0 1 ,G AB G BR B
c k AB n k B n    − −= + − + − +  

( ) ( ) ( )2 2 1 2 1 2 2

3 0 0 0 0 0 1 ,G AB G BC B
r k AB n k B n    − −= + − + − +  

( ) ( )2 2 1 2 1 2

4 0 0 0 11 ,B G AB Gk k AB n k k   − −= + − + −  

( ) ( ) ( )2 2 1 2 1 2 1 2

5 0 0 0 0 0 11 ,A G AB G B Gn k AB n k B n k k    − − −= + − + − + −  

( ) ( )

( ) ( )

( )

2 1 2 1 2

6 0 0 0

1 2 1 2

0 0 1

1 2 2

0 0 1

1 ,

A A G AB

G B G

G B

n N n k AB n

k B n k k

k B n

  

 

 

− −

− −

−

= − + −

+ − + −

+ − +

. 

Thus, under model (3.3) and using the above 

representation of ,y the expectation vector and the 

covariance (dispersion) matrix of y to be written as:  

( ) 1 1 3 1 3 1

4 1 5 1 6 1 1 ,

E y X X X

X X X X

     

      

= + + +

+ + =
  

  

( ) 2 2 2 2 2 2

1 1 2 2 3 3 4 4 5 5 6 6 ,D y V             = + + + + +

    

ANOVA—Direct Approach of modification models 

The classic approach to data analysis under the model 

(3.3) involves applying so-called stratum analysis, which 

for combined analysis of orthogonal nested row-column 

(ONRC) designs is related to six strata (apart from the 

grand mean). The analysis of variance can be performed 

directly, by combining results from analyses based on 

stratum sub-models. This approach is based on the 

decomposition of the data vector y  into two uncorrelated 

parts, as follows: 

The experimental units are arranged in " m " rows, " m " 

columns, " b " blocks, and " b " environment (location) in 

the combine analysis of orthogonal nested row-column 

design with additional restrictions.  Where 6m = and 

2b =  

Table 1. ANOVA Table of Combine Analysis of Orthogonal Nested Row-Column design. 

 
Source of   Degrees  Sum of 

  Mean   

F-Ratio     

 Variation  of Freedom  Squares 

  Squares   

Environments  1b−    

SSE
)

 
  

( )

ˆ

1

SSE

b −
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 ˆ

ˆ

MSE

MSE
 

   

Treatments  1m−    

SSt
)

 
  ˆ

1

SSt

m −
 

 

 ˆ

ˆ

MSSt

MSE
 

   

Row   1m−   

 ŜSR  
  ˆ

1

SSR

m −
 

  ˆ

ˆ

MSSR

MSE
 

  

Column   1m−    

SSC
)

 
  ˆ

1

SSC

m −
 

 

               
ˆ

ˆ

MSSC

MSE
 

    

Row nested Block  ( )2 1b b −   SSRB
)

 
 

 

( )2

ˆ

1

SSRB

b b−
                         

ˆ

ˆ

MSCB

MSE
 

   

Column nested 

Block 
( )2 1b b −   SSCB

)
 

 

 

( )2

ˆ

1

SSCB

b b−
  

               
ˆ

ˆ

MSCB

MSE
 

  

Interaction  ( )
2

1m −  
 SSI

)
 

  

( )
2

1

SSI

m−

)

 

   ˆ

ˆ

MSI

MSE
 

Sub-Square  1b−    

SSB
)

 
  

( )1

SSB

b −

)

 

 

 ˆ

ˆ

MSB

MSE
 

   

Error  ( ) ( )2 1 3 1m b m− − −   SSEr
)

 

102 



 

Combined Analysis of Orthogonal Nested … Agbana et al. 

 

 

JOBASR2025 3(6): 98-112 

 

   

  

( ) ( )2 1 3 1

SSEr

m b m− − −

)

 

  

Total    2 1bm −   

SSTot
)

 
    

 

 

Table 1: Orthogonal nested row-column design from two different environments 

 

 

 

 

 

 

 

Scheme of distribution of treatments 

 , , , , , ,A B C D E F and , , , , ,F B D E A C on 

experimental units of the orthogonal nested row-column 

(ONRC) design 

with 2b =  blocks. Each block has 
0 6r =  rows and 

0 6c =  columns. The number at the intersection of a row 

and column indicates the treatment used in that plot. 

Treatments ( ) 6m = and block ( ) 2b =  

Table 3: Combined Orthogonal Nested Row-Column Design for Two Environments (Locations)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B C D E F 

D E F A B C 

B C A E F D 

E F D B C A 

C A B F D E 

F D E C A B 

F B D E A C 

A C F B D E 

D E A C F B 

E A C F B D 

B D E A C F 

C F B D E A 

A,F B,B CD DE E,A F,C 

D,A E,C F,F A,B B.D C,E 

B,D C,E A,A E,C F,F D,B 

E,E F,A D,C B,F C,B A,D 

C,B A,D B,E F,A D,C E,F 

F,C D,F E,B C,D A,E B,A 
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Table 2: Hypothetical Data for Fungicides against Potato Late Bligh (Environment I and II)  

 

 

                 Environment I         Environment II 

Tables 2 gives hypothetical datasets for fungicides 

against potato late bligh for two environments (locations) 

obtained using orthogonal nested row-column (ONRC) 

design. Table 3 gives the combined hypothetical datasets 

from two locations, and table 4 shows the values of the 

hypothetical datasets with different locations 

respectively.  

Derivation and Sums of Squares and ANOVA 

Estimation of Parameters 

From equation, the sum of squares of errors is

 

1,..., , 1,..., , 1,..., ,a l b m r n= = =

1,..., , 1,... .c n k r= =  

 
( ) ( )

1 A B

abcrk

R B C B

X X X
E y E

X X e

  

  

+ + + 
=  

+ + +  

 

     

( ) ( )

2

1
ˆ ˆ ˆ

ˆ ˆ

abdrk A B

R B C B

y X X X
SSE E

X X

  

  

 − + +
 =
+ + +  

 

     

Differentiating equation with respect to

( ) ( )1 A B R B C B
X X X X X     + + + + +

respectively, and then we obtain the following system 

equations. 

( )
2

1 1 1 1 1

abrcrpl m n

abcrk ab

a b r c k

y y
= = = = =

= −   

      

2 2

1 1 1 1 1 1 1

abrcrpl m n l m

abcrt ab

a b r c k a b

y y
= = = = = = =

= −    

     

  

( ) ( ) ( )1 ,A B AB R B C B
y X X X X X X e      = + + + + + + +

A 

(72) 

B 

(78) 

C 

(68) 

D 

(95) 

E 

(75) 

F 

(87) 

D 

(71) 

E 

(75) 

F 

(96) 

A 

(67) 

B 

(61) 

C 

(78) 

B 

(70) 

C 

(78) 

A 

(74) 

E 

(68) 

F 

(79) 

D 

(78) 

E 

(88) 

F 

(66) 

D 

(79) 

B 

(71) 

C 

(94) 

A 

(84) 

C 

(87) 

A 

(66) 

B 

(70) 

F 

(74) 

D 

(76) 

E 

(99) 

F 

(98) 

D 

(78) 

E 

(63) 

C 

(59) 

A 

(67) 

B 

(83) 

F 

(92) 

B 

(74) 

D 

(55) 

E 

(62) 

A 

(71) 

C 

(72) 

A 

(66) 

C 

(49) 

F 

(68) 

B 

(61) 

D 

(91) 

E 

(74) 

D 

(74) 

E 

(60) 

A 

(62) 

C 

(71) 

F 

(91) 

B 

(65) 

E 

(66) 

A 

(67) 

C 

(57) 

F 

(90) 

B 

(60) 

D 

(62) 

B 

(76) 

D 

(87) 

E 

(61) 

A 

(65) 

C 

(59) 

F 

(62) 

C 

(64) 

F 

(58) 

B 

(89) 

D 

(66) 

E 

(63) 

A 

(79) 
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Sum of Square for Row 

( ).... .....

1

l

l

a

SSA bcrk y abcrk y
=

= −   

     

  

Now  

 ,,,, .....lE y E y   = =      

     

  

and 

 
2 2 2

21
....

22 2

var

,

B AB
l A

CR

y
r m m

n p mnpr

  


 

= + + +

+ + +

 

 
2 2 2

1
.....

22 2 2

var

.

A B

CAB R

y
r l m

lm n p lmnpr

  

  

= + + +

+ + +

 

Consequently, 

 
( ) ( )

( ) ( )

2

.... ....

2

..... .....

l l

a

Var y E y
E SSA bcrk

abcrk Var y E y

 +
 

=
 − +
 



    

( ) ( ) ( ) ( )2 2 21 1 1 .A ABak n ab n n    = − + − − −

     

  

Sum of Square for Column 

( ). ... .....

1

m

m

b

SSB acrk y abcrk y
=

= −   

     

  

 
22 2 2 2 2

21
. ...ar ,CA AB R
m BV y

r l l n p lnpr

    
= + + + + + +  

 
22 2 2 2 2 2

1
.....ar .CA B AB RV y

r l m lm n p lmnpr

     
= + + + + + +

 
( ) ( )

( ) ( )

2

. ... . ...

2

..... .....

m m

b

Var y E y
E SSB acrk

abcrk Var y E y

 +
 

=
 − +
 



    

( ) ( ) ( ) ( )2 2 21 1 1 .B ABbk n ab n n    = − + − − −

     

  

Sum of Square for Interaction 

( )

( )

2 2

... ....

1 1 1

2 2

. ... .....

1

,

a b a

lm l

l m l

b

m

m

SS AB rck y bcrk y

acrk y abcrk y

= = =

=

= −

− +

 


 

    

and 

       

   

... .... . ... .. ..

... . .... ..... ,

lm l m n

p k

E y E y E y E y

E y E y E y 

= = =

 = = = = 

 

 
22 2 2

2 2 21
...ar ,CR

lm A B ABV y
r n p npr

  
  = + + + + + +

     

  

 
22 2 2 2 2

21
....ar ,CB AB R

l AV y
r m m n p mnpr

    
= + + + + + +

      

 
22 2 2 2 2

21
. ...ar ,CA AB R
m BV y

r l l n p lnpr

    
= + + + + + +
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 
22 2 2 2 2

21
.. ..ar ,CA B AB

n RV y
r l m lm p lmpr

    
= + + + + + +

     

  

2 2 2 2 2 2
21

... .ar ,A B AB R
p CV y

r l m lm n lnmr

     
  = + + + + + + 

      

 
22 2 2 2 2

2

.... 1ar ,CA B AB R
rV y

l m lm n p lmnp

    
= + + + + + +

     

  

then 

( )

 ( )

2 2

... ....

1 1 1

a b a

lm l

l m l

E SS AB rck y bcrk y

E SSB

= = =

 
= −    
 

−

 

      

( ) ( )

( ) ( )

( )

( ) ( )

2 2

1

2

2

( )

2 2

( )

1 1

1

1

1 1

B

AB

R B

C B

abrc v r arck n

arck n

abck n

abrk n a n

  

 

 

  

= − + − +

−

+ − +

− + −

 

( )( ) ( ) ( )
22 21 1 1ABrck n n n  = − − + −  

     

  

as well as, 

Sum of Square for Row-Blocks 

( ) ( )2 2 2

.. . ... . .....

1 1 1

,
a n n

l n r

l r r

SSR B bck y bcrk y abcrk y
= = =

= − − 

      

( ) ( ) ( )

( )

( )

( ) ( )

2 2

2

1

2

( )

2 2

( )

1 1

1

1

1 1

B AB

R B

C B

arck n arck n

abrc v r

abck n

abrk n a n

   



 

  

= − + −

+ −

+ − +

− + −

 

( )( ) ( )
22 2

( )1 1 1R Babck n n n  = − − + −  

     

  

( )  
2

2

.. . .....

1 1

a n

l n

l r

E SSR B E bck y E y
= =

 
= −    

 
  

     

  

Sum of Square for Column-Blocks 

( ) ( )2 2 2

. . . ... . .....

1 1 1

,
b n n

m n r

m r r

SSC B ack y acrk y abcrk y
= = =

= − − 
      

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2

1

2 2 2

( ) ( )

1 1 1

1 1 1

A AB

C B R B

brck n arck n abrc v r

abck n abrk n a n

    

    

= − + − + −

+ − + − + −
 

( )( ) ( )
22 2

( )1 1 1C Babrk n n n  = − − + −  

     

  

( )  
2

2

. . . .....

1 1

n n

m n

m r

E SSC B E ack y E y
= =

 
= −    

 


     

  

Sum of Square for Treatment 

( ).... .....

1

k

r

r

SSV abck y abck y
=

= −   

      

and 
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 
22 2 2 2 2

2

.... 1ar ,CA B AB R
rV y r

l m lm n p lmnp

    
= + + + + + +  

 
22 2 2 2 2 2

1
.....ar .CA B AB RV y

r l m lm n p lmnpr

     
= + + + + + +  

Consequently, 

 
( ) ( )

( ) ( )

2

.... ....

2

..... .....

r r

r

Var y E y
E SSV abck

abck Var y E y

 +
 

=
 − +
 



    

( ) ( )

( ) ( ) ( )

2 2

2 2

1 1

1 1 .

A B

AB

ak n bk n

ab n n

   

  

= − + −

+ − − −
  

   

Sum of Square for Sub-Square 

( )2

..... . .....

1

s

b

b

SSB acrk S abck y
=

= −   

     

  

( )

( ) ( )

1p A B AB

bR B C B

y X X X X X

X X X S e

    

  

= + + + +

+ + + + +
 

 
2 2 2 2

1
......

2 22 2
2

ar

,

A B AB
b

CR
b

V y
r l m l

n p x lmnprx



   

  


= + + +

+ + + + +

  

  

 
2 2 2 2

1
.....

2 2 22 2

ar

.

A B AB
b

C SR

V y
r l m lm

n p x b blmnprx



   

   

= + + +

+ + + + +

  

 
( ) ( )

( ) ( )

2

...... .....

2

..... .....

b b

b

Var y E y
E SSB acrkx

acrkx Var y E y

 +
 

=
 − +
 



    

( ) ( )

( ) ( ) ( )

( ) ( )

2 2

2 2

2 2

1 1

1 1

1 1 .

A B

AB x

b

ak n bk n

ab n kx n

b n S n

   

   

 

= − + − +

− + − +

− − −

  

Sum of Square for Environment 

( )2

..... .....

1

n

x

x

SSE abcrk abck y
=

= −   

     

  

 
22 2 2 2 2 2

21
.....ar ,CA B AB RV y

r l m l n p lmnpr
 

     
= + + + + + + +

    

 
2 22 2 2 2 2 2

1
.....ar .CA B AB R

xV y
r l m lm n p x lmnprx

      
= + + + + + + +

     

 
( ) ( )

( ) ( )

2

..... .....

2

..... .....
x

Var y E y
E SSE abcrkx

abcrkx Var y E y

 
 +
 

=
 − +
 



   

( ) ( )

( ) ( ) ( ) ( )

2 2

2 2 2

1 1

1 1 1 .

A B

AB x

ak n bk n

ab n kx n n

   

    

= − + − +

− + − − −

   

Solving equation from sum of squares for column SSB 

through TSS, yields the following estimates of 

parameters 

( )2 2

.....

1 1

l m

lm

a b

TSS y abcrk y
= =

= −    
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( )2 2

.. .....

1

k

t

t

SSt y abcrk y
=

= −    

     

  

( )2 2

.. .....

1

l

l

a

SSR y abcrk y
=

= −    

     

  

( )2 2

. . .....

1

m

m

b

SSC y abcrk y
=

= −    

     

  

( )2 2

. .....

1

l m

lm

a b

SSAB y abcrk y
=

= −   

     

  

( )2 2

. . .....

1

n

n

r

SSRB y abcrk y
=

= −    

     

  

( )2 2

. . .....

1

n

p

r

SSCB y abcrk y
=

= −    

     

  

2 2 2

.. .. . .

1 1 12

1 1 2 2 2

. . . . .

1 1 1 1

k l m

t l ml m
t a b

lm pl m n
a b

lm n p

a b r c

y y y

SSE y

y y y

= = =

= =

= = = =

 
+ + 

 = −
 
+ + + 
 

  


  

    

Overall mean =  ,,,, .....lE y E y   = =    

      

From the SSE above, we compute the mean sum of square 

error for the orthogonal nested row-column (ONRC) 

design as follow;  

( ) ( )2 1 3 1

SSEr
MSE

m b m
=

− − −

)

   

     

  

2.5 Measure of Efficiency 

 
The Statistical efficiency of the designs is assessed using 

the criteria as follows;  

1) Relative Efficiency (RE) is a measure used to 

compare the efficiency of units by calculating their 

efficiency scores relative to each other. It helps to 

determine which method/design is more efficient.  

Relative Efficiency is calculated as the ratio of the 

variances (or mean squared errors) i.e. 

( )

( )

( )
:

NRC

ONRC NRC

ONRC

MSE
RE

MSE
=   

       

1:RE  ONRC is more efficient than NRC (better 

precision and accuracy)  

1:RE  ONRC is less efficient than NRC (poorer 

precision and accuracy)  

1:RE = ONRC and NRC have the same efficiency 

(similar precision and accuracy).  

2) The power of the F-test can be interpreted much the 

same way so that;  

( )

( )

( )
:

ONRC

ONRC NRC

NRC

Pow
RE

pow
=    

       

and then  

1:RE  ONRC is more efficient than NRC (better 

precision and accuracy)  

1:RE  ONRC is less efficient than NRC (poorer 

precision and accuracy)  

1:RE = ONRC and NRC have the same efficiency 

(similar precision and accuracy).  

 

2.6. Software and Hypothetical Data 

The analysis was performed using R statistical software 

(version 4.3.1). A hypothetical dataset from a fungicide 

efficacy trial against potato late blight, conducted in two 

different environments (locations) using a 6x6 orthogonal 

nested row-column layout, was used to illustrate the 

application and efficiency of the proposed design 
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RESULTS AND DISCUSSION 

Results of Several ANOVA Designs 

The tables below give the results from the existing 

models and the new proposed model. 

 

Table 5. Caliński et al. (2020) ANOVA for Experiment in a Split-Plot Design with OBS 

 
Source of             

Degrees 

Sum of  Mean  F-Ratio P-value   

 Variation        of 

Freedom 

Squares Squares       

Treatments  5  450.024  90.005  20.786  <0.0015 

Row   5  14.3922 2.8784  0.6647  

<0.0001          

Column  5  35.9117  7.1823  1.6587  <0.0001 

Interaction   25  286.368  11.455  2.6454  <0.0001 

Residuals              

31 

 134.233  4.3301      

Total    71   920.9292     

 

 

 

Table 6. Lacka (2021) ANOVA for an experiment in a Nested Row-Column design. 

 

Source of         Degrees  Sum of  Mean  F-Ratio P-Values 

 Variation      of Freedom  Squares Squares 

Treatments  5  450.024  90.005  26.398  <0.0015 

Row   5  14.3922 2.8784  0.8442  <0.0001 

Column  5  35.9117  7.1823  2.1065  <0.0001 

Interaction   25  286.368  11.455  3.3596  <0.0001 

Blocks   1  35.3518  35.3518 5.1842  <0.0001  

Residuals   29  98.8812 3.4096 

Total    71   920.9292 

 

Table 7. ANOVA for Combined Analysis of Orthogonal Nested Row-Column (ONRC) design. 

 

 Source of          Degrees  Sum of  Mean 

 F-Ratio P-Values    

 Variation       of Freedom Squares           

Squares 

   

Environments     1  29.8395 29.8395 

32.5162 <0.0010     

Treatments    5  450.024  90.005 

 98.087  <0.0015   

Row     5  14.3922 
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2.8784  3.1369  <0.0001  

Column    5  35.9117  7.1823 

 7.8273  <0.0001   

Row nested RB   4  22.7632 5.6908  

6.2018  <0.0001    

Column nested 

CB 

  4  27.0075 6.7519  

7.3582  <0.0001    

Interaction    25  286.368  11.455 

 12.4837 <0.0001    

Blocks      1  35.3518  17.6759  

38.5264 <0.0010     

Error     21  19.2713 

0.9176      

Total    71   920.9292 

Discussion of the Results 

As shown in Tables 5, 6, and 7, the mean square error 

(MSE) of Orthogonal Block Split Design (OBS), Nested 

Row-Column (NRC) Design and combined analysis of 

Orthogonal Nested Row-Column (ONRC) design for the 

same hypothetical data as shown in Table 4 have been 

calculated. To compare the three designs (OBS), (NRC) 

and (ONRC) i.e., by removing the variability due to Row 

and column blocking in our proposed design i.e., ONRC 

design decreased the experimental error.  In (OBS)error 

mean square is 4.3301, likewise in (NRC)error mean 

square is 3.4096 and error mean square of (ONRC) is 

0.9176 which is less than the error mean square of (OBS) 

and (NRC)for the same hypothetical data. This indicates 

that the ONRC design is more effective and efficient, as 

it combines the properties of both OBS and NRC designs 

and yields a smaller error mean square. 

Furthermore, the large F-ratios observed for treatments (F 

= 98.087, p < 0.0015) and for environments (F = 32.5162, 

p < 0.0010) in the ONRC design indicate strong treatment 

and environmental effects on the response variable. These 

significant F-values confirm that the variation among 

treatment means and across environments is not due to 

random chance, but due to real systematic differences 

captured by the model. Similarly, significant p-values 

(<0.0001) across nested and interaction sources imply 

that the ONRC model successfully partitions variation 

attributable to row, column, and their interaction effects, 

which enhances model precision. 

These findings are consistent with theoretical 

expectations and prior studies (e.g., Caliński et al., 2020; 

Łacka, 2021; Houtman & Speed, 1983), which showed 

that designs with orthogonal block structures and proper 

nesting reduce residual variance and improve estimation 

efficiency. The observed performance of the ONRC 

design therefore supports these earlier conclusions by 

demonstrating that orthogonal decomposition within a 

multi-environment framework increases statistical power 

and accuracy in detecting true treatment effects. 

Table 3.1 and 3.2 above, gives the results of Mean 

Squares Error (MSE) for each of the design below: 

( ) 3.4096
NRC

MSE =  

( ) 0.9176
ONRC

MSE =  

Then, the relative efficiency (RE) given as: 

( )

( )

3.4096
3.7158

0.9176

NRC

ONRC

MSE
RE

MSE
= = =  

Tables 5 and 6 presented the analysis of variance for 

Nested Row-Column (NRC) Design and combined 

analysis of Orthogonal Nested Row-Column (ONRC) 

design for the same hypothetical data that have been 

calculated. We compare the relative efficiency of the two 

models, in other to show a better precision and accuracy 

in both models.  

The relative efficiency result between the (NRC) and 

(ONRC) of the mean squared error (MSE), which is given 

as 3.7158 with the 1RE  , proved that the orthogonal 

nested row-column (ONRC) design is more efficient than 

the nested row-column (NRC) design. This numerical 

improvement further validates the theoretical claim that 

the inclusion of environment and nested sources of 
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variation under orthogonality leads to lower error 

variance and higher reliability of inference.  

CONCLUSION 

This study has successfully developed a combined 

Orthogonal Nested Row-Column (ONRC) design that 

effectively addresses the limitations of existing designs in 

handling multi-environment trials. The proposed model 

incorporates environmental effects and their interactions 

into a unified orthogonal framework, leading to a single, 

comprehensive ANOVA approach. This directly fulfills 

the study’s primary objectives of modifying the existing 

NRC linear model, deriving unified sums of squares, and 

demonstrating improved analytical performance in multi-

environment settings. 

The empirical analysis demonstrates the superiority of the 

ONRC design, showing a substantial reduction in 

experimental error (from 3.4096 in NRC to 0.9176 in 

ONRC, representing approximately a 73% reduction in 

residual variance) and a significantly higher relative 

efficiency (RE = 3.72) compared to the Nested Row-

Column design. These quantitative results confirm that 

the ONRC design achieves greater precision and accuracy 

while maintaining orthogonality across environments. By 

providing a more accurate and powerful statistical tool, 

the ONRC design enables researchers to draw more 

reliable and generalizable conclusions from complex 

experiments repeated across multiple locations or 

seasons. The findings contribute both theoretically—by 

extending orthogonal block structures to multi-

environment contexts—and practically, by offering an 

adaptable framework for experimental designs in 

agriculture and industry. However, one limitation of the 

study is that the evaluation was based on a hypothetical 

dataset rather than field data; hence, further empirical 

validation using real multi-location experiments is 

recommended to confirm its robustness under natural 

variability. In conclusion, the ONRC design advances 

experimental design theory by integrating orthogonality, 

nesting, and environmental effects into one coherent 

structure, providing a valuable framework for future 

analytical and applied research. 
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