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Abstract
In this article, we derive various exact solutions and patterns for the complex modified Korteweg-De Vries system
of equation (cmKdV) with a generalized innovative extended direct algebra method. The Korteweg-De Vries system
exhibits the scientific dynamics of water particles at the surface and beyond the surface level. The system also has
applications in ferromagnetic materials, nonlinear optics, and solitons theory. The innovative direct algebra method is
applied to obtain dark, multiple, singular, breather and bright wave patterns. This method also provides staggering
wave solutions for the complex modified Kortweg-De Vries system in the form of hyperbolic and trigonometric func-
tions. These recovered solutions for the considered model and are more efficient, concise and general than the extant
ones. The wave patterns are properly explained with 2-D and 3-D graphs to elucidate wave behaviour for some selected
solutions derived for the system. Lastly, the solutions in this work will greatly advance various fields of application of
the Kortweg-De Vries equation like optical fibres, ferromagnetic materials, nonlinear optics, signal processing, water

waves, plasma physics, soliton theory, string theory and other contemporary sciences.
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Introduction

In recent years, researchers have put considerable efforts into nonlinear waves at oceanic surfaces. The phenomena of
nonlinear waves significantly contribute to tsunami waves, ocean engineering, mechanics, Control theory, biology, plasma
physics, the communications industry, coastal engineering, fluid dynamics, physics, chemistry, and so forth. In many
engineering and science research areas, nonlinear wave propagations are vital in the multidisciplinary sciences (Sabi’u
J.Das. P.K, Razazadeh. H. 2022). In recent days, researchers are investigating unique solutions for nonlinear partial
differential equations (NPDEs) by utilizing distinct techniques. In specific, for the solitary wave solutions, many powerful
techniques have been offered, like the Ricatti equation method (Ibrahim, S.I, Sabiu, J. Gambo, Y.Y, 2024), tanh-coth,
sine-cosine and Kudryashov methods (Shaikova, G. Kutum, B. Myrzakulov, R. 2022), the Sadar subequation method
(Muhamammad, U.A Sabiu, J. 2024), the tanh technique (Jibril, A. Gadu, A.M. 2019), the Hirota approach (Akinyemi,
L. Senol, M. TIyiola, O.S. 2021), exp-function technique (Khater, M. Akinyemi, S.K. Elagan, M.A. El-Shorbagy, S.H.
2021), the Jacobi elliptic function technique (Houwe, A. Abbagari, S. 2021), as (Razazadeh, H. 2022), stated in Darboux
transformation approach and so on in providing the unified framework. Most of these methods are successfully applied
to obtain solitary wave solutions to the wide range of nonlinear evolution equations, for example, the application of the
auxiliary equation method to Biswas—Arshed equation (Razazadeh, H. 2018), the application of the new direct algebra



methods on the Triki-Biswas equation (Rahman, M. Karaca, Y. Baleanu, W.F. 2024), The application of the generalized
Riccation equation and direct algebra on the Chavy-Waddy-Kolokolnikov model for bacterial colonies , the application
of modified hyperbolic function method to the generalized (2+1)-dimensional nonlinear wave equation (Shaikova, G. Ku-
tum, B. Myrzakulov, R. 2022), the application of exponential function expansion and Kudryashov methods (Rahman,
M. Karaca, Y. Baleanu, W.F. 2024), the application of the (G'/G)-expansion method to the Mikhailov—Novikov—Wang
equation (Ibrahim, S.I, Sabiu, J. Gambo, Y.Y, 2024), the application of the extended trial equation method to the per-
turbed Boussinesq equation with power law nonlinearity (Shaikova, G. Kutum, B. Myrzakulov, R. 2022), the application
of the sine-cosine method on the unstable and hyperbolic nonlinear Schrodinger equations (Akinyemi, L. Senol, M. Iyiola,
0.S. 2021), etc. In this research we will investigate different wave patterns and solitary wave solutions to the complex
modified Kortweg-De Vries (cmKdV) system (Razazadeh, H. 2022) using the new extended direct algebra method. This
method has so much significance as it provides a systematic approach to finding exact solutions to NPDEs which is crucial
for understanding complex phenomena, and the method reduces complex NPDEs to simpler algebraic equations, making

it easier to analyze and solve them. The cnKdV system is as follows;

Hy+ Hppy + (HW ), +iHV =0,
Ve + 2iT(H*Hyy — H H) =0, (1)
Wo = 27(|H|?)y =0,

H(z,y,t) is a complex-valued function, H*(z,y,t) is the conjugate complex function, while V(x,y,t), and W(z,y,t) are
real-valued functions, x, y are spatial coordinate, ¢t is a temporal coordinate, i is complex and 7 = +1. Furthermore,
some bright, periodic and dark soliton solutions of Eq. (1) are acquired for the system Eq. (1) by utilising three different
approaches: tanh-coth, sine-cosine and the Kudryashov methods in (Ibrahim, S.I, Sabiu, J. Gambo, Y.Y, 2024). Other
techniques applied to solve the cmKdV system Eq. (1) are the Sardar sub-equation technique (Yuan, F. 2021), the im-
proved Ricatti approach (Shaikhova, G. Kutum, B., Myrzakulov, R. 2022), and the planar dynamical system method
(Sabi’'u J,Das. P.K, Razazadeh. H. 2022). This research will use the innovative direct algebra approach to present
unique travelling wave solutions for the Eq. (1). The new extended direct algebra technique is efficient for deriving exact
solutions for the NPDEs. Using the travelling wave technique, this approach transforms NPDEs into nonlinear ordinary
differential equations. The method is straightforward and gives numerous exact solutions to the NPDEs that can be
characterised as periodic, hyperbolic, exponential and rational function solutions, see (Razazadeh, H. 2018) for more
details about the new extended direct algebra method. Additionally, we give a brief insight into the lax-pair integrability
test for the considered model.

The structure of the paper is composed of the following sections: section 1, Lax pair analysis for the cmKdV sys-
tem were presented. In section 2, the main procedure associated with the new extended direct algebra method was
depicted. In section 3, the exact solutions of the considered model are displayed. In section 4, the results and discussion

of the findings are exhibited. section 5, completes the paper with some further research directions.

Lax pair analysis of the modified complex KdV model

This section will give a brief insight into the lax-pair integrability test for the considered model. The proportional Lax
pair analysis of Eq. (1) as described in (Shaikhova, G. Kutum, B., Myrzakulov, R. 2022) by letting

®, = BO, &, =4\, + AD, (2)

with
B=)K+ By, A=MA+ A, (3)



where:

A t —i 0
S ) T o B B @)
ma(\, x,y, ) 0 1
& —Hyy — W, 0 H W 2iH
AO = 2 l'IV Y ) BO = ) Al = Z. Z. Y ) (5)
Gy + WG 5 -G 0 2iG, —iW
and A € C.
The compatibility condition
B, — A, — BA+ AB —4)\’B, =0, (6)

derived the (2+1)-dimensional combined complex modified KdV equations as shown below:

Hy+ Hypy +iVH + (WH)
Gy + Gouy — VG + (WG)
Vi + 2i(GHyy — Gy H) = 0,

W, —2(HG), = 0.

1:207
=0

z =Y,

(7)

By setting G = 7H*, the Eq. (7) will be simplified to the complex modified KdV equation shown in Eq. (1). This shows
that the considered model is integrable and can be solved via integrable approaches. In this research, we employ the
innovative extended direct algebra approach to acquire the exact solutions for the cmKdV equation.

Illustration of the new extended direct algebra method

We will elaborate on the key stages of the new extended direct algebra method for determining the exact solutions of
NPDEs.

Step I:

Suppose that the given NPDE for M(x,y,t) is in the format of:

QNPDE (Mv Mvatvaa:Mtt,...) :07 (8)

by utilising this transformation

M(z,y,t) = M), ¢(=z+y+at, (9)

we get the resulting ordinary differential equation (ODE)

QNOPE (aM(¢), M'(¢), M"(¢), ) = 0. (10)
Step 1I:

Let us assume that the exact solution of the Eq. (10) can be described as a polynomial function in Q(¢) as shown below:

M(Q) = >_biQ'(Q),  bx #0, (11)

Where b;(0 < i < K) are the coefficients of constants to be determined subsequently and the function Q(¢) satisfied the
NODE in this format:

Q'(Q) = In(a)(m1 +m2Q(C) + maQ(¢)*) (12)



Step III:

To determine the value of the integer K, we balance the highest order derivative with the nonlinear highest term in the
Eq. (10). Plugging Eq. (12) and Eq. (11) into Eq. (10) produces an equation in powers of Q(¢) in Eq. (10) we then
gather all the coefficients of powers of Q(i = 0,1,2,3,---, K) in the deduced equation where these coefficients must be
set to zero and yield a set of simple algebraic equations containing the constants b;. Then it can be solved by employing
a computer programming tool, like Maple, Mathematica, or Matlab. See (Razazadeh, H. 2018) for more details on the
extended direct algebra method.

Exact solutions of the (241) nonlinear modified complex KdV system

Eq. (1) has to be reduced to NODE by taking the wave transformation.

where the parameters w, ¥ and g are constants and real and M (z,y,t) is also a real valued function, Eq. (1) are induced

to the system of equations as follows:

M; — 20IM, — w? My + My + Myw + Mw, +i((0 — w?)M + 20wMyy + WMy +wMW +MV) =0,  (14)
Vi — 41 (WM M, +9MM,) = 0, (15)
W, — 2r(M?), = 0. (16)

Plugging the following transformation

M(z,y,t) = M(¢) = M(z +y + o),
W(z,y,t) =W () =W(z+y+ at),
V(z,y,t) = V() =V(z+y+at),
into Eq. (14)-Eq. (16) we obtain that

(0 — 2wl — W )M + M" + M'W + MW’ +i((0 — w*9M + 2w+ 9)M" + MW + MV) =0, (17)
V' —dr(w+I9)MM' =0, (18)
W' —2r(M?) =0, (19)

where M := M(¢), W := W(¢), and V := V(). Now, Taking the integral on both sides of Eq. (18)-Eq. (19) with respect

to ¢ and by setting integral constants to zero, we obtain:
V =2r(w+9)M?, W =2rM?>. (20)
By inserting Eq. (20) into Eq. (17), we obtained the ODE as follows:
(a — 2w —w*)M' + M" +27(M?) +i((0 — w*9)M + (2w + 9)M" + 27(2w + 9)M?) = 0. (21)
Separating the real part and imaginary part in Eq. (21), the following ODEs were obtained:

(= 2wl — w?)M' + M" +27(M?)' =0, (22)



(0 — w?¥)
(2w + ¥)
Taking the integral on both sides of Eq. (22) with respect to ¢, we obtained

M+ M" +27M? = 0. (23)

(= 2w —w* )M + M" +2rM? = R, (24)

where R is the integration constant. The Eq. (23) and Eq. (24) are equivalent if:

— 219)

o= 2T Ry 25
a— 2w —w ot ) (25)

utilising condition Eq. (25), we get
a*2wﬂ+w2+g_wzﬂ (26)

B 2wV
We rewrite equation Eq. (23) as
— 219)

VN Chul s VPSS YRy 27
Ty T (27)

We solve equation Eq. (27) using the innovative extended direct algebra approach in the next section below.

The application of the new extended direct algebra method

We are going to employ the innovative extended direct algebra technique to find exact solutions of Eq. (27) in this section.
By using the homogeneous balance technique into Eq. (27), we get K = 1.
The exact solution of Eq. (27) can be obtained by utilising

K
M(Q) =>_b:Q(0), (28)
=0
bg #0, for1=0,1,2,3,...K.

This implies that:
M(C) = bo + b1Q(Q), (29)

be the solution of Eq. (27) using the new extended direct algebra method steps with by and by to be determined later. It
is not difficult to see that if we differentiate Eq. (29) we have

mier =n (“92). (30)
Now, substituting Eq. (30) and
LQ(¢) = m(a) (m1 + maQ(C) + msQ(Q)?) . (31)

d¢
into Eq. (27) and setting all the coefficients of powers Q(({) to zero, we obtain:

2y (%55) maby (in (@))* — bo (4 (%51) nbo® + a%b — w)

F 0 . 2b 2

or () s , (32)
—w2

For Q(C¢): 2byIn(a)*>myms + by In(a)’*m3 + %bl + 6mbgbr = 0, (33)

For Q(¢)%: 3biIn(a)?*moms + 6nbb? = 0, (34)

For Q(¢)%: 2biln(a)’*m3 + 203 = 0. (35)



Solving the above system of equations for by, b1, m1, mo and mg, with Maple’s support, we generate the following values:

w9 — o

= == :I:
bo=0, b 21n(a)2ms(2w +9)’

1
—;mg In(a), my = ma = 0,

For m3 —4myms <0, and m3 # 0:

(—%ix/@(pa%i“m - qa—%wm)%)
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(—4ivEB(pat VT 4 ga3VIT)y,)
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1 i <paimc 4 qa—imc) N
4(C) o 75 1)/} paZ\/ﬁC — qa‘“/ﬂ( + pach — qa—imc
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i (paiimc 4 qa—ii\/m)
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1/12 )

¢2 )

Ms(Q) == | v | - pa ¥V 1 gq— FiVEHC
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For mymgs >0, and mo =0, then:

i (S — g )
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( q31V29¢ +qa~ l\/W()

0 () )
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(40)

(41)

(47)

(48)
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Mig(¢) = (
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By plugging M;(¢) into Eq. (13) and Eq. (20) where i =1,2,3, ...

where i = (1,2, ...20).

pa4l\/7< _|_ qa 1@{

- (x/Tlln (pa%m‘ —qa”%

paizmc — qa_%lmc

D

,(\/T%( a3V 4 gq 3V

b

(2 (pa% V=20 qa~ 3V2V=29 C)

)

)
)
)
(2 <pa%\/7w4 e f\/TC)) ’

paY*C —qa= V2 <+
pay—2%¢ 4 ga—V—2¢

2i,/pq "
pa\/ *2’¢’C -|- qa*V*ng 3 ’

e )

aPz ¢ _ga—V=2 | paV=2C _ gq—v=2%¢

paivVEC 4 gq— iV

paiV=IC _ gq—3vEIC
paiﬁzwc ¥ qa— iV * paiV=2

_ ga— iV
Hi(z,y,t) = '@ el pr (),
Vi(z,y,t) = 27(w + ) M2 (),

Wi ({E7 Y, t) = 2TM12<<)7

(~3iVEB(pat VI — ga= V),

Hy(,y,) = el torted
(‘%W@(pa%imC - qa’%"mc)wg)
Vi(e,y,t) = £27(w +9) ,

Wi(z,y,t) = 27

HQ(xvyat) =

iei(wz+ﬂy+gt)

(*%ix/@(pa%“/m - qa*éimi)wz)
( ad VI 4 g~ zmc)

(‘%W%(pa%imc + qa’%imc)%)
(pa%wm _ qaf%imc)

)

20, we get the solution of the Eq. (1) as follows:
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Va(z,y,t) = £27(w + 9)
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Results and Discussion

This section gives various wave propagation patterns for the solution of the (2+1)-dimensional cmKdV system via the
new extended direct algebra method. For this sake, the wave patterns are properly explained with 2-D and 3-D graphs

to elucidate wave behaviour for some selected solutions derived for the system. See the figures below;
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Figure 1: The 2D propagation for |H;(z,y,t)

| 2

with blue line indicating singular-wave soliton; Vi (x,y,t) with red

line representing singular-wave soliton and Wi (z,y, t) with black line showing singular-wave soliton for ¢t = 0, 10

and 20 seconds.
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Figure 2: The 2D propagation for |Hs(z,y,t)|* with blue line indicating bright-wave soliton; Vs (x,y,t) with red

line representing dark-wave soliton and Ws(z,y,t) with black line showing dark-wave soliton for ¢ = 0, 10 and 20

seconds.
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Figure 3: The 3D wave pattern for |h;(z,y,t)|? showing dark-wave soliton profile and the Re(h(z,y,t)) indicating

multiple-wave soliton profile for p=¢=a=w =05, mg=n=9 =1, p=1.5, and y = 0.

Figure 4: The 3D wave pattern for Vj(x,y,t) and the Re(Vi(x,y,t)) showing the bright-wave solitons profiles for
p=gq=a=w=05mg=n=9=1,p=1.5,and y =0.
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Figure 5: The 3D wave pattern for Wi (x,y,t) and the Re(W;(z,y,t)) showing bright-wave solitons profiles for p =
g=a=w=05 mg=n=9=1,p=1.5,and y =0.
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Figure 6: The 3D wave pattern for |Ha(x,y,t)|? and the Re(Hz(w,y,t)) showing breather-wave soliton profiles for
p=gq=a=w=05 m3g=n=9v=1, 0=1.5,and y =0.
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Figure 7: The 3D wave pattern for Va(z,y,t) and the Re(Va(z,y,t)) showing breather-like solitons profiles for p = ¢ =

= 100000~
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(a)

Figure 8: The 3D wave pattern for Wy(z,y,t) and the Re(Ws(z,y,t)) showing breather-like solitonsprofiles for p =
g=a=w=05 mg=n=9=1,0p=15,and y =0.

It is noticed from Figure 1-Figure 8 that both the solitons maintained their amplitudes, widths, and directions con-
stant throughout the propagation time on x — y coordinate. It is also noticed that, these parameters o, 1, ms, p, ¢,
a, w, and ¥, are regulating the wave propagation for these solutions. The cmKdV was investigated in the literature by
utilizing other techniques, see [7—9]. Moreover, the designed approach in this article has made a major contribution in
obtaining numerous families of exact solutions of Eq. (1) which appear recent and recuperate the famous exact solutions
obtained in [7-9] using the Ricatti, the tanh-coth, Kudryashov, sine-cosine and Sadar methods. Finally, all the obtained
solutions reported in this research have been checked and authenticated with Maple 19 by substituting them into the
original system, that is system Eq. (1). Thus, one advantage of the execution of the new extended direct algebra approach
is that the present method is exceptionally reliable and gives unique solutions in comparison to other approaches, as well
as the capacity to elaborate more abundant families of exact solutions comprising periodic, singular, dark, breather and
bright solitons with varying parameters value used in the model. The techniques cited in [7-9] give bright, periodic, sin-
gular and bright soliton solutions, also the new extended direct algebra method gives singular, periodic, bright and dark

soliton patterns. Furthermore, in this research, we have achieved 20 unique solutions for the cmKdV model. Whereas
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the techniques utilised in [7] yield only 12 solutions and [8] provide only 8 exact solutions for the whole three techniques
utilised in the paper, this shows that the innovative extended direct algebra method is a reliable, sophisticated, accurate
and effective method.

Conclusion

In this paper, we thoroughly studied the cmKdV model that has applications in water wave and plasma physics using the
innovative direct algebra method. We obtained various exact solutions for the cmKdV model that give rise to different
wave patterns like dark, multiple, singular, breather and bright wave patterns. The nature of these solutions is in the
form of rational, finite exponential, hyperbolic and trigonometric functions. The study exhibits the intricate dynamics of
propagating waves for parameter variations, implying various travelling wave behaviour. We applied different parameter
values and provided unique graphical interpretations of some of the exact solutions, yielding a precious understanding of
the governing model’s evolution which has numerous applications in water waves, plasma physics, nonlinear optics and
other contemporary sciences. Antecedent to this investigation, previous studies have not yielded solutions of this nature.
The findings provide valuable insights into the complexities of nonlinear wave phenomena and reaffirm that the extended
direct algebra method is a reliable and adaptable method for addressing complex NPDEs-related nonlinear problems. In
the future, we will incorporate the concepts of modulation instability and Lie symmetry analysis for the considered model

to explore more exciting features of this system.
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