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ABSTRACT
[bookmark: _GoBack]This research utilised the survival analysis technique to study human immunodeficiency virus (HIV) data among children infected from the ages of one to ten years old. The aim was to fit a survival analysis model to HIV data of infected children. The study adopted the Gompertz parametric survival model to fit the HIV data and estimated the survival functions using the Kaplan-Meier estimator. Additionally, exploratory analysis was performed on the data. The predictor variables of interest included age, weight, height, sex, mother-to-child transmission, residence, viral load, HIV and education status of the parents. The Akaike Information Criterion (AIC) for the Gompertz model was found to be 569.167, which was lower than the AIC for the Cox proportional model of 858.0897. Similarly, the Bayesian Information Criterion (BIC) for the Gompertz model was 609.1889, which was lower than the BIC for the Cox proportional model of 890.8348. These results indicated that the Gompertz model provided a better fit to the data. The analysis revealed that only viral load was a statistically significant predictor of the event, with a p-value of 0.000, indicating its significance at the 0.05 level. Based on these findings, it was recommended that pregnant women should attend antenatal care and adhere to all instructions provided by health practitioners. Special attention should be given to children born to HIV-positive mothers due to mother-to-child transmission and those with an unsuppressed viral load, as they are at a higher risk of mortality.
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INTRODUCTION
Human Immunodeficiency Virus (HIV) remains one of the leading causes of morbidity and mortality among children worldwide, especially in sub-Saharan Africa, where vertical transmission from mother to child accounts for a large proportion of pediatric infections. Despite the availability of Antiretroviral Therapy (ART), many infected children face reduced life expectancies due to delayed diagnosis and treatment, as well as the complications associated with opportunistic infections (UNAIDS, 2022). This study explores survival outcomes for HIV-infected children aged one to ten years using survival analysis, a statistical approach suited to understanding time-to-event data. 
As at 2023, there are approximately 95,000 children under 10 years old living with HIV in Nigeria. The country continues to face challenges in addressing pediatric HIV due to high rates of mother-to-child transmission and limited access to treatment services. Children in this age group represent a significant portion of the estimated 140,000 children living with HIV in Nigeria, which includes those up to 14 years old ​​(UNICEF, 2023).
Survival analysis is essential for predicting patients’ time-to-event outcomes and aiding healthcare practitioners in making the best treatment decisions (Wang et al., 2017), not only in disease analysis or monitoring procedures but also in assisting with the quantitative and qualitative improvement of preventive medicine (lifestyle interventions, vaccine efficacy and screening programmes, among others). In addition to its use in healthcare, survival analysis plays a key role in decision-making across a variety of disciplines of management (Wang et al., 2017). The Gompertz model, first introduced by Gompertz in 1825, is a widely utilized sigmoid model that is particularly effective in fitting growth data and other phenomena characterized by S-shaped curves. The model is named after Gompertz, who originally applied it to describe the growth of human populations (Chu,2020). Cox's Proportional Hazards Modelling (PHM) is a partial likelihood perspective in which the baseline hazard rate is an unspecified nuisance function (Li, 2014). It can also be described as the basic modelling or technique used in exploring the relationship between the survival experiments and potential risk factors.
Ikhelowa et al., (2019), on relating Cox Proportional Hazard model to evaluate the determinant factors of survival time, and predict the clinical progression of HIV/AIDs ailment employed secondary data obtained from the Antiretroviral Rehabilitation Unit of Central Hospital, Agbor, Delta State, Nigeria. The statistics were extracted from Regular Patient Medical Registration. They used a sample of 1000 HIV/AIDs patients who were followed for a minimum predetermined period of 11 years and 3 months. From the sample, 64.2 percent were female and 35.8 percent were male, 8.6 percent of the patients were reported dead; while 91.4 percent of patients were censored. The Cox regression result indicated that the survival time of the HIV/AIDs patients is significantly related to sex, ART, enrolment date, and current age.
Furthermore, a systematic review by Warszawski et al. (2017) synthesized evidence from multiple studies to assess the survival of vertically HIV-infected children in high-income countries. The review included data from 16 studies and highlighted the substantial improvements in survival rates over the years, attributed to advancements in ART and comprehensive care. The findings underscored the importance of access to quality healthcare services and ongoing monitoring to optimize survival outcomes in HIV-infected children.
A study by Njom et al. (2016) examined the survival of HIV-infected infants in Yaoundé, Cameroon. The researchers followed a cohort of 182 infants and assessed their survival outcomes over a period of 48 months. The study revealed that infants with late HIV diagnosis, low birth weight, and severe immunosuppression had significantly higher mortality rates. The findings underscored the need for timely HIV diagnosis, early initiation of ART, and nutritional interventions to enhance the survival prospects of HIV-infected infants.
The objects of this paper ae as follows:
This study was conducted in Minna, Niger State, Nigeria, The hospital is located at the metropolitan part of Minna, Railway Station Road, and has GPS coordinates of 9° 35' 0.7980'' N and 6° 32' 46.7376'' E. 
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Figure 1: Map of Nigeria showing Niger State
Source: Ministry of Land and Housing
MATERIALS AND METHODS
In this study conducted at General Hospital Minna, Niger State, Nigeria, the population consists of all registered children with HIV/AIDS cases that have been followed over a 15-year period, from January 2007 to December 2021. This totals 1,021 patients, each of whom has been tracked in the hospital's records over the specified timeframe. 
From this population of 1,021 cases, a sample of 281 cases was selected for detailed analysis. Given the nature of the study, a purposive sampling method was employed. This sampling technique involves selecting cases based on specific characteristics relevant to the research objectives rather than choosing them randomly. Purposive sampling is appropriate because survival analysis often requires cases with certain attributes, such as complete follow-up data or events (like survival or mortality) occurring within the study period. 
Data was collected on patients, focusing on socio-demographic and clinical variables of interest. Patient records were carefully chosen based on the following criteria: the patient was an HIV-positive individual registered at General Hospital Minna; was 10 years of age or younger; was receiving treatment specifically at the Heart to Heart Unit of the hospital; and was diagnosed with HIV as of January 2007. The collected data were entered into Microsoft Excel and subsequently analyzed using Microsoft Excel, STATA, and SPSS.
Gompertz Model
The Gompertz model, first introduced by B. Gompertz in 1825, is a widely utilized sigmoid model that is particularly effective in fitting growth data and other phenomena characterized by S-shaped curves. The model is named after Gompertz, who originally applied it to describe the growth of human populations (Chu, 2020).
The probability density function (pdf) of the Gompertz distribution with two shape parameters  and ;  > 0 is given by Collett et al., (2015)
                                                  		 	(3.1)
Where 
	
	
Thus, following equation (3.1), the survival function is given by:
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										(3.3)
and the hazard function is given by
                                                                                  	 	(3.4)
Clearly, the hazard function of the Gompertz distribution increases with time when z<0, decreases with time when z>0, and is constant when κ = 0. Hence, the Gompertz hazard function increases or decreases monotonically 
The hazard function of the Gompertz distribution increases with time when 𝜅>0decreases with time when 𝜅<0 and is constant when =0 (Collett et al., (2015).
Applying the logarithm transformation to both sides of  equation (3.4) yields 
The hazard function  is an exponential function, which means the relationship between  and  is not linear but rather follows an exponential growth pattern. By taking the natural logarithm of both sides, you convert this exponential relationship into a linear one:
                                                                                   	(3.4)
Here,  becomes a constant term (denoted as α), and  is the term with the variable . This results in a linear equation:
         							(3.5)                                                                          
where α denote ln δ. Hence, the Gompertz distribution is suitable for a given dataset, where the hazard rate changes exponentially over time.
Cox's Proportional Hazards 
Cox's Proportional Hazards Modeling (PHM) is a partial likelihood perspective in which the baseline hazard rate is an unspecified nuisance function (Liu, 2014). It can also be described as the basic modelling or technique used in exploring the relationship between the survival experiments and potential risk factors. Although, the model is based on the theory of hazards proportionality as such, no particular form of likelihood distribution is assumed for the survival times. The model is thus semi-parametric in nature and does not require a specified distribution for survival times.
The formula for the Cox proportional hazard model is: 
 = (t) (X1β1+· · ·+Xpβp)						(3.6)

where:
X1,...,Xp are the predictors
β1, . . . , βp are the coefficients associated with each predictor. 
The predictors are assumed to act additively on log  and changes linearly with the βs. The effect of the predictors is assumed to be the same at all times (Collett et al., 2015). 
Kaplan-Meier estimate of the Survival and Hazard function
                                        			(3.7)
For   with 
where the product is taken over all  such that  ≤ 1. The estimator provides an estimate of the probability that a subject survives past time t, given the available data up to that time point.
Taking  as the number of events at the  event time denoted by t(j), and nj the number of individuals at risk at time  the hazard function at time t in the interval is estimated by
 										(3.8)
  is known as the Kaplan-Meier estimate of the hazard function. 
Validation Techniques
Two evaluation techniques are used to evaluate the performance of the methods.
Akaike Information Criterion   
For model comparison and selection, the Akaike Information Criterion (AIC) is a flexible criterion. If the models were fitted to the same dataset, AIC can be used to compare both nested and non-nested models. AIC takes the form of a penalized likelihood, where the number of free parameters in the model determines the value of the "penalty" term. Three complementary perspectives, including information theory, prediction accuracy, and Bayesian statistics, can be used to understand the significance of AIC (Posada and Buckley, 2004). The number of free parameters in the model (K) and the maximal likelihood of a fitted model (L) are used to calculate the AIC as given below.
									(3.9)
Bayesian Information Criterion
The Bayesian Information Criterion (BIC) is a widely recognized generic model selection technique that prioritizes succinct models over complicated models by adding a penalty that is contingent on the number of factors being estimated in the model (Wang, 2017). One form for calculating the BIC is given by.
								(3.10)
where  represents the model's hypothesized chi-square statistic. In this form, a BIC less than 0 favors the hypothesized model, but a BIC greater than 0 favors the saturated model (i.e., the model that permits all observed variables to be intercorrelated with no assumed model structure). The BIC can also be used to evaluate two rival models.

RESULTS AND DISCUSSIONS
Table 1: Summary Statistics of HIV Data of children
	Variables
	Category
	Count
	Percent

	Sex
	Male
	171
	60.9

	
	Female
	110
	39.1

	Mother-To-Child-Transmission 
	Yes
	200
	71.2

	
	No
	81
	28.8

	Residence
	Rural
	76
	27.0

	
	Urban
	205
	73.0

	Present Viral Load
	Unsuppressed
	29
	10.3

	
	Suppressed
	252
	89.7

	Event
	Dead
	92
	32.7

	
	Alive
	189
	67.3











Table 1 shows that 60.9% of children were male and 39.1% female, with 71.2% born HIV-positive due to Mother-To-Child Transmission. 73% lived in urban areas, and 89.7% had suppressed viral loads. 32.7% died, while 67.32% were alive.
Table 2: Kaplan Meir Estimate of the Median Survival for Viral Load
	Category
	N
	Events
	% Event
	Median
	Std Error
	0.95LCL
	0.95UCL

	Suppressed
	252
	66
	26
	366
	92.33
	185.03
	546.97

	Unsuppressed
	29
	26
	90
	31
	7.86
	15.59
	46.41

	Overall
	281
	92
	33
	244
	86.23
	74.99
	413.01

	
Chi-square
	
44.94
	
Df
	
1
	
p-value
	
0.000
	
	



Table 2 shows a significant difference in children's viral load, with suppressed children having a 50% chance of survival up to 547 months, and unsuppressed children having a median survival time of 31 months. 
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Figure 2: Estimate of Survival Curve based on Viral Load

Figure 2 shows that children with unsuppressed viral load have a higher survival probability at early age, but as time progresses, the probability decreases. Children with suppressed viral load have a higher survival probability, while those with unsuppressed viral load have a higher risk of death or negative health outcomes. The curve's less steepness indicates more similar survival probabilities between groups.
Table 3: Gompertz Survival Model
	Variables
	Hazard Ratio
	Std Err.
	Z
	p-value
	0.95 LCI
	0.95 UCI

	Age
	1.022942   
	0.0502841     
	0.46   
	0.644     
	0.9289856    
	1.126401

	Sex
	1.187103      
	0.2764228  
	0.74   
	0.461     
	0.7521108    
	1.873677

	Weight
	.9808286   
	.0144076    
	-1.32        
	0.188
	.9529929    
	1.009477

	Height
	1.008807   
	.0097318     
	0.91   
	0.363     
	.9899119    
	1.028062

	MTCT
	0.75783   
	1.163146    
	-0.18   
	0.857     
	.0374211    
	15.34714

	HIV status
	1.013582   
	1.530299     
	0.01   
	0.993      
	.052568    
	19.54325

	Educational status
	1.010017   

	.1499402     
	0.07   
	0.946        
	.755032  
	1.351115

	Residence
	.686904   
	.1626265    
	-1.59   
	0.113     
	.4318885    
	1.092497

	Viral load
	.2458283   
	.0674764    
	-5.11   
	0.000     
	.1435454    
	.4209927



Table 3 shows that viral load is the only significant variable, reducing HIV deaths in children by 0.2458. Factors such as age, sex, height, HIV status, and education increase death chances, while weight, MTCT, residence, and viral load decrease them.
Table 4: Cox Proportional Hazard Model 
	Variables
	HR
	Std Err.
	Z
	p-value
	0.95LCL
	0.95UCL

	Age
	1.026313   
	0.0494942     
	0.54   
	0.590     
	0.9337499    
	1.128053

	Sex
	1.226338   
	.2832994    
	0.88   
	0.377     
	.7797796    
	1.928627

	Weight
	0.9854807    
	.013505    
	-1.07   
	0.286     
	.9593637    
	1.012309

	Height
	1.006891   
	.0090547     
	0.76   
	0.445     
	.9892993    
	1.024795

	MTCT
	0.8424571   
	1.211077    
	-0.12   
	0.905     
	.0503384    
	17.116

	HIV status
	0.9851171   
	1.390364    
	-0.01   
	0.992     
	.0619623    
	15.66202

	Edu status
	1.044109   
	0.1528465     
	0.29   
	0.768     
	.7836806    
	  1.391082

	Residence
	0.7004089   
	.1652219    
	-1.51   
	0.131      
	.441122    
	1.112102

	Viral load
	0.2329946  
	.0635108    
	-5.34   
	0.000
	.1365593    
	.3975307



Table 4 shows that viral load significantly reduces HIV-related deaths in children by 0.232. Factors such as age, sex, height, HIV status, and education increase the chances of death, while weight, MTCT, residence, and viral load decrease the chances of death.
4.5.1 Akaike’s and Bayesian Information Criterion of Cox Proportional Hazard Model
Table 5: Cox Proportional Hazard Model Akaike’s and Bayesian Information Criterion
	Observations
	LL(null)
	LL(model)
	Df
	AIC
	BIC

	281
	-437.3433
	-420.0448      
	9
	858.0897
	890.8348



Table 5 shows the Akaike’s and Bayesian Information Criterion for the Cox proportional model. It shows that the observations are 281, the log-likelihood of the null model is -437.3433, the log-likelihood of the  model is  -420.0448, the Degrees of Freedom is 9, the AIC is  858.0897 while the BIC is 890.8348. 
Table 6: Comparisons of Gompertz and Cox Proportional Hazard models using AIC and BIC.
	Model
	LL(null)
	LL(model)
	Df
	AIC
	BIC

	Gompertz
	-290.8435
	-273.5835     
	9
	569.167
	609.1889


	Cox Proportional Hazard
	-437.3433
	-420.0448      
	9
	858.0897
	890.8348



The tables 6 shows that the AIC for the Gompertz model (569.167) is lower than the AIC for the Cox proportional model (858.0897), which shows that the Gompertz model provides a better fit to the data. It shows that the BIC for the Gompertz model (609.1889) is lower than the BIC for the Cox proportional (890.8348) which shows that the Gompertz model provides a better fit to the data. These results shows that the Gompertz model provides a good fit to the data.
CONCLUSION
This study provided a comprehensive analysis of survival outcomes among HIV-infected children at General Hospital Minna, focusing on factors influencing mortality and survival probabilities. Among the 281 cases analyzed, a 67.26% survival rate and a 32.74% death rate were observed, with a median survival time of 244 months. The findings indicate that the probability of survival declines as children age, highlighting the compounding risks associated with prolonged survival in HIV-positive pediatric populations.
Key predictors of survival outcomes were identified, with viral load showing a statistically significant impact on mortality (p-value = 0.000). Factors such as age, sex, height, HIV status, and education level were associated with an increased risk of death, whereas improvements in weight, Mother-To-Child Transmission (MTCT) rates, changes in residence, and reductions in viral load contributed to better survival outcomes.
In comparing survival models, the Gompertz model emerged as the most effective tool for predicting survival trends, as evidenced by its lower AIC (569.167) and BIC (609.1889) values compared to the Cox proportional hazards model. This underscores the Gompertz model’s suitability for analyzing pediatric HIV survival data characterized by S-shaped survival curves.
The study successfully addressed the research problem by identifying critical factors affecting survival among HIV-infected children, providing actionable insights for improving clinical outcomes. These findings underscore the importance of early interventions, effective management of viral load, and addressing socio-demographic disparities to enhance the survival prospects of HIV-infected children.
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